1
|
Butowski CF, Dixit Y, Reis MM, Mu C. Metatranscriptomics for Understanding the Microbiome in Food and Nutrition Science. Metabolites 2025; 15:185. [PMID: 40137150 PMCID: PMC11943699 DOI: 10.3390/metabo15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
Microbiome science has greatly expanded our understanding of the diverse composition and function of gut microorganisms over the past decades. With its rich microbial composition, the microbiome hosts numerous functionalities essential for metabolizing food ingredients and nutrients, resulting in the production of active metabolites that affect food fermentation or gut health. Most of these processes are mediated by microbial enzymes such as carbohydrate-active enzymes and amino acid metabolism enzymes. Metatranscriptomics enables the capture of active transcripts within the microbiome, providing invaluable functional insights into metabolic activities. Given the inter-kingdom complexity of the microbiome, metatranscriptomics could further elucidate the activities of fungi, archaea, and bacteriophages in the microbial ecosystem. Despite its potential, the application of metatranscriptomics in food and nutrition sciences remains limited but is growing. This review highlights the latest advances in food science (e.g., flavour formation and food enzymology) and nutrition science (e.g., dietary fibres, proteins, minerals, and probiotics), emphasizing the integration of metatranscriptomics with other technologies to address key research questions. Ultimately, metatranscriptomics represents a powerful tool for uncovering the microbiome activity, particularly in relation to active metabolic processes.
Collapse
|
2
|
Golshany H, Helmy SA, Morsy NFS, Kamal A, Yu Q, Fan L. The gut microbiome across the lifespan: how diet modulates our microbial ecosystem from infancy to the elderly. Int J Food Sci Nutr 2025; 76:95-121. [PMID: 39701663 DOI: 10.1080/09637486.2024.2437472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024]
Abstract
This comprehensive review examines the impact of dietary patterns on gut microbiome composition and diversity from infancy to old age, linking these changes to age-related health outcomes. It investigates how the gut microbiome develops and changes across life stages, focusing on the influence of dietary factors. The review explores how early-life feeding practices, including breastfeeding and formula feeding, shape the infant gut microbiota and have lasting effects. In elderly individuals, alterations in the gut microbiome are associated with increased susceptibility to infections, chronic inflammation, metabolic disorders and cognitive decline. The critical role of diet in modulating the gut microbiome throughout life is emphasised, particularly the potential benefits of probiotics and fortified foods in promoting healthy ageing. By elucidating the mechanisms connecting food systems to gut health, this review provides insights into interventions that could enhance gut microbiome resilience and improve health outcomes across the lifespan.
Collapse
Affiliation(s)
- Hazem Golshany
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | | | - Aya Kamal
- Food Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Qun Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety & Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Hindle VK, Veasley NM, Holscher HD. Microbiota-Focused Dietary Approaches to Support Health: A Systematic Review. J Nutr 2025; 155:381-401. [PMID: 39486521 PMCID: PMC11867136 DOI: 10.1016/j.tjnut.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Diet affects the intestinal microbiota. Increasingly, research is linking the intestinal microbiota to various human health outcomes. Consumption of traditional prebiotics (inulin, fructo-oligosaccharides, and galacto-oligosaccharides) confers health benefits through substrate utilization by select intestinal microorganisms, namely Bifidobacterium and Lactobacilli spp. A similar but distinct concept focused on microorganisms to support human health is through direct consumption of certain live microorganisms recognized as probiotics, which classically include Lactobacilli or Bifidobacterium strains. With advances in sequencing technologies and culturing techniques, other novel functional intestinal microorganisms are being increasingly identified and studied to determine how they may underpin human health benefits. These novel microorganisms are targeted for enrichment within the autochthonous intestinal microbiota through dietary approaches and are also gaining interest as next-generation probiotics because of their purported beneficial properties. Thus, characterizing dietary approaches that nourish select microorganisms in situ is necessary to propel biotic-focused research forward. As such, we reviewed the literature to summarize findings on dietary approaches that nourish the human intestinal microbiota and benefit health to help fill the gap in knowledge on the connections between certain microorganisms, the metabolome, and host physiology. The overall objective of this systematic review was to summarize the impact of dietary interventions with the propensity to nourish certain intestinal bacteria, affect microbial metabolite concentrations, and support gastrointestinal, metabolic, and cognitive health in healthy adults. Findings from the 17 randomized controlled studies identified in this systematic review indicated that dietary interventions providing dietary fibers, phytonutrients, or unsaturated fatty acids differentially enriched Akkermansia, Bacteroides, Clostridium, Eubacterium, Faecalibacterium, Roseburia, and Ruminococcus species, with variable effects on microbial metabolites and subsequent associations with physiologic markers of gastrointestinal and metabolic health. These findings have implications for biotic-focused research on candidate prebiotic substrates as well as next-generation probiotics.
