1
|
Amari S, Shahrook S, Namba F, Ota E, Mori R. Branched-chain amino acid supplementation for improving growth and development in term and preterm neonates. Cochrane Database Syst Rev 2020; 10:CD012273. [PMID: 33006765 PMCID: PMC8078205 DOI: 10.1002/14651858.cd012273.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) play a vital role in neonatal nutrition. Optimal BCAA supplementation might improve neonatal nutrient storage, leading to better physical and neurological development and other outcomes. OBJECTIVES To determine the effect of BCAA supplementation on physical growth and neurological development in term and preterm neonates. We planned to make the following comparisons: parenteral nutrition with and without BCAA supplementation; enteral BCAA supplementation versus no supplementation; and any type of supplementation including enteral, parenteral and both ways versus no supplementation. To investigate the supplementation effectiveness for different dosages assessed in the eligible trials. SEARCH METHODS We conducted comprehensive searches using Cochrane Neonatal's standard search strategies: Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 6), MEDLINE, Embase and CINAHL (up to July 2016). We updated the search with CENTRAL (2019, Issue 8), MEDLINE, Embase and CINAHL (up to August 2019). We also searched clinical trials registries and reference lists of retrieved articles. SELECTION CRITERIA We planned to include individual and cluster-randomised and quasi-randomised controlled trials comparing BCAA supplementation versus placebo or no supplementation in term and preterm neonates. We excluded trials presented only as abstracts and cross-over trials. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility of all potential studies identified from the search strategy. We planned to extract data using a pilot-tested standard data extraction form and assess risk of bias of the included studies following the methods described in the Cochrane Handbook for Systematic Reviews of Interventions. We planned to analyse treatment effects and report their effect estimates as per dichotomous or continuous data with 95% confidence intervals. We planned to conduct subgroup analysis to investigate heterogeneity, and perform sensitivity analysis where possible. We planned to use fixed-effect meta-analysis to combine data wherever appropriate. We planned to assess evidence quality using the GRADE approach. MAIN RESULTS We did not identify any potentially eligible studies that met the inclusion criteria in this review. AUTHORS' CONCLUSIONS We found no trial data to support or refute the idea that BCAA supplementation affects physical and neurological development and other outcomes in term and preterm neonates.
Collapse
Affiliation(s)
- Shoichiro Amari
- Neonatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Erika Ota
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| | - Rintaro Mori
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Darmaun D, Lapillonne A, Simeoni U, Picaud JC, Rozé JC, Saliba E, Bocquet A, Chouraqui JP, Dupont C, Feillet F, Frelut ML, Girardet JP, Turck D, Briend A. Parenteral nutrition for preterm infants: Issues and strategy. Arch Pediatr 2018; 25:286-294. [PMID: 29656825 DOI: 10.1016/j.arcped.2018.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 02/18/2018] [Indexed: 01/13/2023]
Abstract
Due to transient gut immaturity, most very preterm infants receive parenteral nutrition (PN) in the first few weeks of life. Yet providing enough protein and energy to sustain optimal growth in such infants remains a challenge. Extrauterine growth restriction is frequently observed in very preterm infants at the time of discharge from hospital, and has been found to be associated with later impaired neurodevelopment. A few recent randomized trials suggest that intensified PN can improve early growth; whether or not such early PN improves long-term neurological outcome is still unclear. Several other questions regarding what is optimal PN for very preterm infants remain unanswered. Amino acid mixtures designed for infants contain large amounts of branched-chain amino acids and taurine, but there is no consensus on the need for some nonessential amino acids such as glutamine, arginine, and cysteine. Whether excess growth in the first few weeks of life, at a time when very preterm infants receive PN, has an imprinting effect, increasing the risk of metabolic or vascular disease at adulthood continues to be debated. Even though uncertainty remains regarding the long-term effect of early PN, it appears reasonable to propose intensified initial PN. The aim of the current position paper is to review the evidence supporting such a strategy with regards to the early phase of nutrition, which is mainly covered by parenteral nutrition. More randomized trials are, however, needed to further support this type of approach and to demonstrate that this strategy improves short- and long-term outcome.
