1
|
Fuchs CJ, Hermans WJH, van den Hurk J, Wiggins CJ, Widholm P, Dahlqvist Leinhard O, Veeraiah P, Wildberger JE, Prompers JJ, van Loon LJC. Quantifying Leg Muscle Disuse Atrophy During Bed Rest Using DXA, CT, and MRI. Eur J Sport Sci 2025; 25:e12299. [PMID: 40211056 PMCID: PMC11985322 DOI: 10.1002/ejsc.12299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
This study evaluated whether dual-energy X-ray absorptiometry (DXA), computed tomography (CT), and magnetic resonance imaging (MRI) provide comparable outcomes in quantifying disuse-induced skeletal muscle atrophy. Although the calculation of muscle volume using MRI analysis may be considered the gold standard, the method remains labor intense and, as such, less practical and more costly. In this context, we also evaluated the efficacy of a commercially available automated MRI analysis method to measure changes in leg muscle volume after two weeks of bed rest. Twelve healthy, male adults (age: 24 ± 3 years, BMI: 23.7 ± 3.1 kg/m2) were subjected to 2 weeks of strict bed rest. Leg muscle assessments were performed before and after bed rest using DXA, single slice (thigh) CT, and MRI. MRI data analyses were performed using both a manual and automated (AMRA) method. Leg lean mass, as assessed with DXA, declined by 5% following bed rest (from 10.2 ± 1.6 to 9.7 ± 1.6 kg; p < 0.001). The thigh muscle cross-sectional area, as assessed with CT, declined by 6% following bed rest (from 155 ± 26 to 146 ± 24 cm2; p < 0.001). Muscle volume, as assessed using MRI, declined by 5% following bed rest, both when assessed manually (from 7.1 ± 1.1 to 6.7 ± 1.0 L; p < 0.001) and automatically (from 7.2 ± 1.1 to 6.8 ± 1.0 L; p < 0.001). A very strong correlation (r = 0.96; p < 0.001) with a low bias (-0.11 ± 0.29 L) was observed between manual and automated muscle volume analysis. DXA, CT, and MRI all show a ∼5% decline in leg muscle quantity following two weeks of bed rest in healthy adults. When using MRI, disuse muscle atrophy can be accurately quantified using an automated approach, rendering time-consuming manual analysis obsolete.
Collapse
Affiliation(s)
- Cas J. Fuchs
- Department of Human BiologyNUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Wesley J. H. Hermans
- Department of Human BiologyNUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
| | | | | | | | | | | | - Joachim E. Wildberger
- Department of Radiology and Nuclear MedicineSchool for Cardiovascular Diseases (CARIM)Maastricht University Medical CentreMaastrichtthe Netherlands
| | - Jeanine J. Prompers
- Department of Human BiologyNUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
- Scannexus Ultra High‐Field MRI CenterMaastrichtthe Netherlands
- Department of Radiology and Nuclear MedicineSchool for Cardiovascular Diseases (CARIM)Maastricht University Medical CentreMaastrichtthe Netherlands
| | - Luc J. C. van Loon
- Department of Human BiologyNUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
| |
Collapse
|
2
|
Alves PKN, Cruz A, Silva WJ, Melazzo AM, Labeit S, Adams V, Moriscot AS. Leucine Supplementation Counteracts the Atrophic Effects of HDAC4 in Rat Skeletal Muscle Submitted to Hindlimb Immobilization. Muscle Nerve 2025. [PMID: 40183248 DOI: 10.1002/mus.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
INTRODUCTION/AIMS We previously demonstrated that leucine supplementation significantly reduces histone deacetylase 4 (HDAC4) expression induced by hindlimb immobilization, thereby attenuating the increase in HDAC4 protein levels and nuclear accumulation. In this study, we investigated the impact of supraphysiological HDAC4 levels on skeletal muscle and the inhibitory potential of leucine in this scenario. METHODS A total of 64 male Wistar rats were used in this study and subjected to electroporation of the soleus muscle with or without a plasmid overexpressing HDAC4 mRNA, followed by hindlimb immobilization and leucine supplementation (1.35 g/kg) for 7 days. RESULTS Our findings revealed that HDAC4 overexpression alone led to soleus atrophy, resulting in a 23% decrease in mass, a 31% reduction in whole muscle cross-sectional area (CSA), and a 17% decrease in fiber CSA. These reductions were further exacerbated by hindlimb immobilization, with decreases of 50%, 46%, and 34%, respectively. Moreover, leucine supplementation protected against soleus atrophy and preserved soleus fiber CSA by 17%. This protective effect was accompanied by a 57% reduction in HDAC4-positive nuclear localization in immobilized rats overexpressing HDAC4. DISCUSSION Our results indicate that HDAC4 forced expression can alone induce skeletal muscle atrophy. In addition, our results indicate that leucine is dominant in blocking HDAC4 signaling and highlight the use of this amino acid as a therapeutic tool in conditions involving skeletal muscle atrophy.
Collapse
Affiliation(s)
- Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William J Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Afonso M Melazzo
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Siegfried Labeit
- Faculty for Clinical Medicine Mannheim of the University of Heidelberg, Institute for Integrative Pathophysiology, Mannheim, Germany
- Myomedix GmbH, Neckargemund, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Smith MJ, Hoffman NJ, Jose AJS, Burke LM, Opar DA. Nutritional Interventions to Attenuate Quadriceps Muscle Deficits following Anterior Cruciate Ligament Injury and Reconstruction. Sports Med 2025; 55:569-596. [PMID: 39853659 PMCID: PMC11985700 DOI: 10.1007/s40279-025-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Following anterior cruciate ligament (ACL) injury, quadriceps muscle atrophy persists despite rehabilitation, leading to loss of lower limb strength, osteoarthritis, poor knee joint health and reduced quality of life. However, the molecular mechanisms responsible for these deficits in hypertrophic adaptations within the quadriceps muscle following ACL injury and reconstruction are poorly understood. While resistance exercise training stimulates skeletal muscle hypertrophy, attenuation of these hypertrophic pathways can hinder rehabilitation following ACL injury and reconstruction, and ultimately lead to skeletal muscle atrophy that persists beyond ACL reconstruction, similar to disuse atrophy. Numerous studies have documented beneficial roles of nutritional support, including nutritional supplementation, in maintaining and/or increasing muscle mass. There are three main mechanisms by which nutritional supplementation may attenuate muscle atrophy and promote hypertrophy: (1) by directly affecting muscle protein synthetic machinery; (2) indirectly increasing an individual's ability to work harder; and/or (3) directly affecting satellite cell proliferation and differentiation. We propose that nutritional support may enhance rehabilitative responses to exercise training and positively impact molecular machinery underlying muscle hypertrophy. As one of the fastest growing knee injuries worldwide, a better understanding of the potential mechanisms involved in quadriceps muscle deficits following ACL injury and reconstruction, and potential benefits of nutritional support, are required to help restore quadriceps muscle mass and/or strength. This review discusses our current understanding of the molecular mechanisms involved in muscle hypertrophy and disuse atrophy, and how nutritional supplements may leverage these pathways to maximise recovery from ACL injury and reconstruction.