Collapse
Affiliation(s)
- Veronica K Hindle
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Nadine M Veasley
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Personalized Nutrition Initiative, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
4
|
Florkowski M, Abiona E, Frank KM, Brichacek AL. Obesity-associated inflammation countered by a Mediterranean diet: the role of gut-derived metabolites. Front Nutr 2024; 11:1392666. [PMID: 38978699 PMCID: PMC11229823 DOI: 10.3389/fnut.2024.1392666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
The prevalence of obesity has increased dramatically worldwide and has become a critical public health priority. Obesity is associated with many co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. Although the physiology of obesity is complex, a healthy diet and sufficient exercise are two elements known to be critical to combating this condition. Years of research on the Mediterranean diet, which is high in fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a reduction in numerous non-communicable chronic diseases associated with this diet. There is strong evidence to support an anti-inflammatory effect of the diet, and inflammation is a key driver of obesity. Changes in diet alter the gut microbiota which are intricately intertwined with human physiology, as gut microbiota-derived metabolites play a key role in biological pathways throughout the body. This review will summarize recent published studies that examine the potential role of gut metabolites, including short-chain fatty acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating inflammation after consumption of a Mediterranean-like diet. These metabolites modulate pathways of inflammation through the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and macrophage driven effects in adipocytes, among other mechanisms.
Collapse
Affiliation(s)
- Melanie Florkowski
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Esther Abiona
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Karen M Frank
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| | - Allison L Brichacek
- Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
| |
Collapse
|
5
|
Chen Y, Yang K, Xu M, Zhang Y, Weng X, Luo J, Li Y, Mao YH. Dietary Patterns, Gut Microbiota and Sports Performance in Athletes: A Narrative Review. Nutrients 2024; 16:1634. [PMID: 38892567 PMCID: PMC11175060 DOI: 10.3390/nu16111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The intestinal tract of humans harbors a dynamic and complex bacterial community known as the gut microbiota, which plays a crucial role in regulating functions such as metabolism and immunity in the human body. Numerous studies conducted in recent decades have also highlighted the significant potential of the gut microbiota in promoting human health. It is widely recognized that training and nutrition strategies are pivotal factors that allow athletes to achieve optimal performance. Consequently, there has been an increasing focus on whether training and dietary patterns influence sports performance through their impact on the gut microbiota. In this review, we aim to present the concept and primary functions of the gut microbiota, explore the relationship between exercise and the gut microbiota, and specifically examine the popular dietary patterns associated with athletes' sports performance while considering their interaction with the gut microbiota. Finally, we discuss the potential mechanisms by which dietary patterns affect sports performance from a nutritional perspective, aiming to elucidate the intricate interplay among dietary patterns, the gut microbiota, and sports performance. We have found that the precise application of specific dietary patterns (ketogenic diet, plant-based diet, high-protein diet, Mediterranean diet, and high intake of carbohydrate) can improve vascular function and reduce the risk of illness in health promotion, etc., as well as promoting recovery and controlling weight with regard to improving sports performance, etc. In conclusion, although it can be inferred that certain aspects of an athlete's ability may benefit from specific dietary patterns mediated by the gut microbiota to some extent, further high-quality clinical studies are warranted to substantiate these claims and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Yonglin Chen
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Keer Yang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Mingxin Xu
- The Fifth College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510500, China;
| | - Yishuo Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Jiaji Luo
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yanshuo Li
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
| | - Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China; (Y.C.); (K.Y.); (Y.Z.); (X.W.); (J.L.); (Y.L.)
- Guangdong Key Laboratory of Human Sports Performance Science, Guangzhou 510500, China
| |
Collapse
|
6
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
7
|
Xu X, Xu T, Wei J, Chen T. Gut microbiota: an ideal biomarker and intervention strategy for aging. MICROBIOME RESEARCH REPORTS 2024; 3:13. [PMID: 38841415 PMCID: PMC11149087 DOI: 10.20517/mrr.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 06/07/2024]
Abstract
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most dynamic component interacting with the organism, can affect the aging process through its own structure and metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future prospects of microbial intervention strategies in maintaining healthy aging.