Collapse
Affiliation(s)
- D Darmaun
- Université Nantes-Atlantique, 44300 Nantes, France.
| | | | - U Simeoni
- Université de Lausanne, CHUV, 1011 Lausanne, Suisse
| | - J-C Picaud
- Université Claude-Bernard-Lyon 1, 69008 Lyon, France
| | - J-C Rozé
- Université Nantes-Atlantique, 44300 Nantes, France
| | - E Saliba
- Université François-Rabelais, 37000 Tours, France
| | - A Bocquet
- Université de Franche-Comté, 25000 Besançon, France
| | | | - C Dupont
- Université Paris Descartes, 75006 Paris, France
| | - F Feillet
- Université de Lorraine, 54000 Nancy, France
| | - M-L Frelut
- Université Paris-Sud, CHU de Bicêtre, 94270 Le Kremlin-Bicêtre, France
| | - J-P Girardet
- Université Pierre et Marie Curie-Paris 6, 75005 Paris, France
| | - D Turck
- Université Lille 2, LIRIC-Inserm U995, 59037 Lille, France
| | - A Briend
- Institut de recherche pour le développement, 13572 Marseille, France
| | | |
Collapse
|
3
|
Alexandre-Gouabau MC, Moyon T, Cariou V, Antignac JP, Qannari EM, Croyal M, Soumah M, Guitton Y, David-Sochard A, Billard H, Legrand A, Boscher C, Darmaun D, Rozé JC, Boquien CY. Breast Milk Lipidome Is Associated with Early Growth Trajectory in Preterm Infants. Nutrients 2018; 10:E164. [PMID: 29385065 PMCID: PMC5852740 DOI: 10.3390/nu10020164] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/30/2022] Open
Abstract
Human milk is recommended for feeding preterm infants. The current pilot study aims to determine whether breast-milk lipidome had any impact on the early growth-pattern of preterm infants fed their own mother's milk. A prospective-monocentric-observational birth-cohort was established, enrolling 138 preterm infants, who received their own mother's breast-milk throughout hospital stay. All infants were ranked according to the change in weight Z-score between birth and hospital discharge. Then, we selected infants who experienced "slower" (n = 15, -1.54 ± 0.42 Z-score) or "faster" (n = 11, -0.48 ± 0.19 Z-score) growth; as expected, although groups did not differ regarding gestational age, birth weight Z-score was lower in the "faster-growth" group (0.56 ± 0.72 vs. -1.59 ± 0.96). Liquid chromatography-mass spectrometry lipidomic signatures combined with multivariate analyses made it possible to identify breast-milk lipid species that allowed clear-cut discrimination between groups. Validation of the selected biomarkers was performed using multidimensional statistical, false-discovery-rate and ROC (Receiver Operating Characteristic) tools. Breast-milk associated with faster growth contained more medium-chain saturated fatty acid and sphingomyelin, dihomo-γ-linolenic acid (DGLA)-containing phosphethanolamine, and less oleic acid-containing triglyceride and DGLA-oxylipin. The ability of such biomarkers to predict early-growth was validated in presence of confounding clinical factors but remains to be ascertained in larger cohort studies.
Collapse
Affiliation(s)
- Marie-Cécile Alexandre-Gouabau
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Thomas Moyon
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Véronique Cariou
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Jean-Philippe Antignac
- L'Université Nantes Angers Le Mans (LUNAM Université), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, 44200 Nantes, France.
| | - El Mostafa Qannari
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Mikaël Croyal
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Mohamed Soumah
- Statistique, Sensométrie et Chimiométrie (StatSC), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Institut National de la Recherche Agronomique (INRA), 44322 Nantes, France.
| | - Yann Guitton
- L'Université Nantes Angers Le Mans (LUNAM Université), Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes-Atlantique (ONIRIS), Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), USC INRA 1329, 44200 Nantes, France.
| | - Agnès David-Sochard
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Hélène Billard
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
| | - Arnaud Legrand
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Cécile Boscher
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Dominique Darmaun
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Jean-Christophe Rozé
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- Faculté de Médicine de Nantes, Centre Hospitalo-Universitaire Hôtel-Dieu (CHU), 44093 Nantes, France.
| | - Clair-Yves Boquien
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1280, Physiopathologie des Adaptations Nutritionnelles, Institut des Maladies de L'appareil Digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), 44093 Nantes, CEDEX 1, France.
