1
|
Liu L, Huang X, Xu J, Wang X, Liu Y, Ren X, Zhang C, Wang Y, Wang Y, Zhou S, Yuan L. Impact of fish oil supplement on brain lipids profile in ApoE-/- mice and C57BL/6J mice treated with diets containing different dosage of vitamin E. J Nutr Biochem 2025:109964. [PMID: 40409512 DOI: 10.1016/j.jnutbio.2025.109964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/02/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
The study was designed to explore the impact of fish oil supplement on the brain lipids profile in ApoE-deficient (ApoE-/-) mice and wild-type C57BL/6J (C57 wt) mice treated with diets containing varying dosage of vitamin E (VE). Compared to C57 wt mice, ApoE-/- mice exhibited increased cortical TC and LDL-C levels, but decreased HDL-C level (P < 0.05). The fish oil intervention, combined with low dietary VE intake resulted in increased cortical protein expression of CD36 and PPARγ in C57 wt mice. PI (36:5) was identified as a significantly different metabolite when compared to the control group in both C57 wt and ApoE-/- mice. The combination of fish oil and varying doses of VE had different effects on the expression of brain lipids and fatty acid transporters in ApoE-/- and C57 wt mice, indicating that ApoE status and dietary VE intake influence the responses of the cerebral lipids profile to fish oil supplementation.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ying Wang
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases; Beijing Key Laboratory of environment and aging.
| |
Collapse
|
2
|
Maeda K, Fujii R, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Mizuno G, Ishikawa H, Ohashi K, Tsuboi Y, Hattori Y, Ishihara Y, Hamajima N, Hashimoto S, Suzuki K. Association between DNA methylation levels of thioredoxin-interacting protein (TXNIP) and changes in glycemic traits: a longitudinal population-based study. Endocr J 2024; 71:593-601. [PMID: 38538307 DOI: 10.1507/endocrj.ej23-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Thioredoxin-interacting protein (TXNIP) plays an important role in glucose metabolism, and its expression is regulated by DNA methylation (DNAm). Although the association between TXNIP DNAm and type 2 diabetes mellitus has been demonstrated in studies with a cross-sectional design, prospective studies are needed. We therefore examined the association between TXNIP DNAm levels and longitudinal changes in glycemic traits by conducting a longitudinal study involving 169 subjects who underwent two health checkups in 2015 and 2019. We used a pyrosequencing assay to determine TXNIP DNAm levels in leukocytes (cg19693031). Logistic regression analyses were performed to assess the associations between dichotomized TXNIP DNAm levels and marked increases in glycemic traits. At four years, the TXNIP DNA hypomethylation group had a higher percentage of changes in fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) compared to those in the hypermethylation group. The adjusted odds ratios for FPG and HbA1c levels were significantly higher in the TXNIP DNA hypomethylation group than in the hypermethylation group. We found that TXNIP DNA hypomethylation at baseline was associated with a marked increase in glycemic traits. Leukocyte TXNIP DNAm status could potentially be used as an early biomarker for impaired glucose homeostasis.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano/Bozen 39100, Italy
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, Tokyo 144-8535, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yuya Ishihara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| |
Collapse
|
3
|
Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Tsuboi Y, Ishikawa H, Ohashi K, Hashimoto S, Hamajima N, Suzuki K. Serum carotenoid levels are positively associated with DNA methylation of thioredoxin-interacting protein. INT J VITAM NUTR RES 2024; 94:210-220. [PMID: 37735933 DOI: 10.1024/0300-9831/a000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Background: Carotenoids have been reported to exert protective effects against age-related diseases via changes in DNA methylation. Although lower thioredoxin-interacting protein (TXNIP) DNA methylation is associated with age-related diseases, only a few studies have investigated the factors influencing TXNIP DNA methylation. Carotenoids may be a factor linking TXNIP to specific pathophysiological functions. The aim of this study was to examine whether serum carotenoid levels are associated with TXNIP DNA methylation levels. Methods: We conducted a cross-sectional study using 376 health examination participants (169 men). DNA methylation levels were determined using a pyrosequencing assay. Serum carotenoid levels were determined by high-performance liquid chromatography. Multivariable regression analyses were performed to examine the associations between TXNIP DNA methylation levels and serum carotenoid levels with adjustment for age, BMI, HbA1c, CRP, smoking habits, alcohol consumption, exercise habits, and percentage of neutrophils. Results: Multiple linear regression analyses showed that TXNIP DNA methylation levels were positively associated with serum levels of zeaxanthin/lutein (β [95%CI]: 1.935 [0.184, 3.685]), β-cryptoxanthin (1.447 [0.324, 2.570]), α-carotene (1.061 [0.044, 2.077]), β-carotene (1.272 [0.319, 2.226]), total carotenes (1.255 [0.040, 2.469]), total xanthophylls (2.133 [0.315, 3.951]), provitamin A (1.460 [0.402, 2.519]), and total carotenoids (1.972 [0.261, 3.683]) in men (all p<0.05). Of these, provitamin A showed the stronger association (standardized β=0.216). No significant association of TXNIP DNA methylation and serum carotenoid was observed in women. Conclusions: The findings of this study suggest that carotenoid intake may protect against age-related diseases by altering TXNIP DNA methylation status in men.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Bolzano/Bozen, Italy
