1
|
Reitlo LS, Mihailovic JM, Stensvold D, Wisløff U, Hyder F, Håberg AK. Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults. GeroScience 2023; 45:1667-1685. [PMID: 36626020 PMCID: PMC10400748 DOI: 10.1007/s11357-022-00719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Based on the premise that physical activity/exercise impacts hippocampal structure and function, we investigated if hippocampal metabolites for neuronal viability and cell membrane density (i.e., N-acetyl aspartate (NAA), choline (Cho), creatine (Cr)) were higher in older adults performing supervised exercise compared to following national physical activity guidelines. Sixty-three participants (75.3 ± 1.9 years after 3 years of intervention) recruited from the Generation 100 study (NCT01666340_date:08.16.2012) were randomized into a supervised exercise group (SEG) performing twice weekly moderate- to high-intensity training, and a control group (CG) following national physical activity guidelines of ≥ 30-min moderate physical activity ≥ 5 days/week. Hippocampal body and head volumes and NAA, Cho, and Cr levels were acquired at 3T with magnetic resonance imaging and spectroscopic imaging. Sociodemographic data, peak oxygen uptake (VO2peak), exercise characteristics, psychological health, and cognition were recorded. General linear models were used to assess group differences and associations corrected for age, sex, education, and hippocampal volume. Both groups adhered to their training, where SEG trained at higher intensity. SEG had significantly lower NAA/Cr in hippocampal body than CG (p = 0.04). Across participants, higher training intensity was associated with lower Cho/Cr in hippocampal body (p < 0.001). Change in VO2peak, increasing VO2peak from baseline to 3 years, or VO2peak at 3 years were not associated with hippocampal neurochemicals. Lower NAA/Cr in hippocampal body was associated with poorer psychological health and slightly higher cognitive scores. Thus, following the national physical activity guidelines and not training at the highest intensity level were associated with the best neurochemical profile in the hippocampus at 3 years.
Collapse
Affiliation(s)
- Line S Reitlo
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Dorthe Stensvold
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
2
|
Yang RP, Cai DK, Chen YX, Gang HN, Wei M, Zhu DQ, Li SM, Yang JM, Luo SN, Bi XL, Sun DM. Metabolic Insight Into the Neuroprotective Effect of Tao-He-Cheng-Qi (THCQ) Decoction on ICH Rats Using Untargeted Metabolomics. Front Pharmacol 2021; 12:636457. [PMID: 34012394 PMCID: PMC8126979 DOI: 10.3389/fphar.2021.636457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/01/2023] Open
Abstract
Tao-He-Cheng-Qi decoction (THCQ) is an effective traditional Chinese medicine used to treat intracerebral hemorrhage (ICH). This study was performed to investigate the possible neuroprotective effect of THCQ decoction on secondary brain damage in rats with intracerebral hemorrhage and to elucidate the potential mechanism based on a metabolomics approach. Sprague-Dawley (SD) rats were randomly divided into five groups: the sham group, collagenase-induced ICH model group, THCQ low-dose (THCQ-L)-treated group, THCQ moderate-dose (THCQ-M)-treated group and THCQ high-dose (THCQ-H)-treated group. Following 3 days of treatment, behavioral changes and histopathological lesions in the brain were estimated. Untargeted metabolomics analysis with multivariate statistics was performed by using ultrahigh-performance liquid chromatography–mass spectrometry (UPLC-Q-Exactive Orbitrap MS). THCQ treatment at two dosages (5.64 and 11.27 g/kg·d) remarkably improved behavior (p < 0.05), brain water content (BMC) and hemorheology (p < 0.05) and improved brain nerve tissue pathology and inflammatory infiltration in ICH rats. Moreover, a metabolomic analysis demonstrated that the serum metabolic profiles of ICH patients were significantly different between the sham group and the ICH-induced model group. Twenty-seven biomarkers were identified that potentially predict the clinical benefits of THCQ decoction. Of these, 4 biomarkers were found to be THCQ-H group-specific, while others were shared between two clusters. These metabolites are mainly involved in amino acid metabolism and glutamate-mediated cell excitotoxicity, lipid metabolism-mediated oxidative stress, and mitochondrial dysfunction caused by energy metabolism disorders. In addition, a correlation analysis showed that the behavioral scores, brain water content and hemorheology were correlated with levels of serum metabolites derived from amino acid and lipid metabolism. In conclusion, the results indicate that THCQ decoction significantly attenuates ICH-induced secondary brain injury, which could be mediated by improving metabolic disorders in cerebral hemorrhage rats.