Collapse
Affiliation(s)
- Miriam J Smith
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Argell J San Jose
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- OrthoSport Victoria Institute (OSVi), Richmond, VIC, Australia
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia.
- , Level 1, Daniel Mannix Building, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
4
|
McKendry J, Coletta G, Nunes EA, Lim C, Phillips SM. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp Physiol 2024; 109:1650-1662. [PMID: 39106083 PMCID: PMC11442788 DOI: 10.1113/ep091937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The gradual deterioration of physiological systems with ageing makes it difficult to maintain skeletal muscle mass (sarcopenia), at least partly due to the presence of 'anabolic resistance', resulting in muscle loss. Sarcopenia can be transiently but markedly accelerated through periods of muscle disuse-induced (i.e., unloading) atrophy due to reduced physical activity, sickness, immobilisation or hospitalisation. Periods of disuse are detrimental to older adults' overall quality of life and substantially increase their risk of falls, physical and social dependence, and early mortality. Disuse events induce skeletal muscle atrophy through various mechanisms, including anabolic resistance, inflammation, disturbed proteostasis and mitochondrial dysfunction, all of which tip the scales in favour of a negative net protein balance and subsequent muscle loss. Concerningly, recovery from disuse atrophy is more difficult for older adults than their younger counterparts. Resistance training (RT) is a potent anabolic stimulus that can robustly stimulate muscle protein synthesis and mitigate muscle losses in older adults when implemented before, during and following unloading. RT may take the form of traditional weightlifting-focused RT, bodyweight training and lower- and higher-load RT. When combined with sufficient dietary protein, RT can accelerate older adults' recovery from a disuse event, mitigate frailty and improve mobility; however, few older adults regularly participate in RT. A feasible and practical approach to improving the accessibility and acceptability of RT is through the use of resistance bands. Moving forward, RT must be prescribed to older adults to mitigate the negative consequences of disuse atrophy.
Collapse
Affiliation(s)
- James McKendry
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Giulia Coletta
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Everson A. Nunes
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Changhyun Lim
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| | - Stuart M. Phillips
- Exercise Metabolism Research Group, Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
5
|
Deane C, Piasecki M, Atherton P. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies. Clin Sci (Lond) 2024; 138:741-756. [PMID: 38895777 PMCID: PMC11186857 DOI: 10.1042/cs20231198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Periods of skeletal muscle disuse lead to rapid declines in muscle mass (atrophy), which is fundamentally underpinned by an imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). The complex interplay of molecular mechanisms contributing to the altered regulation of muscle protein balance during disuse have been investigated but rarely synthesised in the context of humans. This narrative review discusses human models of muscle disuse and the ensuing inversely exponential rate of muscle atrophy. The molecular processes contributing to altered protein balance are explored, with a particular focus on growth and breakdown signalling pathways, mitochondrial adaptations and neuromuscular dysfunction. Finally, key research gaps within the disuse atrophy literature are highlighted providing future avenues to enhance our mechanistic understanding of human disuse atrophy.
Collapse
Affiliation(s)
- Colleen S. Deane
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, U.K
| | - Matthew Piasecki
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| | - Philip J. Atherton
- Centre of Metabolism, Ageing and Physiology (CoMAP), Medical Research Council/Versus Arthritis UK Centre of Excellence for Musculoskeletal Ageing Research (CMAR), National Institute of Health Research (NIHR) Biomedical Research Centre (BRC), University of Nottingham, U.K
| |
Collapse
|
6
|
Hughes AK, Francis T, Rooney J, Pollock R, Witard OC. The effect of protein or amino acid provision on immobilization-induced muscle atrophy in healthy adults: A systematic review and meta-analysis. Exp Physiol 2024; 109:873-888. [PMID: 38424716 PMCID: PMC11140175 DOI: 10.1113/ep090434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Bed rest and limb immobilization are models of muscle disuse associated with skeletal muscle atrophy and reduced strength. The purpose of this systematic review was to examine the impact of protein or amino acid provision before and/or during a period of muscle disuse on muscle atrophy (primary outcome), strength and muscle protein synthesis (secondary outcomes) following a disuse period. We performed a systematic review of Embase, MEDLINE, Web of Science, PubMed and Clinical Trials in December 2022. Eligible studies were randomized controlled trials that combined a dietary protein or amino acid intervention versus control during an experimental model of disuse (bed rest or unilateral limb immobilization) in healthy individuals aged ≥18 years. Nine articles from eight independent trials were identified and rated for risk of bias by two authors. A meta-analysis of muscle mass data revealed no effect (standardized mean difference: 0.2; 95% confidence interval: -0.18 to 0.57, P = 0.31) of protein/amino acid intervention in preventing disuse-induced muscle atrophy. Although the meta-analysis was not conducted on strength or muscle protein synthesis data, there was insufficient evidence in the reviewed articles to support the use of protein/amino acid provision in mitigating the disuse-induced decline in either outcome measurement. Additional high-quality studies, including the reporting of randomization procedures and blinding procedures and the provision of statistical analysis plans, might be required to determine whether protein or amino acid provision serves as an effective strategy to attenuate muscle atrophy during periods of disuse.