Collapse
Affiliation(s)
- Xuan Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Tangchang Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jing Wei
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
8
|
Shi L, Jin L, Huang W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023; 12:1888. [PMID: 37508557 PMCID: PMC10377837 DOI: 10.3390/cells12141888] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The intestinal barrier is a precisely regulated semi-permeable physiological structure that absorbs nutrients and protects the internal environment from infiltration of pathological molecules and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction. Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases are provided.
Collapse
Affiliation(s)
- Linsen Shi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Lihua Jin
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
- Irell & Manella Graduate School of Biomedical Science, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Zhou H, Liu K, Liu W, Wu M, Wang Y, Lv Y, Meng H. Diets Enriched in Sugar, Refined, or Whole Grain Differentially Influence Plasma Cholesterol Concentrations and Cholesterol Metabolism Pathways with Concurrent Changes in Bile Acid Profile and Gut Microbiota Composition in ApoE -/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37307383 DOI: 10.1021/acs.jafc.3c00810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to compare the effects of diets enriched in sugar, refined grain (RG), or whole grain (WG) on circulating cholesterol concentrations and established and emerging mechanisms regulating cholesterol metabolism. Forty-four male ApoE-/- mice aged 8 weeks were randomly fed an isocaloric sugar-, RG-, or WG-enriched diet for 12 weeks. Compared to WG-enriched diet, fasting plasma LDL-C and HDL-C concentrations were higher and the mRNA expression of intestinal LXR-α was lower in sugar- and RG-enriched diets; plasma TC, non-HDL-C, TG and VLDL-C concentrations, and cecal concentrations of lithocholic acid were higher and the mRNA expression of intestinal ABCG5 was lower in sugar-enriched diet, and the mRNA expression of hepatic IDOL and cecal concentrations of lithocholic and deoxycholic acids was higher in RG-enriched diet. The relative abundance of Akkermansia, Clostridia_UCG-014, Alistipes, and Alloprevotella, which were lower in sugar- and/or RG- than in WG-enriched diet, had inverse correlations with fasting plasma cholesterol concentrations or cecal concentrations of secondary bile acids and positive correlations with gene expressions in intestinal cholesterol efflux. Conversely, the relative abundance of Lactobacillus, Lachnoclostridium, Lachnospiraceae_NK4A136_group, Colidextribacter, and Helicobacter had reverse correlations. Both sugar- and RG-enriched diets had unfavorable effects on cholesterol concentrations; yet, their effects on the gene expressions of cholesterol efflux, uptake, bile acid synthesis, and bile acid concentrations were distinctive and could be partially attributable to the concurrent changes in gut microbiota.
Collapse
Affiliation(s)
- Haiyan Zhou
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Ke Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Wenjing Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Man Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yin Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Yiqian Lv
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
| | - Huicui Meng
- School of Public Health (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, Guangdong, P. R. China
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
10
|
Yu T, Ding Y, Qian D, Lin L, Tang Y. Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status. Therap Adv Gastroenterol 2023; 16:17562848231154101. [PMID: 36875281 PMCID: PMC9974631 DOI: 10.1177/17562848231154101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/13/2023] [Indexed: 03/07/2023] Open
Abstract
Background Patients with chronic constipation (CC) show altered gut microbial composition. Objectives To compare the fecal microbiota with different constipation subtypes and to identify potential influencing factors. Design This is a prospective cohort study. Methods The stool samples of 53 individuals with CC and 31 healthy individuals were analyzed using 16S rRNA sequencing. The associations between microbiota composition and colorectal physiology, lifestyle factors, and psychological distress were analyzed. Results In all, 31 patients with CC were classified as having slow-transit constipation, and 22 were classified under normal-transit constipation. The relative abundance of Bacteroidaceae was lower, and the relative abundance of Peptostreptococcaceae, Christensenellaceae, and Clostridiaceae was higher in slow-transit than in normal-transit group. In all, 28 and 25 patients with CC had dyssynergic defecation (DD) and non-DD, respectively. The relative abundance of Bacteroidaceae and Ruminococcaceae was higher in DD than in non-DD. Rectal defecation pressure was negatively correlated with the relative abundance of Prevotellaceae and Ruminococcaceae but positively correlated with that of Bifidobacteriaceae in CC patients. Multiple linear regression analysis suggested that depression was a positive predictor of Lachnospiraceae relative abundance, and sleep quality was an independent predictor of decreased relative abundance of Prevotellaceae. Conclusion Patients with different CC subtypes showed different characteristics of dysbiosis. Depression and poor sleep were the main factors that affected the intestinal microbiota of patients with CC. Plain language summary Characteristics of fecal microbiota in different constipation subtypes and association with colon physiology, lifestyle factors, and psychological status Patients with chronic constipation (CC) show altered gut microbial composition. Previous studies in CC are limited by