Collapse
Affiliation(s)
- Rui-Pei Yang
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Da-Ke Cai
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Yu-Xing Chen
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Hai-Ning Gang
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Mei Wei
- Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| | - De-Quan Zhu
- Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| | - Su-Mei Li
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Jiu-Mei Yang
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Si-Ni Luo
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Xiao-Li Bi
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, China.,Guangdong Second Traditional Chinese Medicine Hospital (Guangdong Province Engineering Technology Research Institute of T. C. M), Guangzhou, China
| | - Dong-Mei Sun
- Fifth Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Yifang Pharmaceutical Co., Ltd. Foshan, China
| |
Collapse
|
3
|
Peng S, Shen Y, Wang M, Zhang J. Serum and CSF Metabolites in Stroke-Free Patients Are Associated With Vascular Risk Factors and Cognitive Performance. Front Aging Neurosci 2020; 12:193. [PMID: 32774300 PMCID: PMC7387721 DOI: 10.3389/fnagi.2020.00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
Background and purpose: The aggregation of vascular risk factors (VRFs) can aggravate cognitive impairment in stroke-free patients. Metabolites in serum and cerebrospinal fluid (CSF) may irreversibly reflect early functional deterioration. This study evaluated small-molecule metabolites (<1,000 Da) in the serum and CSF of patients with different degrees of cerebrovascular burden and investigated the correlation between metabolism and cognitive performance associated with VRFs. Methods: The subjects were divided into a low-risk group (10-year stroke risk ≤ 5%), a middle-risk group (10-year stroke risk >5% and <15%), and a high-risk group (10 years stroke risk ≥ 15%) according to the Framingham stroke risk profile (FSRP) score, which was used to quantify VRFs. We assess the cognitive function of the participants. We semiquantitatively quantified the small molecules using liquid chromatography–tandem mass spectrometry (LC-MS/MS). The correlation between the small molecules and cognitive function, along with VRFs, was investigated to identify key small molecules and possible underlying metabolic pathways. Results: When the FSRP scores increased, the cognitive performances of the subjects decreased, specifically the performance regarding the tasks of immediate memory, delayed recall, and executive function. Seven metabolites (2-aminobutyric acid, Asp Asp Ser, Asp Thr Arg, Ile Cys Arg, 1-methyluric acid, 3-tert-butyladipic acid, and 5α-dihydrotestosterone glucuronide) in serum and three metabolites [Asp His, 13-HOTrE(r), and 2,5-di-tert-Butylhydroquinone] in CSF were significantly increased, and one metabolite (arachidonoyl PAF C-16) in serum was significantly decreased in high-risk group subjects. Among these metabolites, 1-methyluric acid, 3-tert-butyladipic, acid and Ile Cys Arg in serum and 13-HOTrE(r), 2,5-di-tert-butylhydroquinone, and Asp His in CSF were found to be negatively related with cognitive performance in the high-risk group. Arachidonoyl PAF C-16 in serum was found to be associated with better cognitive performance. Caffeine metabolism and the tricarboxylic acid cycle (TCA cycle) were identified as key pathways. Conclusions: 1-Methyluric acid, 3-tert-butyladipic acid, arachidonoyl PAF C-16, and Ile Cys Arg in serum and 13-HOTrE(r), 2,5-di-tert-butylhydroquinone, and Asp His in CSF were identified as potential biomarkers of vascular cognitive impairment (VCI) at the early stage. Caffeine metabolism and the TCA cycle may play important roles in the pathophysiology of VRF-associated cognitive impairment.