Collapse
Affiliation(s)
- Alix K. Hughes
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Thomas Francis
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Jessica Rooney
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Ross Pollock
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| | - Oliver C. Witard
- Centre for Human and Applied Physiological SciencesKing's College LondonLondonUK
| |
Collapse
|
7
|
Eggelbusch M, Charlton BT, Bosutti A, Ganse B, Giakoumaki I, Grootemaat AE, Hendrickse PW, Jaspers Y, Kemp S, Kerkhoff TJ, Noort W, van Weeghel M, van der Wel NN, Wesseling JR, Frings-Meuthen P, Rittweger J, Mulder ER, Jaspers RT, Degens H, Wüst RCI. The impact of bed rest on human skeletal muscle metabolism. Cell Rep Med 2024; 5:101372. [PMID: 38232697 PMCID: PMC10829795 DOI: 10.1016/j.xcrm.2023.101372] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/19/2024]
Abstract
Insulin sensitivity and metabolic flexibility decrease in response to bed rest, but the temporal and causal adaptations in human skeletal muscle metabolism are not fully defined. Here, we use an integrative approach to assess human skeletal muscle metabolism during bed rest and provide a multi-system analysis of how skeletal muscle and the circulatory system adapt to short- and long-term bed rest (German Clinical Trials: DRKS00015677). We uncover that intracellular glycogen accumulation after short-term bed rest accompanies a rapid reduction in systemic insulin sensitivity and less GLUT4 localization at the muscle cell membrane, preventing further intracellular glycogen deposition after long-term bed rest. We provide evidence of a temporal link between the accumulation of intracellular triglycerides, lipotoxic ceramides, and sphingomyelins and an altered skeletal muscle mitochondrial structure and function after long-term bed rest. An intracellular nutrient overload therefore represents a crucial determinant for rapid skeletal muscle insulin insensitivity and mitochondrial alterations after prolonged bed rest.
Collapse
Affiliation(s)
- Moritz Eggelbusch
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Department of Nutrition and Dietetics, Amsterdam University Medical Centers, Amsterdam Movement Sciences, Amsterdam, the Netherlands; Faculty of Sports and Nutrition, Center of Expertise Urban Vitality, Amsterdam University of Applied Sciences, Amsterdam, the Netherlands
| | - Braeden T Charlton
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Bergita Ganse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Clinics and Institutes of Surgery, Saarland University, Homburg, Germany
| | - Ifigenia Giakoumaki
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Anita E Grootemaat
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Paul W Hendrickse
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Yorrick Jaspers
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stephan Kemp
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Tom J Kerkhoff
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Wendy Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Center Amsterdam, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Julia R Wesseling
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Petra Frings-Meuthen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | - Edwin R Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Richard T Jaspers
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Hans Degens
- Research Centre for Musculoskeletal Science and Sports Medicine, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK; Lithuanian Sports University, Kaunas, Lithuania
| | - Rob C I Wüst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Ely IA, Phillips BE, Smith K, Wilkinson DJ, Piasecki M, Breen L, Larsen MS, Atherton PJ. A focus on leucine in the nutritional regulation of human skeletal muscle metabolism in ageing, exercise and unloading states. Clin Nutr 2023; 42:1849-1865. [PMID: 37625315 DOI: 10.1016/j.clnu.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Muscle protein synthesis (MPS) and muscle protein breakdown (MPB) are influenced through dietary protein intake and physical (in)activity, which it follows, regulate skeletal muscle (SKM) mass across the lifespan. Following consumption of dietary protein, the bio-availability of essential amino acids (EAA), and primarily leucine (LEU), drive a transient increase in MPS with an ensuing refractory period before the next MPS stimulation is possible (due to the "muscle full" state). At the same time, MPB is periodically constrained via reflex insulin actions. Layering exercise on top of protein intake increases the sensitivity of SKM to EAA, therefore extending the muscle full set-point (∼48 h), to permit long-term remodelling (e.g., hypertrophy). In contrast, ageing and physical inactivity are associated with a premature muscle full set-point in response to dietary protein/EAA and contractile activity. Of all the EAA, LEU is the most potent stimulator of the mechanistic target of rapamycin complex 1 (mTORC1)-signalling pathway, with the phosphorylation of mTORC1 substrates increasing ∼3-fold more than with all other EAA. Furthermore, maximal MPS stimulation is also achieved following low doses of LEU-enriched protein/EAA, negating the need for larger protein doses. As a result, LEU supplementation has been of long term interest to maximise muscle anabolism and subsequent net protein accretion, especially when in tandem with resistance exercise. This review highlights current knowledge vis-à-vis the anabolic effects of LEU supplementation in isolation, and in enriched protein/EAA sources (i.e., EAA and/or protein sources with added LEU), in the context of ageing, exercise and unloading states.
Collapse
Affiliation(s)
- Isabel A Ely
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Kenneth Smith
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Daniel J Wilkinson
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Philip J Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham NIHR Biomedical Research Centre, Derby, DE22 3DT, UK.
| |
Collapse
|
9
|
Pinto AJ, Bergouignan A, Dempsey PC, Roschel H, Owen N, Gualano B, Dunstan DW. Physiology of sedentary behavior. Physiol Rev 2023; 103:2561-2622. [PMID: 37326297 PMCID: PMC10625842 DOI: 10.1152/physrev.00022.2022] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/10/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023] Open
Abstract
Sedentary behaviors (SB) are characterized by low energy expenditure while in a sitting or reclining posture. Evidence relevant to understanding the physiology of SB can be derived from studies employing several experimental models: bed rest, immobilization, reduced step count, and reducing/interrupting prolonged SB. We examine the relevant physiological evidence relating to body weight and energy balance, intermediary metabolism, cardiovascular and respiratory systems, the musculoskeletal system, the central nervous system, and immunity and inflammatory responses. Excessive and prolonged SB can lead to insulin resistance, vascular dysfunction, shift in substrate use toward carbohydrate oxidation, shift in muscle fiber from oxidative to glycolytic type, reduced cardiorespiratory fitness, loss of muscle mass and strength and bone mass, and increased total body fat mass and visceral fat depot, blood lipid concentrations, and inflammation. Despite marked differences across individual studies, longer term interventions aimed at reducing/interrupting SB have resulted in small, albeit marginally clinically meaningful, benefits on body weight, waist circumference, percent body fat, fasting glucose, insulin, HbA1c and HDL concentrations, systolic blood pressure, and vascular function in adults and older adults. There is more limited evidence for other health-related outcomes and physiological systems and for children and adolescents. Future research should focus on the investigation of molecular and cellular mechanisms underpinning adaptations to increasing and reducing/interrupting SB and the necessary changes in SB and physical activity to impact physiological systems and overall health in diverse population groups.