- European Milk Bank Association (EMBA), 20126 Milan, Italy.
| |
Collapse
|
4
|
Edward RR, Innes JK, Marino LV, Calder PC. Influence of different intravenous lipid emulsions on growth, development and laboratory and clinical outcomes in hospitalised paediatric patients: A systematic review. Clin Nutr 2017; 37:765-783. [PMID: 28712532 DOI: 10.1016/j.clnu.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 07/02/2017] [Accepted: 07/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Fats in the form of lipid emulsions (LEs) are an integral part of intravenous nutrition. The fatty acid composition of different LEs varies. The exact composition of a LE may influence cell and tissue function and clinical outcome. Currently, it is not clear which LE might be best for paediatric patients. We conducted a systematic review of the effects of different intravenous LEs in hospitalised paediatric patients. METHODS Randomised controlled trials published in a peer reviewed journal, written in the English language, and comparing two or more different intravenous LEs in hospitalised paediatric patients were included. Data on outcomes of relevance (growth, development, laboratory and clinical outcomes) were extracted, collated and interpreted. RESULTS Thirty-one articles involving 1522 infants or children were included. Most outcomes were not affected by the nature of the LE used. LEs containing fish oil, a source of omega-3 fatty acids, improved outcome of retinopathy of prematurity, decreased liver cholestasis and increased blood omega-3 fatty acid levels. LEs containing olive oil increased blood oleic acid level and had a cholesterol lowering effect. CONCLUSION Blood fatty acids are influenced by the nature of the intravenous LE used in hospitalised paediatric patients. Most studies suggest limited differences in relevant laboratory or clinical outcomes or in growth in paediatric patients receiving different LEs, although several studies do find benefits from including fish oil or olive oil. There is a need for larger trials to fully evaluate the effects of the available LE types in hospitalised paediatric patients.
Collapse
Affiliation(s)
- Roy-Rosshan Edward
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Jacqueline K Innes
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Luise V Marino
- Department of Dietetics/Speech and Language Therapy, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, United Kingdom
| | - Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Southampton SO16 6YD, United Kingdom.
| |
Collapse
|
5
|
Barnoud D, Darmaun D, Jirka A. Polémique : l’utilisation des mélanges semi-élémentaires en nutrition entérale. NUTR CLIN METAB 2017. [DOI: 10.1016/j.nupar.2017.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Vlaardingerbroek H, Roelants JA, Rook D, Dorst K, Schierbeek H, Vermes A, Vermeulen MJ, van Goudoever JB, van den Akker CHP. Adaptive regulation of amino acid metabolism on early parenteral lipid and high-dose amino acid administration in VLBW infants - a randomized, controlled trial. Clin Nutr 2014; 33:982-90. [PMID: 24461877 DOI: 10.1016/j.clnu.2014.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND & AIMS An anabolic state can be achieved upon intravenous amino acid administration during the immediate postnatal phase despite a low energy intake. The optimal dosing of amino acid and energy intake has yet to be established. The aim was to quantify the efficacy of early initiation of parenteral lipids and increased amounts of amino acids on metabolism and protein accretion in very low birth weight infants. METHODS 28 very low birth weight infants were randomized to receive parenteral nutrition with glucose and either 2.4 g amino acids/(kg·d) (control group), 2.4 g amino acids/(kg·d) plus 2-3 g lipid/(kg·d) (AA + lipid group), or 3.6 g amino acids/(kg·d) plus 2-3 g lipid/(kg·d) (high AA + lipid group) from birth onward. On postnatal day 2, we performed a stable isotope study with [1-(13)C]phenylalanine, [ring-D4]tyrosine, [U-(13)C6,(15)N]leucine, and [methyl-D3]α-ketoisocaproic acid to quantify intermediate amino acid metabolism. RESULTS The addition of lipids only had no effect on phenylalanine metabolism, whereas the addition of both lipids and additional amino acids increased the amount of phenylalanine used for protein synthesis. In addition, high amino acid intake significantly increased the rate of hydroxylation of phenylalanine to tyrosine, increasing the availability of tyrosine for protein synthesis. However, it also increased urea concentrations. Increasing energy intake from 40 to 60 kcal/(kg·d) did not increase protein efficiency as measured by phenylalanine kinetics. The leucine data were difficult to interpret due to the wide range of results and inconsistency in the data between the phenylalanine and leucine models. CONCLUSIONS High amino acid and energy intakes from birth onwards result in a more anabolic state in very low birth weight infants, but at the expense of higher urea concentrations, which reflects a higher amino acid oxidation. Long-term outcome data should reveal whether this policy deserves routine implementation. This trial was registered at www.trialregister.nl, trial number NTR1445, name Nutritional Intervention for Preterm Infants-2.