Collapse
Affiliation(s)
- Sisi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Public Technological Service Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Yan Y, Wang J, Zhong C, Zhang Y, Wei Y, Liu H. Effects of Endovascular Stent-Assisted Angioplasty on Cellular Metabolism in the Hippocampus of Elderly Patients with Symptomatic Vertebrobasilar Artery Stenosis. Med Sci Monit 2020; 26:e922131. [PMID: 32390653 PMCID: PMC7241214 DOI: 10.12659/msm.922131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Cerebral artery stenosis is closely related to cognitive function, and angioplasty can improve the cognitive function of elderly patients with vertebrobasilar artery stenosis. The specific mechanism, however, is not clear. This study explored the effect of angioplasty on cellular metabolism in the hippocampus of elderly patients with symptomatic vertebrobasilar artery stenosis. MATERIAL AND METHODS Eighteen elderly patients with symptomatic vertebrobasilar artery stenosis who underwent endovascular stent-assisted angioplasty (ESAA) in our department were studied. The changes in cellular metabolism (NAA / Cr, CHO / Cr, NAA / CHO) in bilateral hippocampal areas were detected by MRS before and at 6 months and 12 months after the ESAA. The Montreal Cognitive Assessment Scale (MoCA), Hamilton Depression Self-assessment Scale (HAMD), and Hamilton Anxiety Self-assessment Scale (HAMA) were also used to evaluate the cognition, depression, and anxiety of patients at different time points of the study, and analyzed the correlation between the changes of cellular metabolism in the hippocampus and the scores of MoCA, HAMD, and HAMA. RESULTS The levels of NAA/Cr in left/right hippocampal areas were significantly higher at 6 and 12 months after the ESAA than before (1.01±0.17/1.22±0.26 vs. 1.10±0.20/1.05±0.26 vs. 0.82±0.10/0.84±0.11, respectively) (P<0.01). MoCA scores were positively correlated with the levels of NAA/Cr in the left/right hippocampal areas (P<0.05 and P<0.01, respectively). CONCLUSIONS ESAA can improve cognitive function of patients by changing the cellular metabolism of the hippocampus in elderly patients with symptomatic vertebrobasilar artery stenosis.
Collapse
Affiliation(s)
- Yongxing Yan
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| | - Jun Wang
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| | - Changyang Zhong
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| | - Yan Zhang
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| | - Yingnan Wei
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| | - Huili Liu
- Department of Neurology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
5
|
Yang X, Chen Y, Zhang W, Zhang Z, Yang X, Wang P, Yuan H. Association Between Inflammatory Biomarkers and Cognitive Dysfunction Analyzed by MRI in Diabetes Patients. Diabetes Metab Syndr Obes 2020; 13:4059-4065. [PMID: 33149645 PMCID: PMC7605599 DOI: 10.2147/dmso.s271160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/05/2023] Open
Abstract
AIM To explore the relationship between inflammatory biomarkers and cognitive dysfunction in patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). METHODS T1DM patients (n=32), T2DM patients (n=90) and age-matched controls (n=36 and 81, respectively) were included. The 72-hour dynamic blood glucose test and cognitive function, including visuoconstructive function, executive function, learning and memory, attention, language expression ability, and orientation, were analyzed. The head, body and tail grey matter of the hippocampus were analyzed by magnetic resonance spectroscopy. In addition, serum HMGB1, IL-1β, IL-6, and TNF-α concentrations were examined. RESULTS HbA1C, MAGE and MODD were higher in T1DM patients than in T2DM patients (p<0.05). MoCA scores and IL-1β and IL-6 levels in patients with T2DM were higher than T1DM patients. NAA/Cr and Cho/Cr of the hippocampus were higher in patients with T1DM than in those with T2DM. Levels of inflammatory factors in T1DM and T2DM patients were higher than in nondiabetic subjects (p<0.05). Regression analysis showed that cognition was associated with MAGE, MODD, NAA/Cr of the left hippocampus and HMGB1 in T1DM patients, after adjustment for age, sex, BMI and other co-variables. In T2DM patients, cognitive impairment was associated with MAGE, NAA/Cr of the left hippocampus, HMGB1 and IL-6, after adjustment for co-variables such as sex, age and BMI. CONCLUSION T2DM patients have more cognitive impairment than T1DM patients. Changes in brain function connections and metabolites may be the structural basis of the differences in cognitive functional impairment. Inflammation is related to cognitive impairment in diabetes patients, especially in T2DM patients.