lacking of subtype stratification, which is reflected in the lack of agreement in findings across the large number of microbiome studies. We analyzed stool microbiome of 53 CC patients and 31 healthy individuals using 16S rRNA sequencing. We found that the relative abundance of Bacteroidaceae was lower, and the relative abundance of Peptostreptococcaceae, Christensenellaceae, and Clostridiaceae was higher in slow-transit than in normal-transit CC patients. The relative abundance of Bacteroidaceae and Ruminococcaceae was higher in dyssynergic defecation (DD) than in non-DD patients with CC. In addition, depression was a positive predictor of Lachnospiraceae relative abundance, and sleep quality was an independent predictor of decreased relative abundance of Prevotellaceae in all CC patients. This study emphasizes patients with different CC subtypes have different characteristics of dysbiosis. Depression and poor sleep may be the main factors that affect the intestinal microbiota of patients with CC.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yu Ding
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Rd, Gulou District, Nanjing, Jiangsu 210029, China
| |
Collapse
|
11
|
Zhang Y, Chen H, Lu M, Cai J, Lu B, Luo C, Dai M. Habitual Diet Pattern Associations with Gut Microbiome Diversity and Composition: Results from a Chinese Adult Cohort. Nutrients 2022; 14:nu14132639. [PMID: 35807820 PMCID: PMC9268000 DOI: 10.3390/nu14132639] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
The influence of long-term diet on gut microbiota is an active area of investigation. The present work aimed to explore the associations between habitual diet patterns and gut microbiota in a large sample of asymptomatic Chinese adults. The gut microbiome was profiled through the sequencing of the 16S rRNA gene in stool samples from 702 Chinese adults aged 50–75 years who underwent colonoscopies and were diagnosed to be free of colorectal neoplasm. Long-term dietary consumption was assessed through a food-frequency questionnaire. The microbial associations with specific food groups and the posteriori dietary pattern were tested using the Kruskal–Wallis H test, permutational ANOVAs, and multivariate analyses with linear models. The Shannon indexes generally shared similar levels across different food intake frequency groups. Whole grain and vegetable intakes totally explained 1.46% of the microbiota compositional variance. Using the data-driven posteriori approach, a general dietary pattern characterized by lower intakes of refined grains was highlighted to be associated with higher abundances of the genus Anaerostipes and a species of it. We also observed 17 associations between various food group intakes and specific genera and species. For instance, the relative abundances of the genus Weissella and an uncultured species of it were negatively associated with red meat intake. The results of this study support the idea that the usual dietary consumption measured by certain food items or summary indexes is associated with gut microbial features. These results deepen the understanding of complex relationships of diet and gut microbiota, as well as their implications for gut microbiome studies of human chronic diseases.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Hongda Chen
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| | - Ming Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Jie Cai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Bin Lu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Chenyu Luo
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
| | - Min Dai
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; (Y.Z.); (M.L.); (B.L.); (C.L.)
- Correspondence: (H.C.); (M.D.); Tel.: +86-10-6915-4660 (H.C.); +86-10-6915-4651 (M.D.)
| |
Collapse
|
12
|
Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults-Randomized Controlled Crossover Trial. Metabolites 2022; 12:metabo12060547. [PMID: 35736480 PMCID: PMC9229237 DOI: 10.3390/metabo12060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
Food intake data collected using subjective tools are prone to inaccuracies and biases. An objective assessment of food intake, such as metabolomic profiling, may offer a more accurate method if unique metabolites can be identified. To explore this option, we used samples generated from a randomized and controlled cross-over trial during which participants (N = 10; 65 ± 8 year, BMI, 29.8 ± 3.2 kg/m2) consumed each of the three diets enriched in different types of carbohydrate. Plasma metabolite concentrations were measured at the end of each diet phase using gas chromatography/time-of-flight mass spectrometry and ultra-high pressure liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. Participants were provided, in random order, with diets enriched in three carbohydrate types (simple carbohydrate (SC), refined carbohydrate (RC) and unrefined carbohydrate (URC)) for 4.5 weeks per phase and separated by two-week washout periods. Data were analyzed using partial least square-discrimination analysis, receiver operating characteristics (ROC curve) and hierarchical analysis. Among the known metabolites, 3-methylhistidine, phenylethylamine, cysteine, betaine and pipecolic acid were identified as biomarkers in the URC diet compared to the RC diet, and the later three metabolites were differentiated and compared to SC diet. Hierarchical analysis indicated that the plasma metabolites at the end of each diet phase were more strongly clustered by the participant than the carbohydrate type. Hence, although differences in plasma metabolite concentrations were observed after participants consumed diets differing in carbohydrate type, individual variation was a stronger predictor of plasma metabolite concentrations than dietary carbohydrate type. These findings limited the potential of metabolic profiling to address this variable.