Collapse
Affiliation(s)
- Ana J Pinto
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Audrey Bergouignan
- Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Institut Pluridisciplinaire Hubert Curien, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Paddy C Dempsey
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Diabetes Research Centre, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Neville Owen
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Centre for Urban Transitions, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Center of Lifestyle Medicine, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
- Food Research Center, University of Sao Paulo, Sao Paulo, Brazil
| | - David W Dunstan
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
10
|
Hughes A, Francis T, Marjoram L, Rooney JH, Ellison-Hughes G, Pollock R, Curtis MJ, Cape A, Larsen M, Phillips BE, Atherton PJ, Smith K, Witard OC. The effect of combined β-lactoglobulin supplementation and resistance exercise training prior to limb immobilisation on muscle protein synthesis rates in healthy young adults: study protocol for a randomised controlled trial. Trials 2023; 24:401. [PMID: 37312095 DOI: 10.1186/s13063-023-07329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/25/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND The decline in skeletal muscle mass experienced following a short-term period (days to weeks) of muscle disuse is mediated by impaired rates of muscle protein synthesis (MPS). Previous RCTs of exercise or nutrition prehabilitation interventions designed to mitigate disuse-induced muscle atrophy have reported limited efficacy. Hence, the aim of this study is to investigate the impact of a complex prehabilitation intervention that combines β-lactoglobulin (a novel milk protein with a high leucine content) supplementation with resistance exercise training on disuse-induced changes in free-living integrated rates of MPS in healthy, young adults. METHODS/DESIGN To address this aim, we will recruit 24 healthy young (18-45 years) males and females to conduct a parallel, double-blind, 2-arm, randomised placebo-controlled trial. The intervention group will combine a 7-day structured resistance exercise training programme with thrice daily dietary supplementation with 23 g of β-lactoglobulin. The placebo group will combine the same training programme with an energy-matched carbohydrate (dextrose) control. The study protocol will last 16 days for each participant. Day 1 will be a familiarisation session and days 2-4 will be the baseline period. Days 5-11 represent the 'prehabilitation period' whereby participants will combine resistance training with their assigned dietary supplementation regimen. Days 12-16 represent the muscle disuse-induced 'immobilisation period' whereby participants will have a single leg immobilised in a brace and continue their assigned dietary supplementation regimen only (i.e. no resistance training). The primary endpoint of this study is the measurement of free-living integrated rates of MPS using deuterium oxide tracer methodology. Measurements of MPS will be calculated at baseline, over the 7-day prehabilitation period and over the 5-day immobilisation period separately. Secondary endpoints include measurements of muscle mass and strength that will be collected on days 4 (baseline), 11 (end of prehabilitation) and 16 (end of immobilisation). DISCUSSION This novel study will establish the impact of a bimodal prehabilitation strategy that combines ß-lactoglobulin supplementation and resistance exercise training in modulating MPS following a short-term period of muscle disuse. If successful, this complex intervention may be translated to clinical practice with application to patients scheduled to undergo, for example, hip or knee replacement surgery. TRIAL REGISTRATION NCT05496452. Registered on August 10, 2022. PROTOCOL VERSION 16-12-2022/1.
Collapse
Affiliation(s)
- Alix Hughes
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Thomas Francis
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Lindsey Marjoram
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Jessica H Rooney
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | | | - Ross Pollock
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK
| | - Michael J Curtis
- School of Cardiovascular Medicine & Sciences, King's College London, London, UK
| | - Angela Cape
- Clinical Trials Unit, King's College London, London, UK
| | | | | | | | - Kenneth Smith
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, King's College London, London, UK.
| |
Collapse
|
11
|
Ye H, Yang JM, Luo Y, Long Y, Zhang JH, Zhong YB, Gao F, Wang MY. Do dietary supplements prevent loss of muscle mass and strength during muscle disuse? A systematic review and meta-analysis of randomized controlled trials. Front Nutr 2023; 10:1093988. [PMID: 37252241 PMCID: PMC10210142 DOI: 10.3389/fnut.2023.1093988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Objective We performed a systematic review and meta-analysis of existing randomized controlled trials (RCTs) to assess whether dietary supplements can prevent loss of muscle mass and strength during muscle disuse. Methods We searched the following databases: PubMed, Embase, Cochrane, Scopus, Web of Science, and CINAHL for RCTs assessing the effect of dietary supplements on disuse muscular atrophy without language and time restrictions. Muscle strength and leg lean mass were used as the primary outcome indicators. Muscle cross-sectional area (CSA), muscle fiber type distribution, peak aerobic capacity and muscle volume were used as secondary outcome indicators. The risk of bias was assessed using the Cochrane Collaboration's Risk of Bias tool. Heterogeneity was tested using the I2 statistic index. Mean and standard deviation of outcome indicators were extracted from the intervention and control groups to calculate effect sizes and 95% confidence intervals, with the significance level set at P < 0.05. Results Twenty RCTs were included with a total of 339 subjects. The results showed that dietary supplements had no effect on muscle strength, CSA, muscle fiber type distribution, peak aerobic capacity or muscle volume. But dietary supplements have a protective effect on the lean mass of the legs. Conclusion Dietary supplements can improve lean leg mass, but did not show a tendency to have an effect on muscle strength, CSA, muscle fiber type distribution, peak aerobic capacity or muscle volume during muscle disuse. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD42022370230.