Collapse
Affiliation(s)
- Hester Vlaardingerbroek
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Jorine A Roelants
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Denise Rook
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Kristien Dorst
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Henk Schierbeek
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; Department of Pediatrics, Emma Children's Hospital - AMC, c/o Room H7-282, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands; Department of Pediatrics, VU University Medical Center, c/o Room ZH 9D11, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
| | - Andras Vermes
- Hospital Pharmacy, Erasmus MC, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Marijn J Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands; Department of Pediatrics, Emma Children's Hospital - AMC, c/o Room H7-282, P.O. Box 22660, 1100 DD Amsterdam, The Netherlands; Department of Pediatrics, VU University Medical Center, c/o Room ZH 9D11, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | - Chris H P van den Akker
- Department of Pediatrics, Division of Neonatology, Erasmus MC - Sophia Children's Hospital, c/o Room SP3433, P.O. Box 2060, 3000 CB Rotterdam, The Netherlands
| |
Collapse
|
7
|
Fusch C, Bauer K, Böhles HJ, Jochum F, Koletzko B, Krawinkel M, Krohn K, Mühlebach S. Neonatology/Paediatrics - Guidelines on Parenteral Nutrition, Chapter 13. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2009; 7:Doc15. [PMID: 20049070 PMCID: PMC2795370 DOI: 10.3205/000074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Indexed: 12/30/2022]
Abstract
There are special challenges in implementing parenteral nutrition (PN) in paediatric patients, which arises from the wide range of patients, ranging from extremely premature infants up to teenagers weighing up to and over 100 kg, and their varying substrate requirements. Age and maturity-related changes of the metabolism and fluid and nutrient requirements must be taken into consideration along with the clinical situation during which PN is applied. The indication, the procedure as well as the intake of fluid and substrates are very different to that known in PN-practice in adult patients, e.g. the fluid, nutrient and energy needs of premature infants and newborns per kg body weight are markedly higher than of older paediatric and adult patients. Premature infants <35 weeks of pregnancy and most sick term infants usually require full or partial PN. In neonates the actual amount of PN administered must be calculated (not estimated). Enteral nutrition should be gradually introduced and should replace PN as quickly as possible in order to minimise any side-effects from exposure to PN. Inadequate substrate intake in early infancy can cause long-term detrimental effects in terms of metabolic programming of the risk of illness in later life. If energy and nutrient demands in children and adolescents cannot be met through enteral nutrition, partial or total PN should be considered within 7 days or less depending on the nutritional state and clinical conditions.
Collapse
Affiliation(s)
- C Fusch
- Dept. of Pediatrics, McMaster University, Hamilton, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Skillman HE, Wischmeyer PE. Nutrition Therapy in Critically Ill Infants and Children. JPEN J Parenter Enteral Nutr 2008; 32:520-34. [DOI: 10.1177/0148607108322398] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Heather E. Skillman
- From the Department of Clinical Nutrition, The Children's Hospital, Aurora, Colorado; and the Department of Anesthesiology, University of Colorado Health Sciences Center, Aurora, Colorado
| | - Paul E. Wischmeyer
- From the Department of Clinical Nutrition, The Children's Hospital, Aurora, Colorado; and the Department of Anesthesiology, University of Colorado Health Sciences Center, Aurora, Colorado
| |
Collapse
|
9
|
Darmaun D, Mauras N. Use of Stable Isotopes to Assess Protein and Amino Acid Metabolism in Children and Adolescents: A Brief Review. Horm Res Paediatr 2006; 64 Suppl 3:32-7. [PMID: 16439842 DOI: 10.1159/000089315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As protein accretion is a prerequisite for growth, studying the mechanisms by which nutrients and hormones promote protein gain is of the utmost relevance to paediatric endocrinology. Tracers are ideally suited for the assessment of protein and amino acid kinetics in vivo, as they provide an estimate of synthesis and turnover. Current tracer approaches in children and adolescents utilize stable isotopes, 'heavier' forms of elements that have one or several extra neutrons in the nucleus. Such isotopes are already present at low, but significant, levels in all tissues and foodstuffs, are not radioactive and are devoid of any known side-effects when present in small amounts. L-[1-(13)C] labelled leucine, given as a 4- to 6-h intravenous infusion, has become the method of choice to assess whole-body protein kinetics. After infusion, any 13C-leucine that is oxidized appears in the breath as 13CO2, whereas the remainder is incorporated into body proteins through protein synthesis. The isotope enrichments are determined by isotope ratio mass spectrometry and gas chromatography mass spectrometry, and absolute rates of whole-body protein synthesis, oxidation, and breakdown can be extrapolated. This approach has been used extensively to investigate the regulation of protein kinetics by nutrients and by hormones. Attempts have also been made to measure amino acid/protein metabolism in selected body compartments, and to measure the kinetics of specific tissue proteins, for example, muscle, gut, or plasma proteins.