Collapse
|
13
|
Koorakula R, Ghanbari M, Schiavinato M, Wegl G, Dohm JC, Domig KJ. Storage media and RNA extraction approaches substantially influence the recovery and integrity of livestock fecal microbial RNA. PeerJ 2022; 10:e13547. [PMID: 35694379 PMCID: PMC9186325 DOI: 10.7717/peerj.13547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in understanding gut microbiome dynamics, to increase the sustainability of livestock production systems and to better understand the dynamics that regulate antibiotic resistance genes (i.e., the resistome). High-throughput sequencing of RNA transcripts (RNA-seq) from microbial communities (metatranscriptome) allows an unprecedented opportunity to analyze the functional and taxonomical dynamics of the expressed microbiome and emerges as a highly informative approach. However, the isolation and preservation of high-quality RNA from livestock fecal samples remains highly challenging. This study aimed to determine the impact of the various sample storage and RNA extraction strategies on the recovery and integrity of microbial RNA extracted from selected livestock (chicken and pig) fecal samples. Methods Fecal samples from pigs and chicken were collected from conventional slaughterhouses. Two different storage buffers were used at two different storage temperatures. The extraction of total RNA was done using four different commercially available kits and RNA integrity/quality and concentration were measured using a Bioanalyzer 2100 system with RNA 6000 Nano kit (Agilent, Santa Clara, CA, USA). In addition, RT-qPCR was used to assess bacterial RNA quality and the level of host RNA contamination. Results The quantity and quality of RNA differed by sample type (i.e., either pig or chicken) and most significantly by the extraction kit, with differences in the extraction method resulting in the least variability in pig feces samples and the most variability in chicken feces. Considering a tradeoff between the RNA yield and the RNA integrity and at the same time minimizing the amount of host RNA in the sample, a combination of storing the fecal samples in RNALater at either 4 °C (for 24 h) or -80 °C (up to 2 weeks) with extraction with PM kit (RNEasy Power Microbiome Kit) had the best performance for both chicken and pig samples. Conclusion Our findings provided a further emphasis on using a consistent methodology for sample storage, duration as well as a compatible RNA extraction approach. This is crucial as the impact of these technical steps can be potentially large compared with the real biological variability to be explained in microbiome and resistome studies.
Collapse
Affiliation(s)
- Raju Koorakula
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
- Competence Centre for Feed and Food Quality, Safety and Innovation (FFoQSI), Tulln an der Donau, Lower Austria, Austria
| | | | - Matteo Schiavinato
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | | | - Juliane C. Dohm
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Computational Biology, Vienna, Austria
| | - Konrad J. Domig
- University of Natural Resources and Life Sciences, Vienna, Department of Food Science and Technology, Institute of Food Science, Vienna, Austria
| |
Collapse
|
14
|
You H, Tan Y, Yu D, Qiu S, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Front Nutr 2022; 9:886902. [PMID: 35662937 PMCID: PMC9157426 DOI: 10.3389/fnut.2022.886902] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal environment disorder is a potential pathological mechanism of obesity. There is increasing evidence that disorders in the homeostasis of the intestinal environment can affect various metabolic organs, such as fat and liver, and lead to metabolic diseases. However, there are few therapeutic approaches for obesity targeting the intestinal environment. In this review, on the one hand, we discuss how intestinal microbial metabolites SCFA regulate intestinal function to improve obesity and the possible mechanisms and pathways related to obesity-related pathological processes (depending on SCFA-related receptors such as GPCRs, MCT and SMCT, and through epigenetic processes). On the other hand, we discuss dietary management strategies to enrich SCFA-producing bacteria and target specific SCFA-producing bacteria and whether fecal bacteria transplantation therapy to restore the composition of the gut microbiota to regulate SCFA can help prevent or improve obesity. Finally, we believe that it will be of great significance to establish a working model of gut– SCFA– metabolic disease development in the future for the improvement this human health concern.