Collapse
Affiliation(s)
- Hua Ye
- Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Jia-Ming Yang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yun Luo
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yi Long
- Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Jia-Hong Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
| | - Yan-Biao Zhong
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
- Ganzhou Intelligent Rehabilitation Technology Innovation Center, Ganzhou, Jiangxi, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Mao-Yuan Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi, China
- Ganzhou Key Laboratory of Rehabilitation Medicine, Ganzhou City, Jiangxi, China
| |
Collapse
|
12
|
Preobrazenski N, Seigel J, Halliday S, Janssen I, McGlory C. Single-leg disuse decreases skeletal muscle strength, size, and power in uninjured adults: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14:684-696. [PMID: 36883219 PMCID: PMC10067508 DOI: 10.1002/jcsm.13201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/01/2022] [Accepted: 02/02/2023] [Indexed: 03/09/2023] Open
Abstract
We aimed to quantify declines from baseline in lower limb skeletal muscle size and strength of uninjured adults following single-leg disuse. We searched EMBASE, Medline, CINAHL, and CCRCT up to 30 January 2022. Studies were included in the systematic review if they (1) recruited uninjured participants; (2) were an original experimental study; (3) employed a single-leg disuse model; and (4) reported muscle strength, size, or power data following a period of single-leg disuse for at least one group without a countermeasure. Studies were excluded if they (1) did not meet all inclusion criteria; (2) were not in English; (3) reported previously published muscle strength, size, or power data; or (4) could not be sourced from two different libraries, repeated online searches, and the authors. We used the Cochrane Risk of Bias Assessment Tool to assess risk of bias. We then performed random-effects meta-analyses on studies reporting measures of leg extension strength and extensor size. Our search revealed 6548 studies, and 86 were included in our systematic review. Data from 35 and 20 studies were then included in the meta-analyses for measures of leg extensor strength and size, respectively (40 different studies). No meta-analysis for muscle power was performed due to insufficient homogenous data. Effect sizes (Hedges' gav ) with 95% confidence intervals for leg extensor strength were all durations = -0.80 [-0.92, -0.68] (n = 429 participants; n = 68 aged 40 years or older; n ≥ 78 females); ≤7 days of disuse = -0.57 [-0.75, -0.40] (n = 151); >7 days and ≤14 days = -0.93 [-1.12, -0.74] (n = 206); and >14 days = -0.95 [-1.20, -0.70] (n = 72). Effect sizes for measures of leg extensor size were all durations = -0.41 [-0.51, -0.31] (n = 233; n = 32 aged 40 years or older; n ≥ 42 females); ≤7 days = -0.26 [-0.36, -0.16] (n = 84); >7 days and ≤14 days = -0.49 [-0.67, -0.30] (n = 102); and >14 days = -0.52 [-0.74, -0.30] (n = 47). Decreases in leg extensor strength (cast: -0.94 [-1.30, -0.59] (n = 73); brace: -0.90 [-1.18, -0.63] (n = 106)) and size (cast: -0.61[-0.87, -0.35] (n = 41); brace: (-0.48 [-1.04, 0.07] (n = 41)) following 14 days of disuse did not differ for cast and brace disuse models. Single-leg disuse in adults resulted in a decline in leg extensor strength and size that reached a nadir beyond 14 days. Bracing and casting led to similar declines in leg extensor strength and size following 14 days of disuse. Studies including females and males and adults over 40 years of age are lacking.
Collapse
Affiliation(s)
| | - Joel Seigel
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Sandra Halliday
- Queen's University Library, Queen's University, Kingston, Ontario, Canada
| | - Ian Janssen
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Chris McGlory
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.,Department of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Minimal adaptation of the molecular regulators of mitochondrial dynamics in response to unilateral limb immobilisation and retraining in middle-aged men. Eur J Appl Physiol 2023; 123:249-260. [PMID: 36449098 DOI: 10.1007/s00421-022-05107-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
PURPOSE Mitochondrial dynamics are regulated by the differing molecular pathways variously governing biogenesis, fission, fusion, and mitophagy. Adaptations in mitochondrial morphology are central in driving the improvements in mitochondrial bioenergetics following exercise training. However, there is a limited understanding of mitochondrial dynamics in response to inactivity. METHODS Skeletal muscle biopsies were obtained from middle-aged males (n = 24, 49.4 ± 3.2 years) who underwent sequential 14-day interventions of unilateral leg immobilisation, ambulatory recovery, and resistance training. We quantified vastus lateralis gene and protein expression of key proteins involved in mitochondrial biogenesis, fusion, fission, and turnover in at baseline and following each intervention. RESULTS PGC1α mRNA decreased 40% following the immobilisation period, and was accompanied by a 56% reduction in MTFP1 mRNA, a factor involved in mitochondrial fission. Subtle mRNA decreases were also observed in TFAM (17%), DRP1 (15%), with contrasting increases in BNIP3L and PRKN following immobilisation. These changes in gene expression were not accompanied by changes in respective protein expression. Instead, we observed subtle decreases in NRF1 and MFN1 protein expression. Ambulatory recovery restored mRNA and protein expression to pre-intervention levels of all altered components, except for BNIP3L. Resistance training restored BNIP3L mRNA to pre-intervention levels, and further increased mRNA expression of OPA-1, MFN2, MTFP1, and PINK1 past baseline levels. CONCLUSION In healthy middle-aged males, 2 weeks of immobilisation did not induce dramatic differences in markers of mitochondria fission and autophagy. Restoration of ambulatory physical activity following the immobilisation period restored altered gene expression patterns to pre-intervention levels, with little evidence of further adaptation to resistance exercise training.
Collapse
|
14
|
Weijzen ME, Holwerda AM, Jetten GH, Houben LH, Kerr A, Davis H, Keogh B, Khaldi N, Verdijk LB, van Loon LJ. Vicia Faba peptide network supplementation does not differ from milk protein in modulating changes in muscle size during short-term immobilization and subsequent remobilization, but increases muscle protein synthesis rates during remobilization in healthy young men. J Nutr 2023. [DOI: 10.1016/j.tjnut.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Genome Editing to Abrogate Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:157-176. [DOI: 10.1007/978-981-19-5642-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
16
|
Edwards SJ, Carter S, Nicholson T, Allen SL, Morgan PT, Jones SW, Rendeiro C, Breen L. (-)-Epicatechin and its colonic metabolite hippuric acid protect against dexamethasone-induced atrophy in skeletal muscle cells. J Nutr Biochem 2022; 110:109150. [PMID: 36049668 DOI: 10.1016/j.jnutbio.2022.109150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/13/2022] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Cocoa flavanols have been shown to improve muscle function and may offer a novel approach to protect against muscle atrophy. Hippuric acid (HA) is a colonic metabolite of (-)-epicatechin (EPI), the primary bioactive compound of cocoa, and may be responsible for the associations between cocoa supplementation and muscle metabolic alterations. Accordingly, we investigated the effects of EPI and HA upon skeletal muscle morphology and metabolism within an in vitro model of muscle atrophy. Under atrophy-like conditions (24h 100μM dexamethasone (DEX)), C2C12 myotube diameter was significantly greater following co-incubation with either 25μM HA (11.19±0.39μm) or 25μM EPI (11.01±0.21μm) compared to the vehicle control (VC; 7.61±0.16μm, both P < .001). In basal and leucine-stimulated states, there was a significant reduction in myotube protein synthesis (MPS) rates following DEX treatment in VC (P = .024). Interestingly, co-incubation with EPI or HA abrogated the DEX-induced reductions in MPS rates, whereas no significant differences versus control treated myotubes (CTL) were noted. Furthermore, co-incubation with EPI or HA partially attenuated the increase in proteolysis seen in DEX-treated cells, preserving LC3 α/β II:I and caspase-3 protein expression in atrophy-like conditions. The protein content of PGC1α, ACC, and TFAM (regulators of mitochondrial function) were significantly lower in DEX-treated versus. CTL cells (all P < .050). However, co-incubation with EPI or HA was unable to prevent these DEX-induced alterations. For the first time we demonstrate that EPI and HA exert anti-atrophic effects on C2C12 myotubes, providing novel insight into the association between flavanol supplementation and favourable effects on muscle health.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Steven Carter
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; Department for Health, University of Bath, Bath, UK
| | - Thomas Nicholson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sophie Louise Allen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Simon Wyn Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK; MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK.