Collapse
|
10
|
Harris RA, Joshi M, Jeoung NH. Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 2004; 313:391-6. [PMID: 14684174 DOI: 10.1016/j.bbrc.2003.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The branched-chain amino acids (BCAAs) are essential amino acids and therefore must be continuously available for protein synthesis. However, BCAAs are toxic at high concentrations as evidenced by maple syrup urine disease (MSUD), which explains why animals have such an efficient oxidative mechanism for their disposal. Nevertheless, it is clear that leucine is special among the BCAAs. Leucine promotes global protein synthesis by signaling an increase in translation, promotes insulin release, and inhibits autophagic protein degradation. However, leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway, thereby terminating its positive effects on body protein accretion. A strong case can therefore be made that the proper leucine concentration in the various compartments of the body is critically important for maintaining body protein levels beyond simply the need of this essential amino acid for protein synthesis. The goal of the work of this laboratory is to establish the importance of regulation of the branched chain alpha-ketoacid dehydrogenase complex (BCKDC) to growth and maintenance of body protein. We hypothesize that proper regulation of the activity state of BCKDC by way of its kinase (BDK) and its phosphatase (BDP) is critically important for body growth, tissue repair, and maintenance of body protein. We believe that growth and protection of body protein during illness and stress will be improved by therapeutic control of BCKDC activity. We also believe that it is possible that the negative effects of some drugs (PPAR alpha ligands) and dietary supplements (medium chain fatty acids) on growth and body protein maintenance can be countered by therapeutic control of BCDKC activity.
Collapse
Affiliation(s)
- Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5122, USA.
| | | | | |
Collapse
|
11
|
Suen VM, Unamuno MR, Marchini J. Breath 13CO2 enrichment in obese women during the fasting and the fed states. Nutr Res 2003. [DOI: 10.1016/s0271-5317(02)00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Wolf RM, Draghi N, Liang X, Dai C, Uhrbom L, Eklöf C, Westermark B, Holland EC, Resh MD. p190RhoGAP can act to inhibit PDGF-induced gliomas in mice: a putative tumor suppressor encoded on human chromosome 19q13.3. Genes Dev 2003; 17:476-87. [PMID: 12600941 PMCID: PMC196001 DOI: 10.1101/gad.1040003] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
p190RhoGAP and Rho are key regulators of oligodendrocyte differentiation. The gene encoding p190RhoGAP is located at 19q13.3 of the human chromosome, a locus that is deleted in 50%-80% of oligodendrogliomas. Here we provide evidence that p190RhoGAP may suppress gliomagenesis by inducing a differentiated glial phenotype. Using a cell culture model of autocrine loop PDGF stimulation, we show that reduced Rho activity via p190RhoGAP overexpression or Rho kinase inhibition induced cellular process extension, a block in proliferation, and reduced expression of the neural precursor marker nestin. In vivo infection of mice with retrovirus expressing PDGF and the p190 GAP domain caused a decreased incidence of oligodendrogliomas compared with that observed with PDGF alone. Independent experiments revealed that the retroviral vector insertion site in 3 of 50 PDGF-induced gliomas was within the p190RhoGAP gene. This evidence strongly suggests that p190 regulates critical components of PDGF oncogenesis and can act as a tumor suppressor in PDGF-induced gliomas by down-regulating Rho activity.
