1
|
Santos AS, Ramos ES, Valente VLS, Manfrin MH. Differential DNA methylation in response to host environment changes in Drosophila gouveai. Genetica 2025; 153:14. [PMID: 40056225 DOI: 10.1007/s10709-025-00230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Organisms with a single genotype can express different phenotypes in response to rapid environmental changes, an event known as phenotypic plasticity, although the molecular basis is poorly understood. Epigenetic modifications mediate genotype-to-phenotype transitions and are related to phenotypic plasticity. Drosophila gouveai, a cactophilic species found in South America, exhibits morphological changes and differential methylation in its genome during the development; however the phenotypic plasticity is not yet elucidated. In this study, we investigated changes in genomic DNA methylation profiles and molecular targets when D. gouveai develops in Cereus hildmaniannus tissues or P. machrisii cactus. We assessed DNA methylation patterns using the MSAP technique, followed by direct sequencing. Our results indicate that internal methylation (target-CmCGG/CCmGG) comprises 33 loci in the genome in ovarian tissues in flies raised on C. hildmaniannus and 31 loci in flies raised on P. machrisii. In the trials of male flies, we found 42 methylated loci in flies developed on C. hildmaniannus and 21 loci in flies raised on P. machrisii. Epigenetic heterogeneity was observed between D. gouveai ovarian and testicular tissues. Additionally, the Galileo transposon element (TE) is targeted for methylation when flies develop on C. hildmaniannus. Methylation of transposable elements is known to play a role in genome stability. In conclusion, our data suggest that differential methylation occurs in the D. gouveai genome when using different cactus hosts.
Collapse
Affiliation(s)
- Adriano S Santos
- Postgraduate Program in Genetics, Department of Genetics, Ribeirão Preto Medical School, FMRP-USP, Ribeirão Preto, São Paulo, Brazil.
| | - Ester S Ramos
- Postgraduate Program in Genetics, Department of Genetics, Ribeirão Preto Medical School, FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Vera L S Valente
- Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maura H Manfrin
- Postgraduate Program in Genetics, Department of Genetics, Ribeirão Preto Medical School, FMRP-USP, Ribeirão Preto, São Paulo, Brazil
- Department of Biology, School of Philosophy, Sciences, Languages of Ribeirão Preto, FFCLRP-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Sirard MA, Ibeagha-Awemu EM. DNA methylation haplotype block signatures responding to Staphylococcus aureus subclinical mastitis and association with production and health traits. BMC Biol 2024; 22:65. [PMID: 38486242 PMCID: PMC10941392 DOI: 10.1186/s12915-024-01843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.
Collapse
Affiliation(s)
- Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mario Laterrière
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - David Gagné
- Quebec Research and Development Centre, Agriculture and Agri-Food Canada, Quebec, QC, Canada
| | - Jean-Philippe Roy
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| | | | - Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada.
| |
Collapse
|
3
|
Wang X, Li W, Feng X, Li J, Liu GE, Fang L, Yu Y. Harnessing male germline epigenomics for the genetic improvement in cattle. J Anim Sci Biotechnol 2023; 14:76. [PMID: 37277852 PMCID: PMC10242889 DOI: 10.1186/s40104-023-00874-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Sperm is essential for successful artificial insemination in dairy cattle, and its quality can be influenced by both epigenetic modification and epigenetic inheritance. The bovine germline differentiation is characterized by epigenetic reprogramming, while intergenerational and transgenerational epigenetic inheritance can influence the offspring's development through the transmission of epigenetic features to the offspring via the germline. Therefore, the selection of bulls with superior sperm quality for the production and fertility traits requires a better understanding of the epigenetic mechanism and more accurate identifications of epigenetic biomarkers. We have comprehensively reviewed the current progress in the studies of bovine sperm epigenome in terms of both resources and biological discovery in order to provide perspectives on how to harness this valuable information for genetic improvement in the cattle breeding industry.
Collapse
Affiliation(s)
- Xiao Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Konge Larsen ApS, Kongens Lyngby, 2800, Denmark
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wenlong Li
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xia Feng
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianbing Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, USDA, Beltsville, MD, 20705, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Ding W, Kaur D, Horvath S, Zhou W. Comparative epigenome analysis using Infinium DNA methylation BeadChips. Brief Bioinform 2023; 24:6974838. [PMID: 36617464 PMCID: PMC10147478 DOI: 10.1093/bib/bbac617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
The arrival of the Infinium DNA methylation BeadChips for mice and other nonhuman mammalian species has outpaced the development of the informatics that supports their use for epigenetics study in model organisms. Here, we present informatics infrastructure and methods to allow easy DNA methylation analysis on multiple species, including domesticated animals and inbred laboratory mice (in SeSAMe version 1.16.0+). First, we developed a data-driven analysis pipeline covering species inference, genome-specific data preprocessing and regression modeling. We targeted genomes of 310 species and 37 inbred mouse strains and showed that genome-specific preprocessing prevents artifacts and yields more accurate measurements than generic pipelines. Second, we uncovered the dynamics of the epigenome evolution in different genomic territories and tissue types through comparative analysis. We identified a catalog of inbred mouse strain-specific methylation differences, some of which are linked to the strains' immune, metabolic and neurological phenotypes. By streamlining DNA methylation array analysis for undesigned genomes, our methods extend epigenome research to broad species contexts.