| |
Collapse
|
17
|
Vinci P, Di Girolamo FG, Mangogna A, Mearelli F, Nunnari A, Fiotti N, Giordano M, Bareille MP, Biolo G. Early lean mass sparing effect of high-protein diet with excess leucine during long-term bed rest in women. Front Nutr 2022; 9:976818. [PMID: 36505255 PMCID: PMC9729546 DOI: 10.3389/fnut.2022.976818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Muscle inactivity leads to muscle atrophy. Leucine is known to inhibit protein degradation and to promote protein synthesis in skeletal muscle. We tested the ability of a high-protein diet enriched with branched-chain amino acids (BCAAs) to prevent muscle atrophy during long-term bed rest (BR). We determined body composition (using dual energy x-ray absorptiometry) at baseline and every 2-weeks during 60 days of BR in 16 healthy young women. Nitrogen (N) balance was assessed daily as the difference between N intake and N urinary excretion. The subjects were randomized into two groups: one received a conventional diet (1.1 ± 0.03 g protein/kg, 4.9 ± 0.3 g leucine per day) and the other a high protein, BCAA-enriched regimen (1.6 ± 0.03 g protein-amino acid/kg, 11.4 ± 0.6 g leucine per day). There were significant BR and BR × diet interaction effects on changes in lean body mass (LBM) and N balance throughout the experimental period (repeated measures ANCOVA). During the first 15 days of BR, lean mass decreased by 4.1 ± 0.9 and 2.4 ± 2.1% (p < 0.05) in the conventional and high protein-BCAA diet groups, respectively, while at the end of the 60-day BR, LBM decreased similarly in the two groups by 7.4 ± 0.7 and 6.8 ± 2.4%. During the first 15 days of BR, mean N balance was 2.5 times greater (p < 0.05) in subjects on the high protein-BCAA diet than in those on the conventional diet, while we did not find significant differences during the following time intervals. In conclusion, during 60 days of BR in females, a high protein-BCAA diet was associated with an early protein-LBM sparing effect, which ceased in the medium and long term.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy,Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Filippo Mearelli
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Alessio Nunnari
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Nicola Fiotti
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Gianni Biolo
- Department of Medical Surgical and Health Sciences, Medical Clinic, Cattinara Hospital, University of Trieste, Trieste, Italy,*Correspondence: Gianni Biolo,
| |
Collapse
|
18
|
Lv X, Zhou C, Yan Q, Tan Z, Kang J, Tang S. Elucidating the underlying mechanism of amino acids to regulate muscle protein synthesis: impact on human health. Nutrition 2022; 103-104:111797. [DOI: 10.1016/j.nut.2022.111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 10/31/2022]
|
19
|
Marshall RN, Smeuninx B, Seabright AP, Morgan PT, Atherton PJ, Philp A, Breen L. No effect of five days of bed rest or short-term resistance exercise prehabilitation on markers of skeletal muscle mitochondrial content and dynamics in older adults. Physiol Rep 2022; 10:e15345. [PMID: 35785448 PMCID: PMC9251856 DOI: 10.14814/phy2.15345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Bed rest (BR) results in significant impairments in skeletal muscle metabolism. Mitochondrial metabolism is reportedly highly sensitive to disuse, with dysregulated fission-fusion events and impaired oxidative function previously reported. The effects of clinically relevant short-term BR (≤5 days) on mitochondrial protein expression are presently unclear, as are the effects of exercise prehabilitation as a potential counteractive intervention. The present study examined the effects of a 5-day period of BR and short-term resistance exercise prehabilitation (ST-REP) on mitochondrial-protein content. Ten older men (71 ± 4 years) underwent 5 days of BR, completing four sessions of high-volume unilateral resistance exercise prehabilitation over 7 days beforehand. Muscle biopsies were obtained from the vastus lateralis in the non-exercised control and exercised legs, both pre- and post-prehabilitation and pre- and post-BR, to determine changes in citrate synthase enzyme activity and the expression of key proteins in the mitochondrial electron transport chain and molecular regulators of fission-fusion dynamics, biosynthesis, and mitophagy. We observed no significant effect of either BR or ST-REP on citrate synthase protein content, enzyme activity, or ETC complex I-V protein content. Moreover, we observed no significant changes in markers of mitochondrial fission and fusion (p-DRP1S616 , p-DRP1S637 , p-DRP1S616/S637 ratio, p-MFFS146 , Mitofillin, OPA1, or MFN2 (p > 0.05 for all). Finally, we observed no differences in markers of biosynthesis (p-AMPKT172 , p-ACCS79 , PGC1a, TFAM) or mitophagy-related signaling (ULK-1, BNIP3/NIX, LC3B I/II) (p > 0.05 for all). In contrast to previous longer-term periods of musculoskeletal disuse (i.e., 7-14 days), a clinically relevant, 5-day period of BR resulted in no significant perturbation in muscle mitochondrial protein signaling in healthy older adults, with no effect of ST-REP in the week prior to BR. Accordingly, disuse-induced muscle atrophy may precede alterations in mitochondrial content.