Collapse
Affiliation(s)
- Rebecca M Wolf
- Department of Cell Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rodriguez M, Funke S, Fink M, Demmelmair H, Turini M, Crozier G, Koletzko B. Plasma fatty acids and [13C]linoleic acid metabolism in preterm infants fed a formula with medium-chain triglycerides. J Lipid Res 2003; 44:41-8. [PMID: 12518021 DOI: 10.1194/jlr.m200218-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most preterm infant formulas contain medium-chain triacylglycerols (MCT), but the effects of MCT on polyunsaturated fatty acid status and metabolism are controversial. Thus, we studied the effects of MCT on linoleic acid metabolism using stable isotopes. Enterally fed preterm infants were randomized to receive for 7 days 40% of fat as MCT (n = 10) or a formula without MCT (n = 9). At study day 5, infants received orally 2 mg/kg body weight of (13)C-labeled linoleic acid. Fatty acids in plasma lipid classes and (13)C enrichment of phospholipid fatty acids were measured and tracer oxidation was monitored. Compared with the control group, the MCT group showed lower breath (13)CO(2) and higher plasma triacylglycerol contents of octanoic acid, of decanoic acid, and of total long-chain polyunsaturated fatty acids (57.1 +/- 4.4 micro mol/l vs. 37.9 +/- 4.8 micro mol/l, P < 0.01). Concentrations of several polyunsaturated fatty acids in plasma phospholipids and non esterified fatty acids were higher in the MCT group. (13)C concentrations in phospholipid n-6 fatty acids indicated no difference in the relative conversion of linoleic to arachidonic acid. We conclude that oral MCT effectively reduce polyunsaturated fatty acid and long chain polyunsaturated fatty acid oxidation in preterm infants without compromising endogenous n-6 long chain polyunsaturated fatty acid synthesis.
Collapse
Affiliation(s)
- Maria Rodriguez
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Humbert B, Martin L, Dumon H, Darmaun D, Nguyen P. Dietary protein level affects protein metabolism during the postabsorptive state in dogs. J Nutr 2002; 132:1676S-8S. [PMID: 12042490 DOI: 10.1093/jn/132.6.1676s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Bernard Humbert
- Laboratory of Nutrition and Endocrinology, National Veterinary School of Nantes and INSERM U.539, Human Nutrition Research Center, Nantes, France
| | | | | | | | | |
Collapse
|
15
|
des Robert C, Le Bacquer O, Piloquet H, Rozé JC, Darmaun D. Acute effects of intravenous glutamine supplementation on protein metabolism in very low birth weight infants: a stable isotope study. Pediatr Res 2002; 51:87-93. [PMID: 11756645 DOI: 10.1203/00006450-200201000-00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although very low birth weight infants are subjected to severe stress and glutamine is now considered a conditionally essential amino acid that may attenuate stress-induced protein wasting in adults, current amino acid solutions designed for neonatal parenteral nutrition do not contain glutamine. To determine whether a short-term supplementation with i.v. glutamine would affect protein metabolism in very low birth weight infants, 13 preterm neonates (gestational age, 28-30 wk; birth weight, 820-1610 g) receiving parenteral nutrition supplying 1.5 g x kg(-1) x d(-1) amino acids and approximately 60 nonprotein kcal x kg(-1) x d(-1) were randomized to receive an i.v. supplement made of either 1) natural L-glutamine (0.5 g x kg(-1) x d(-1); glutamine group), or 2) an isonitrogenous glutamine-free amino acid mixture (control group), for 24 h starting on the third day of life. On the fourth day of life, they received a 2-h infusion of NaH(13)CO(3) to assess the recovery of (13)C in breath, immediately followed by a 3-h L-[1-(13)C]leucine infusion. Plasma ammonia did not differ between the groups. Glutamine supplementation was associated with 1) higher plasma glutamine (629 +/- 94 versus 503 +/- 83 microM, mean +/- SD; p < 0.05, one-tailed unpaired t test), 2) lower rates of leucine release from protein breakdown (-16%, p < 0.05) and leucine oxidation (-35%, p < 0.05), 3) a lower rate of nonoxidative leucine disposal, an index of protein synthesis (-20%, p < 0.05), and 4) no change in protein balance (nonoxidative leucine disposal - leucine release from protein breakdown, NS). We conclude that although parenteral glutamine failed to enhance rates of protein synthesis, glutamine may have an acute protein-sparing effect, as it suppressed leucine oxidation and protein breakdown, in parenterally fed very low birth weight infants.