Collapse
Affiliation(s)
- Wubin Ding
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Diljeet Kaur
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA
| | - Steve Horvath
- Dept. of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Altos Labs, San Diego, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Li W, Mi S, Zhang J, Liu X, Chen S, Liu S, Feng X, Tang Y, Li Y, Liu L, Fang L, Zhang S, Yu Y. Integrating sperm cell transcriptome and seminal plasma metabolome to analyze the molecular regulatory mechanism of sperm motility in Holstein stud bulls. J Anim Sci 2023; 101:skad214. [PMID: 37366074 PMCID: PMC10355371 DOI: 10.1093/jas/skad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Considering that artificial insemination is the most widely used assisted reproductive technique in the dairy industry, the semen quality of bulls is very important for selecting excellent stud bulls. Sperm motility is one of the important traits of semen quality, and related genes may be regulated by environmental factors. Seminal plasma can affect sperm cell transcriptome and further affect sperm motility through exosome or other processes. However, the molecular regulation mechanism of bull sperm motility has not been studied by combining the sperm cell transcriptome with seminal plasma metabolome. The number of motile sperm per ejaculate (NMSPE) is an integrated indicator for assessing sperm motility in stud bulls. In the present study, we selected 7 bulls with higher NMSPE (5,698.55 million +/- 945.40 million) as group H and 7 bulls with lower NMSPE (2,279.76 million +/- 1,305.69 million) as group L from 53 Holstein stud bulls. The differentially expressed genes (DEGs) in sperm cells were evaluated between the two groups (H vs. L). We conducted gene co-expression network analysis (WGCNA) on H and L groups of bulls, as well as two monozygotic twin Holstein bulls with different NMSPE values, to screen candidate genes for NMSPE. The regulatory effect of seminal plasma metabolome on the candidate genes of NMSPE was also investigated. A total of 1,099 DEGs were identified in the sperm cells of H and L groups. These DEGs were primarily concentrated in energy metabolism and sperm cell transcription. The significantly enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways of the 57 differential metabolites were the aminoacyl-tRNA biosynthesis pathway and vitamin B6 metabolism pathway. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. We observed a broad correlation between transcriptome of sperm cells and seminal plasma metabolome, such as three metabolites, namely, mesaconic acid, 2-coumaric acid, and 4-formylaminoantipyrine, might regulate FBXO39 expression through potential pathways. The genes related to seminal plasma metabolites expressed in sperm cells are not only located near the quantitative trait loci of reproductive traits, but also enriched in the genome-wide association study signal of sire conception rate. Collectively, this study was the first to investigate the interplays among transcriptome of sperm cells and seminal plasma metabolome from Holstein stud bulls with different sperm motility.
Collapse
Affiliation(s)
- Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xia Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Mi S, Shi Y, Dari G, Yu Y. Function of m6A and its regulation of domesticated animals' complex traits. J Anim Sci 2022; 100:6524534. [PMID: 35137116 PMCID: PMC8942107 DOI: 10.1093/jas/skac034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/06/2022] [Indexed: 11/14/2022] Open
Abstract
N6-methyladenosine (m6A) is the most functionally important epigenetic modification in RNA. The m6A modification widely exists in mRNA and noncoding RNA, influences the mRNA processing, and regulates the secondary structure and maturation of noncoding RNA. Studies showed the important regulatory roles of m6A modification in animal's complex traits, such as development, immunity, and reproduction-related traits. As an important intermediate stage from animal genome to phenotype, the function of m6A in the complex trait formation of domestic animals cannot be neglected. This review discusses recent research advances on m6A modification in well-studied organisms, such as human and model organisms, and introduces m6A detection technologies, small-molecule inhibitors of m6A-related enzymes, interaction between m6A and other biological progresses, and the regulation mechanisms of m6A in domesticated animals' complex traits.
Collapse
Affiliation(s)
- Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and
Reproduction, Ministry of Agriculture and Rural Affairs and National Engineering
Laboratory for Animal Breeding, College of Animal Science and Technology, China
Agricultural University, Beijing 100193,
China
| | - Yuanjun Shi
- Key Laboratory of Animal Genetics, Breeding and
Reproduction, Ministry of Agriculture and Rural Affairs and National Engineering
Laboratory for Animal Breeding, College of Animal Science and Technology, China
Agricultural University, Beijing 100193,
China
| | - Gerile Dari
- Key Laboratory of Animal Genetics, Breeding and
Reproduction, Ministry of Agriculture and Rural Affairs and National Engineering
Laboratory for Animal Breeding, College of Animal Science and Technology, China
Agricultural University, Beijing 100193,
China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and
Reproduction, Ministry of Agriculture and Rural Affairs and National Engineering
Laboratory for Animal Breeding, College of Animal Science and Technology, China
Agricultural University, Beijing 100193,
China,Corresponding author:
| |
Collapse
|
7
|
Affiliation(s)
- Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|