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dawei Yu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Xu D, Fu L, Pan D, Lu Y, Yang C, Wang Y, Wang S, Sun G. Role of Whole Grain Consumption in Glycaemic Control of Diabetic Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021; 14:109. [PMID: 35010985 PMCID: PMC8746707 DOI: 10.3390/nu14010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Observational studies have indicated beneficial effects of whole grain consumption on human health. However, no evidence based on randomized controlled trials has been established. Our objective was to perform a systematic review and meta-analysis of randomized controlled trials to assess the effects of whole grain consumption in glycaemic control of diabetic patients. METHODS A comprehensive search in four databases (Web of Science, Pubmed, Scopus and Cochrane library) was conducted to collect potential articles which measured the roles of whole grain consumption on glycaemic control up to October 2021. RESULTS A total of 16 eligible trials involving 1068 subjects were identified to evaluate the pooled effect. The overall results indicated that compared with the control group, whole grain intake presented a significantly reduced concentration in fast plasma glucose (WMD = -0.51 mmol/L, 95% CI: -0.73, -0.28; I2 = 88.6%, p < 0.001), a homeostasis model assessment of insulin resistance (WMD = -0.39 μU × mol/L2, 95% CI: -0.73, -0.04; I2 = 58.4%, p = 0.014), and glycosylated haemoglobin (WMD = -0.56%, 95% CI: -0.88, -0.25, I2 = 88.5%, p < 0.001), while no significant difference was observed in fast plasma insulin level between groups (SMD = -0.05, 95% CI: -0.25, 0.14; I2 = 40.7%, p = 0.120). In terms of incremental area under the curve (iAUC), data suggested that whole grain effected a significant decrease in Glucose-iAUC (WMD = -233.09 min × mmol/L, 95% CI: -451.62, -14.57; I2 = 96.1%, p < 0.001) and Insulin-iAUC (SMD = -4.80, 95% CI: -8.36, -1.23; I2 = 89.9%, p = 0.002), although only in a small number of studies. Of note, there is evidence for modest unexplained heterogeneity in the present meta-analysis. CONCLUSION Whole grain consumption confers a beneficial effect on glucose metabolism in patients with diabetes. Regrettably, since relevant studies were scarce, we failed to provide confident evidence of whole grain consumption on acute effects including Glucose-iAUC and Insulin-iAUC, which should be addressed in further trials.
Collapse
Affiliation(s)
- Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Lingmeng Fu
- Department of Quality Management, Zhejiang Provincial People’s Hospital, Hangzhou 310014, China;
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Chao Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (D.X.); (D.P.); (Y.L.); (C.Y.); (Y.W.); (S.W.)
| |
Collapse
|
16
|
Seal CJ, Courtin CM, Venema K, de Vries J. Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr Rev Food Sci Food Saf 2021; 20:2742-2768. [PMID: 33682356 DOI: 10.1111/1541-4337.12728] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Grains are important sources of carbohydrates in global dietary patterns. The majority of these carbohydrates, especially in refined-grain products, are digestible. Most carbohydrate digestion takes place in the small intestine where monosaccharides (predominantly glucose) are absorbed, delivering energy to the body. However, a considerable part of the carbohydrates, especially in whole grains, is indigestible dietary fibers. These impact gut motility and transit and are useful substrates for the gut microbiota affecting its composition and quality. For the most part, the profile of digestible and indigestible carbohydrates and their complexity determine the nutritional quality of carbohydrates. Whole grains are more complex than refined grains and are promoted as part of a healthy and sustainable diet mainly because the contribution of indigestible carbohydrates, and their co-passenger nutrients, is significantly higher. Higher consumption of whole grain is recommended because it is associated with lower incidence of, and mortality from, CVD, type 2 diabetes, and some cancers. This may be due in part to effects on the gut microbiota. Although processing of cereals during milling and food manufacturing is necessary to make them edible, it also offers the opportunity to still further improve the nutritional quality of whole-grain flours and foods made from them. Changing the composition and availability of grain carbohydrates and phytochemicals during processing may positively affect the gut microbiota and improve health.
Collapse
Affiliation(s)
- Chris J Seal
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University-Campus Venlo, St Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Jan de Vries
- Nutrition Solutions, Reuvekamp 26, 7213CE, Gorssel, The Netherlands
| |
Collapse
|