Collapse
Affiliation(s)
- Clotilde des Robert
- Service de Néonatologie et Réanimation Pédiatrique, Hôpital Mère et Enfant, CHU de Nantes, INSERM U.539, Centre de recherche en nutrition humaine, France
| | | | | | | | | |
Collapse
|
16
|
Humbert B, Bleis P, Martin L, Dumon H, Darmaun D, Nguyen P. Effects of dietary protein restriction and amino acids deficiency on protein metabolism in dogs. J Anim Physiol Anim Nutr (Berl) 2001; 85:255-62. [PMID: 11686798 DOI: 10.1046/j.1439-0396.2001.00324.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although stable isotope methods have been used to revisit the protein and amino acid requirements of humans in the last two decades, estimates of the minimum protein requirement of the dog have mainly been based on nitrogen balance studies. The aim of this study was: (i) to assess dog protein metabolism using the (13)C-leucine method, and (ii) to test the effects of protein deprivation and amino acid deficiency on protein metabolism. Eight dogs were fed three consecutive diets: (i) a normoprotein regimen [control; 63 g crude protein (CP)/Mcal metabolizable energy (ME)]; (ii) a protein-restricted diet (PR; 32 g CP/Mcal ME); and (iii) a protein-restricted diet that was, in addition, deficient in lysine and tryptophan (D-PR; 31 g CP/Mcal ME). The energy supply was similar for the three diets. The dogs were adapted to each diet for 2 weeks. After a 24 h fasting period, a 3 h infusion of (13)C-bicarbonate was performed, followed by a 3 h continuous infusion of L-[1-(13)C]leucine. Blood and breath samples were collected before and during the last hour of each isotope infusion for determination of plasma (13)C-alpha-ketoisocaproate and breath (13)CO(2) enrichments by mass spectrometry. Rates of protein breakdown, oxidation, and synthesis were calculated from leucine appearance into plasma, oxidation, and non- oxidative disposal, respectively, and expressed in g N/kg body weight (BW)0.75 per day, assuming body protein contains 0.08 g leucine per g protein. Protein breakdown was 3.71 +/- 0.17, 3.29 +/- 0.16 and 2.73 +/- 0.18 (mean +/- SEM) for control, PR, and D-PR, respectively (p < 0.01 D-PR versus control, and p < 0.05 D-PR versus PR). Protein synthesis was 3.08 +/- 0.13, 2.77 +/- 0.13, and 2.15 +/- 0.18 for control, PR and D-PR, respectively (p < 0.001 D-PR versus control, and p < 0.05 D-PR versus PR). Protein oxidation was 0.63 +/- 0.05, 0.53 +/- 0.05 and 0.58 +/- 0.05 for control, PR and D-PR, respectively (p=NS). These data suggest that: (i) the (13)C-leucine method can be used to assess large variations of protein turnover in dogs; (ii) dogs have the capacity to adapt their protein turnover to the level and to the quality of their protein supplies; and (iii) the dog nitrogen requirement for maintenance may be between 0.41 and 0.55 g N/kg BW(0.75) per day.
Collapse
Affiliation(s)
- B Humbert
- Laboratory of Nutrition and Endocrinology, National Veterinary School of Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Darmaun D. Role of nutrients in the regulation of in vivo protein metabolism in humans. ACTA PAEDIATRICA (OSLO, NORWAY : 1992). SUPPLEMENT 1999; 88:92-4. [PMID: 10626554 DOI: 10.1111/j.1651-2227.1999.tb14412.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nutrients regulate protein metabolism both in an acute fashion and on a long-term basis. The ingestion of meals is associated with a dramatic switch from an overall catabolic state to a state of net protein anabolism. The acute response of protein metabolism to meal ingestion is mediated, in part, by an increase in insulin secretion, itself a consequence of glucose absorption. Whereas insulin may primarily suppress rates of proteolysis, amino acids are responsible for the stimulation of protein synthesis that follows food intake. In the long run, the effects of nutrition on protein metabolism depend on the energy supply, the source of the energy (carbohydrate versus fat) and dietary protein intake. Finally, specific amino acids, such as glutamine, may play an additional role as protein anabolic agents.
Collapse
Affiliation(s)
- D Darmaun
- Centre de Recherche en Nutrition Humaine, Hotel-Dieu, Nantes, France.
| |
Collapse
|