Collapse
Affiliation(s)
- Ryan N. Marshall
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchBirminghamUnited Kingdom
| | - Benoit Smeuninx
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Alex P. Seabright
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Paul T. Morgan
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchBirminghamUnited Kingdom
| | - Philip J. Atherton
- Division of Medical sciences and Graduate Entry MedicineRoyal Derby HospitalDerbyUnited Kingdom
- Clinical, Metabolic and Molecular PhysiologyUniversity of NottinghamRoyal Derby HospitalDerbyUnited Kingdom
| | - Andrew Philp
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
- Mitochondrial Metabolism and Ageing LaboratoryGarvan Institute of Medical ResearchSydneyNew South WalesAustralia
- St Vincent’s Clinical SchoolUNSW MedicineUNSW SydneySydneyNew South WalesAustralia
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
- MRC‐Versus Arthritis Centre for Musculoskeletal Ageing ResearchBirminghamUnited Kingdom
- NIHR Biomedical Research CentreBirminghamUnited Kingdom
| |
Collapse
|
20
|
Nunes EA, Stokes T, McKendry J, Currier BS, Phillips SM. Disuse-induced skeletal muscle atrophy in disease and non-disease states in humans: mechanisms, prevention, and recovery strategies. Am J Physiol Cell Physiol 2022; 322:C1068-C1084. [PMID: 35476500 DOI: 10.1152/ajpcell.00425.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decreased skeletal muscle contractile activity (disuse) or unloading leads to muscle mass loss, also known as muscle atrophy. The balance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB) is the primary determinant of skeletal muscle mass. A reduced mechanical load on skeletal muscle is one of the main external factors leading to muscle atrophy. However, endocrine and inflammatory factors can act synergistically in catabolic states, amplifying the atrophy process and accelerating its progression. Additionally, older individuals display aging-induced anabolic resistance, which can predispose this population to more pronounced effects when exposed to periods of reduced physical activity or mechanical unloading. Different cellular mechanisms contribute to the regulation of muscle protein balance during skeletal muscle atrophy. This review summarizes the effects of muscle disuse on muscle protein balance and the molecular mechanisms involved in muscle atrophy in the absence or presence of disease. Finally, a discussion of the current literature describing efficient strategies to prevent or improve the recovery from muscle atrophy is also presented.
Collapse
Affiliation(s)
- Everson A Nunes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.,Laboratory of Investigation of Chronic Diseases, Department of Physiological Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Tanner Stokes
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - James McKendry
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Brad S Currier
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Stuart M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
21
|
Effect of High-Protein Diets on Integrated Myofibrillar Protein Synthesis before Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Pilot Study. Nutrients 2022; 14:nu14030563. [PMID: 35276922 PMCID: PMC8840691 DOI: 10.3390/nu14030563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing dietary protein intake during periods of muscle disuse may mitigate the resulting decline in muscle protein synthesis (MPS). The purpose of this randomized pilot study was to determine the effect of increased protein intake during periods of disuse before anterior cruciate ligament (ACL) reconstruction on myofibrillar protein synthesis (MyoPS), and proteolytic and myogenic gene expression. Six healthy, young males (30 ± 9 y) were randomized to consume a high-quality, optimal protein diet (OP; 1.9 g·kg−1·d−1) or adequate protein diet (AP; 1.2 g·kg−1·d−1) for two weeks before ACL reconstruction. Muscle biopsies collected during surgery were used to measure integrated MyoPS during the intervention (via daily deuterium oxide ingestion) and gene expression at the time of surgery. MyoPS tended to be higher, with a large effect size in OP compared to AP (0.71 ± 0.1 and 0.54 ± 0.1%·d−1; p = 0.076; g = 1.56). Markers of proteolysis and myogenesis were not different between groups (p > 0.05); however, participants with greater MyoPS exhibited lower levels of MuRF1 gene expression compared to those with lower MyoPS (r = −0.82, p = 0.047). The data from this pilot study reveal a potential stimulatory effect of increased daily protein intake on MyoPS during injury-mediated disuse conditions that warrants further investigation.
Collapse
|
22
|
Edwards SJ, Shad BJ, Marshall RN, Morgan PT, Wallis GA, Breen L. Short-term step reduction reduces CS activity without altering skeletal muscle markers of oxidative metabolism or insulin-mediated signalling in young males. J Appl Physiol (1985) 2021; 131:1653-1662. [PMID: 34734783 PMCID: PMC8714983 DOI: 10.1152/japplphysiol.00650.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are critical to skeletal muscle contractile function and metabolic health. Short-term periods of step reduction (SR) are associated with alterations in muscle protein turnover and mass. However, the effects of SR on mitochondrial metabolism/muscle oxidative metabolism and insulin-mediated signaling are unclear. We tested the hypothesis that the total and/or phosphorylated protein content of key skeletal muscle markers of mitochondrial/oxidative metabolism, and insulin-mediated signaling would be altered over 7 days of SR in young healthy males. Eleven, healthy, recreationally active males (means ± SE, age: 22 ± 1 yr, BMI: 23.4 ± 0.7 kg·m2) underwent a 7-day period of SR. Immediately before and following SR, fasted-state muscle biopsy samples were acquired and analyzed for the assessment of total and phosphorylated protein content of key markers of mitochondrial/oxidative metabolism and insulin-mediated signaling. Daily step count was significantly reduced during the SR intervention (13,054 ± 833 to 1,192 ± 99 steps·day−1, P < 0.001). Following SR, there was a significant decline in maximal citrate synthase activity (fold change: 0.94 ± 0.08, P < 0.05) and a significant increase in the protein content of p-glycogen synthase (P-GSS641; fold change: 1.47 ± 0.14, P < 0.05). No significant differences were observed in the total or phosphorylated protein content of other key markers of insulin-mediated signaling, oxidative metabolism, mitochondrial function, or mitochondrial dynamics (all P > 0.05). These results suggest that short-term SR reduces the maximal activity of citrate synthase, a marker of mitochondrial content, without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males. NEW & NOTEWORTHY Short-term (7 day) step reduction reduces the activity of citrate synthase without altering the total or phosphorylated protein content of key markers of skeletal muscle mitochondrial metabolism and insulin signaling in young healthy males.