Collapse
Affiliation(s)
- Xue Yang
- Department of Education and Training, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Yiqi Chen
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Wenshuo Zhang
- Department of Health Examination, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhen Zhang
- Department of Endocrinology, Zhoukou Central Hospital, Zhoukou, Henan Province, People’s Republic of China
| | - Xueli Yang
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Pengxu Wang
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
| | - Huijuan Yuan
- Department of Endocrinology and Metabolism, Diabetes Research Center, Henan Province People’s Hospital, Zhengzhou, Henan Province, People’s Republic of China
- Correspondence: Huijuan YuanDepartment of Endocrinology and Metabolism, Diabetes Research Center, Zhengzhou, Henan Province450003, People’s Republic of China Email
| |
Collapse
|
6
|
Chen H, Su F, Ye Q, Wang Z, Shu H, Bai F. The Dose-Dependent Effects of Vascular Risk Factors on Dynamic Compensatory Neural Processes in Mild Cognitive Impairment. Front Aging Neurosci 2018; 10:131. [PMID: 29867442 PMCID: PMC5951955 DOI: 10.3389/fnagi.2018.00131] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/20/2018] [Indexed: 01/14/2023] Open
Abstract
Background/Objectives: Mild cognitive impairment (MCI) has been associated with risk for Alzheimer's Disease (AD). Previous investigations have suggested that vascular risk factors (VRFs) were associated with cognitive decline and AD pathogenesis, and the intervention of VRFs may be a possible way to prevent dementia. However, in MCI, little is known about the potential impacts of VRFs on neural networks and their neural substrates, which may be a neuroimaging biomarker of the disease progression. Methods: 128 elderly Han Chinese participants (67 MCI subjects and 61 matched normal elderly) with or without VRFs (hypertension, diabetes mellitus, hypercholesterolemia, smoking and alcohol drinking) underwent the resting-state functional magnetic resonance imaging (fMRI) and neuropsychological tests. We obtained the default mode network (DMN) to identify alterations in MCI with the varying number of the VRF and analyzed the significant correlation with behavioral performance. Results: The effects of VRF on the DMN were primarily in bilateral dorsolateral prefrontal cortex (DLPFC) (i.e., middle frontal gyrus). Normal elderly showed the gradually increased functional activity of DLPFC, while a fluctuant activation of DLPFC was displayed in MCI with the growing number of the VRF. Interestingly, the left DLPFC further displayed significantly dynamic correlation with executive function as the variation of VRF loading. Initial level of compensation was observed in normal aging and none-vascular risk factor (NVRF) MCI, while these compensatory neural processes were suppressed in One-VRF MCI and were subsequently re-aroused in Over-One-VRF MCI. Conclusions: These findings suggested that the dose-dependent effects of VRF on DLPFC were highlighted in MCI, and the dynamic compensatory neural processes that fluctuated along with variations of VRF loading could be key role in the progression of MCI.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fan Su
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qing Ye
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng Bai
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
7
|
Mansur RB, Lee Y, Subramaniapillai M, Brietzke E, McIntyre RS. Cognitive dysfunction and metabolic comorbidities in mood disorders: A repurposing opportunity for glucagon-like peptide 1 receptor agonists? Neuropharmacology 2018; 136:335-342. [PMID: 29481915 DOI: 10.1016/j.neuropharm.2018.01.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
Major depressive disorder and bipolar disorder are highly prevalent and disabling conditions. Cognition is considered a core domain of their psychopathology and a principle mediator of psychosocial impairment, disproportionately accounting for overall illness-associated costs. There are few interventions with replicated evidence of efficacy in treating cognitive deficits in mood disorders. Evidence also indicates that cognitive deficits are associated with obesity and involve significant impairment across multiple domains. Conversely, weight-loss interventions, such as physical exercise and bariatric surgery, have been shown to beneficially affect cognitive function. This convergent phenomenology suggests that currently available agents that target metabolic systems may also be capable of mitigating deficits in cognitive functions, and are, therefore, candidates for repurposing. The incretin glucagon-like peptide-1 (GLP-1) is a hormone secreted by intestinal epithelial cells. GLP-1 receptors (GLP-1R) are widely expressed in the central nervous system. Activation of GLP-1R leads to facilitation of glucose utilization and antiapoptotic effects in various organs. Pre-clinical trials have demonstrated significant neuroprotective effects of GLP-1, including protection from cell death, promotion of neuronal differentiation and proliferation; and facilitation of long-term potentiation. Liraglutide is a GLP-1R agonist that has been approved for the treatment of type 2 diabetes mellitus and obesity. Convergent preclinical and clinical evidence, including a proof-of-concept pilot study from group, has suggested that liraglutide may improve objective measures of cognitive function in adults with mood disorders. The safety and availability of GLP-1R agonists indicate that they are promising candidates for repurposing, and that they may be viable therapeutic options for mood disorders. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; University of Toronto, Toronto, Canada.