Collapse
Affiliation(s)
- Sophie J Edwards
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Brandon J Shad
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ryan N Marshall
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| | - Paul T Morgan
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth Anthony Wallis
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Leigh Breen
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.,MRC-ARUK Centre for Musculoskeletal Ageing Research, University of Birmingham, United Kingdom
| |
Collapse
|
23
|
Jameson TSO, Kilroe SP, Fulford J, Abdelrahman DR, Murton AJ, Dirks ML, Stephens FB, Wall BT. Muscle damaging eccentric exercise attenuates disuse-induced declines in daily myofibrillar protein synthesis and transiently prevents muscle atrophy in healthy men. Am J Physiol Endocrinol Metab 2021; 321:E674-E688. [PMID: 34632796 PMCID: PMC8791791 DOI: 10.1152/ajpendo.00294.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Short-term disuse leads to muscle loss driven by lowered daily myofibrillar protein synthesis (MyoPS). However, disuse commonly results from muscle damage, and its influence on muscle deconditioning during disuse is unknown. Twenty-one males [20 ± 1 yr, BMI = 24 ± 1 kg·m-2 (± SE)] underwent 7 days of unilateral leg immobilization immediately preceded by 300 bilateral, maximal, muscle-damaging eccentric quadriceps contractions (DAM; subjects n = 10) or no exercise (CON; subjects n = 11). Participants ingested deuterated water and underwent temporal bilateral thigh MRI scans and vastus lateralis muscle biopsies of immobilized (IMM) and nonimmobilized (N-IMM) legs. N-IMM quadriceps muscle volume remained unchanged throughout both groups. IMM quadriceps muscle volume declined after 2 days by 1.7 ± 0.5% in CON (P = 0.031; and by 1.3 ± 0.6% when corrected to N-IMM; P = 0.06) but did not change in DAM, and declined equivalently in CON [by 6.4 ± 1.1% (5.0 ± 1.6% when corrected to N-IMM)] and DAM [by 2.6 ± 1.8% (4.0 ± 1.9% when corrected to N-IMM)] after 7 days. Immobilization began to decrease MyoPS compared with N-IMM in both groups after 2 days (P = 0.109), albeit with higher MyoPS rates in DAM compared with CON (P = 0.035). Frank suppression of MyoPS was observed between days 2 and 7 in CON (IMM = 1.04 ± 0.12, N-IMM = 1.86 ± 0.10%·day-1; P = 0.002) but not DAM (IMM = 1.49 ± 0.29, N-IMM = 1.90 ± 0.30%·day-1; P > 0.05). Declines in MyoPS and quadriceps volume after 7 days correlated positively in CON (r2 = 0.403; P = 0.035) but negatively in DAM (r2 = 0.483; P = 0.037). Quadriceps strength declined following immobilization in both groups, but to a greater extent in DAM. Prior muscle-damaging eccentric exercise increases MyoPS and prevents loss of quadriceps muscle volume after 2 (but not 7) days of disuse.NEW & NOTEWORTHY We investigated the impact of prior muscle-damaging eccentric exercise on disuse-induced muscle deconditioning. Two and 7 days of muscle disuse per se lowered quadriceps muscle volume in association with lowered daily myofibrillar protein synthesis (MyoPS). Prior eccentric exercise prevented the decline in muscle volume after 2 days and attenuated the decline in MyoPS after 2 and 7 days. These data indicate eccentric exercise increases MyoPS and transiently prevents quadriceps muscle atrophy during muscle disuse.
Collapse
Affiliation(s)
- Tom S O Jameson
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sean P Kilroe
- Department of Nutrition and Metabolism, Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Jonathan Fulford
- Peninsula NIHR Clinical Research Facility, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
- Sealy Center of Aging, University of Texas Medical Branch, Galveston, Texas
| | - Marlou L Dirks
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Francis B Stephens
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Nutritional Physiology Group, Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Willis CRG, Gallagher IJ, Wilkinson DJ, Brook MS, Bass JJ, Phillips BE, Smith K, Etheridge T, Stokes T, McGlory C, Gorissen SHM, Szewczyk NJ, Phillips SM, Atherton PJ. Transcriptomic links to muscle mass loss and declines in cumulative muscle protein synthesis during short-term disuse in healthy younger humans. FASEB J 2021; 35:e21830. [PMID: 34342902 DOI: 10.1096/fj.202100276rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle protein synthesis (MPS) considered the primary physiological mechanism. Here, we employed a systems biology approach to uncover molecular networks and key molecular candidates that quantitatively link to the degree of muscle atrophy and/or extent of decline in MPS during short-term disuse in humans. After consuming a bolus dose of deuterium oxide (D2 O; 3 mL.kg-1 ), eight healthy males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. Bilateral muscle biopsies were obtained post-intervention for RNA sequencing and D2 O-derived measurement of MPS, with thigh lean mass quantified using dual-energy X-ray absorptiometry. Application of weighted gene co-expression network analysis identified 15 distinct gene clusters ("modules") with an expression profile regulated by disuse and/or quantitatively connected to disuse-induced muscle mass or MPS changes. Module scans for candidate targets established an experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 transcriptional regulators) associated with disuse-induced maladaptation, many themselves potently tied to disuse-induced reductions in muscle mass and/or MPS and, therefore, strong physiologically relevant candidates. Notably, we implicate a putative role for muscle protein breakdown-related molecular networks in impairing MPS during short-term disuse, and further establish DEPTOR (a potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS suppression in humans. Overall, these findings offer a strong benchmark for accelerating mechanistic understanding of short-term muscle disuse atrophy that may help expedite development of therapeutic interventions.
Collapse
Affiliation(s)
- Craig R G Willis
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Iain J Gallagher
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, UK
| | - Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Matthew S Brook
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Joseph J Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Tanner Stokes
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | | | - Nathaniel J Szewczyk
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK.,Ohio Musculoskeletal and Neurological Institute (OMNI) and Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute of Health Research, Nottingham Biomedical Research Centre, Royal Derby Hospital Centre, School of Medicine, University of Nottingham, Derby, UK
| |
Collapse
|
25
|
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985) 2021; 131:265-276. [PMID: 33982590 DOI: 10.1152/japplphysiol.01029.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Raymond E Lai
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine, New York City, New York.,Department Rehabilitation Medicine, Icahn School of Medicine, New York City, New York
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Arentson-Lantz EJ, Mikovic J, Bhattarai N, Fry CS, Lamon S, Porter C, Paddon-Jones D. Leucine augments specific skeletal muscle mitochondrial respiratory pathways during recovery following 7 days of physical inactivity in older adults. J Appl Physiol (1985) 2021; 130:1522-1533. [PMID: 33764170 DOI: 10.1152/japplphysiol.00810.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In older adults, leucine mitigated the loss of insulin sensitivity associated with muscular disuse. Leucine supplementation increased mitochondrial respiration and reduced a marker of oxidative stress following periods of disuse and rehabilitation.
Collapse
Affiliation(s)
- Emily J Arentson-Lantz
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Jasmine Mikovic
- Faculty of Health, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Melbourne, Victoria, Australia
| | - Nisha Bhattarai
- Deparment of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Christopher S Fry
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| | - Séverine Lamon
- Faculty of Health, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Melbourne, Victoria, Australia
| | - Craig Porter
- Deparment of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Douglas Paddon-Jones
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas.,Center for Recovery, Physical Activity and Nutrition, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|