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Elisa Brietzke
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Department of Psychiatry, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Mansur RB, Zugman A, Ahmed J, Cha DS, Subramaniapillai M, Lee Y, Lovshin J, Lee JG, Lee JH, Drobinin V, Newport J, Brietzke E, Reininghaus EZ, Sim K, Vinberg M, Rasgon N, Hajek T, McIntyre RS. Treatment with a GLP-1R agonist over four weeks promotes weight loss-moderated changes in frontal-striatal brain structures in individuals with mood disorders. Eur Neuropsychopharmacol 2017; 27:1153-1162. [PMID: 28867303 DOI: 10.1016/j.euroneuro.2017.08.433] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/09/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022]
Abstract
Cognitive deficits are a core feature across psychiatric disorders. Emerging evidence indicates that metabolic pathways are highly relevant for the substrates and phenomenology of the cognitive domain. Herein, we aimed to determine the effects of liraglutide, a GLP-1R agonist, on brain structural/volumetric parameters in adults with a mood disorder. This is the secondary analysis of a 4-week, pilot, proof-of-concept, open-label study. Participants (N=19) exhibiting impairments in executive function with either major depressive disorder (MDD) or bipolar disorder (BD) were recruited. Liraglutide 1.8mg/day was added as an adjunct to existing pharmacotherapy. Structural magnetic resonance imaging (MRI) scanning was obtained at baseline and endpoint. Results showed that at endpoint there was significant weight loss (mean: 3.15%; p<0.001). Changes in frontal and striatal volumes were significantly correlated with changes in body mass index (BMI), indicating the weight loss was associated with volume increase in most regions (e.g. r=-0.561, p=0.042 in the left superior frontal area). After adjusting for intracranial volume, age, gender, and BMI, we observed significant changes from baseline to endpoint in multiple regions (e.g. RR: 1.011, p=0.049 in the left rostral middle frontal area). Changes in regional volumes were associated with improvement in executive function (e.g. r=0.698, p=0.003 for the right superior frontal area). Adjunctive liraglutide results in clinically significant weight loss, with corresponding improvement in cognitive function; changes in cognitive function were partially moderated by changes in brain morphometry, underscoring the interrelationship between weight and brain structure/function.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| | - Andre Zugman
- Interdiscipinary Laboratory of Clinical Neurosciences (LINC), Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Juhie Ahmed
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Danielle S Cha
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Mehala Subramaniapillai
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| | - Julie Lovshin
- Division of Endocrinology, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Jung G Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jae-Hon Lee
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada; Department of Psychiatry, Samsung Seoul Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | | | - Jason Newport
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Kang Sim
- Research Division, Institute of Mental Health, Singapore
| | - Maj Vinberg
- Psychiatric Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Rasgon
- Department of Psychiatry, Stanford University, Palo Alto, CA, United states
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, Canada
| |
Collapse
|
9
|
Impairments in Brain Perfusion, Metabolites, Functional Connectivity, and Cognition in Severe Asymptomatic Carotid Stenosis Patients: An Integrated MRI Study. Neural Plast 2017; 2017:8738714. [PMID: 28255464 PMCID: PMC5309400 DOI: 10.1155/2017/8738714] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Carotid artery stenosis without transient ischemic attack (TIA) or stroke is considered as "asymptomatic." However, recent studies have demonstrated that these asymptomatic carotid artery stenosis (aCAS) patients had cognitive impairment in tests of executive function, psychomotor speed, and memory, indicating that "asymptomatic" carotid stenosis may not be truly asymptomatic. In this study, when 19 aCAS patients compared with 24 healthy controls, aCAS patients showed significantly poorer performance on global cognition, memory, and executive function. By utilizing an integrated MRI including pulsed arterial spin labeling (pASL) MRI, Proton MR Spectroscopy (MRS), and resting-state functional MRI (R-fMRI), we also found that aCAS patients suffered decreased cerebral blood flow (CBF) mainly in the Left Frontal Gyrus and had decreased NAA/Cr ratio in the left hippocampus and decreased connectivity to the posterior cingulate cortex (PCC) in the anterior part of default mode network (DMN).
Collapse
|
10
|
Liu M, Liu X, Wang H, Xiao H, Jing F, Tang L, Li D, Zhang Y, Wu H, Yang H. Metabolomics study on the effects of Buchang Naoxintong capsules for treating cerebral ischemia in rats using UPLC-Q/TOF-MS. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:1-11. [PMID: 26806568 DOI: 10.1016/j.jep.2016.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buchang Naoxintong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. However, the therapeutic effects and mechanisms are not yet well understood. MATERIALS AND METHODS In this study, a UPLC/TOF-MS-based metabolomic study was conducted to explore potential biomarkers that will increase our understanding of cerebral ischemia and to assess the integral efficacy of BNC in a middle cerebral artery occlusion (MCAO) rat model. Plasma metabolic profiles were analyzed and metabolic biomarkers were identified through multivariate data analysis. RESULTS Clear separations were observed between the sham, MCAO and BNC-treated groups. We identified 28 biomarkers in the MCAO rats using variable importance for the projections (VIP) values (VIP>1) and a t-test (P<0.05). The identified biomarkers were mainly related to disturbances in monoamine neurotransmitter metabolism, amino acid metabolism, energy metabolism and lipid metabolism. Moreover, a correlation network diagram of the plasma biomarkers perturbed by MCAO was constructed. Some biomarkers, such as glutamine, PE (17:0), LysoPE (20:1), LysoPE (24:0), and the ratios of LysoPE (24:1) to LysoPE (24:0), LysoPE (24:2) to LysoPE (24:0), showed obvious changes and a tendency for returning to baseline values in BNC-treated MCAO rats. In addition, MCAO rats receiving BNC treatment had improved neurological deficits and reduced cerebral infarct size demonstrating the therapeutic potential of BNC for treating cerebral ischemia. CONCLUSION This study provides a useful approach for exploring the mechanism of MCAO-induced cerebral ischemia and evaluating the efficacy of BNC.
Collapse
Affiliation(s)
- Mengting Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Xin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongbin Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Fang Jing
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Defeng Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Dong Nei Nan Xiao Jie 16, Beijing 100700, China.
| |
Collapse
|
11
|
Lu D, Ren S, Zhang J, Sun D. Vascular risk factors aggravate cognitive impairment in first-ever young ischaemic stroke patients. Eur J Neurol 2016; 23:940-7. [PMID: 26917058 DOI: 10.1111/ene.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/22/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Young ischaemic stroke patients often suffer from cognitive impairment after stroke. However, the risk factors of cognitive impairment are still unclear. This study examined the impact of vascular risk factors (VRFs) on cognitive impairment in first-ever young ischaemic stroke patients. METHODS Subjects were divided into low (0-1 VRF, n = 27), medium (2-3 VRFs, n = 45) and high-risk (≥4 VRFs, n = 12) groups according to their number of VRFs. The following VRFs were collected: hypertension, diabetes mellitus, dyslipidaemia, atrial fibrillation, obesity, smoking, excess alcohol consumption, coronary heart disease and hyperhomocysteinaemia. A battery of cognitive assessments was executed 2 weeks after stroke. Differences of cognitive performances between groups were compared. The correlation between VRFs and cognitive function was investigated with an emphasis on discovering the main VRFs. RESULTS Eighty-four patients were enrolled in this study eventually. Compared with the low-risk group, the high-risk group had significantly worse performance in most of the cognitive domains. VRFs had a correlation with general cognition, executive function, attention and verbal fluency. After adjusting the covariates, VRFs showed a linear correlation with global cognitive function (R = 0.640, P = 0.000), verbal fluency (R = 0.372, P = 0.000), delayed memory (R = 0.327, P = 0.002), visual attention (R = 0.290, P = 0.007) and executive function (R = 0.266, P = 0.015). Amongst all the VRFs, hypertension, hyperlipidaemia, smoking and hyperhomocysteinaemia were the main influencing VRFs. CONCLUSION Vascular risk factors aggravate cognitive impairment after young ischaemic stroke. Effective management of VRFs in young adults is urgent and this may reduce the cognitive impairment.
Collapse
Affiliation(s)
- D Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - S Ren
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - J Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - D Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|