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, Tokyo, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
4
|
Keshawarz A, Joehanes R, Ma J, Lee GY, Costeira R, Tsai PC, Masachs OM, Bell JT, Wilson R, Thorand B, Winkelmann J, Peters A, Linseisen J, Waldenberger M, Lehtimäki T, Mishra PP, Kähönen M, Raitakari O, Helminen M, Wang CA, Melton PE, Huang RC, Pennell CE, O’Sullivan TA, Ochoa-Rosales C, Voortman T, van Meurs JB, Young KL, Graff M, Wang Y, Kiel DP, Smith CE, Jacques PF, Levy D. Dietary and supplemental intake of vitamins C and E is associated with altered DNA methylation in an epigenome-wide association study meta-analysis. Epigenetics 2023; 18:2211361. [PMID: 37233989 PMCID: PMC10228397 DOI: 10.1080/15592294.2023.2211361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Dietary intake of antioxidants such as vitamins C and E protect against oxidative stress, and may also be associated with altered DNA methylation patterns. METHODS We meta-analysed epigenome-wide association study (EWAS) results from 11,866 participants across eight population-based cohorts to evaluate the association between self-reported dietary and supplemental intake of vitamins C and E with DNA methylation. EWAS were adjusted for age, sex, BMI, caloric intake, blood cell type proportion, smoking status, alcohol consumption, and technical covariates. Significant results of the meta-analysis were subsequently evaluated in gene set enrichment analysis (GSEA) and expression quantitative trait methylation (eQTM) analysis. RESULTS In meta-analysis, methylation at 4,656 CpG sites was significantly associated with vitamin C intake at FDR ≤ 0.05. The most significant CpG sites associated with vitamin C (at FDR ≤ 0.01) were enriched for pathways associated with systems development and cell signalling in GSEA, and were associated with downstream expression of genes enriched in the immune response in eQTM analysis. Furthermore, methylation at 160 CpG sites was significantly associated with vitamin E intake at FDR ≤ 0.05, but GSEA and eQTM analysis of the top most significant CpG sites associated with vitamin E did not identify significant enrichment of any biological pathways investigated. CONCLUSIONS We identified significant associations of many CpG sites with vitamin C and E intake, and our results suggest that vitamin C intake may be associated with systems development and the immune response.
Collapse
Affiliation(s)
| | - Roby Joehanes
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jiantao Ma
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gha Young Lee
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Olatz M. Masachs
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Chair of Neurogenetics, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Chair of Epidemiology, Medical Faculty, Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), München Heart Alliance, Munich, Germany
| | - Jakob Linseisen
- Chair of Epidemiology, University Augsburg at University Hospital Augsburg, Augsburg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), München Heart Alliance, Munich, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Pashupati P. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Mika Helminen
- Tays Research Services, Tampere University Hospital, Tampere, Finland
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland
| | - Carol A. Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, New South Wales, Australia
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Phillip E. Melton
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Rae-Chi Huang
- Nutrition & Health Innovation Research Institute, Edith Cowan University, Perth, Australia
| | - Craig E. Pennell
- Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, Finland
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | | | - Carolina Ochoa-Rosales
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Centro de Vida Saludable, Universidad de Concepción, Concepción, Chile
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Joyce B.J. van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Kristin L. Young
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Misa Graff
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Yujie Wang
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Hebrew Senior Life, Chapel Hill, North Carolina, USA
| | - Douglas P. Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Caren E. Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Paul F. Jacques
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Daniel Levy
- Framingham Heart Study, Framingham, Framingham, MA, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Jahrami H, Saif Z, Trabelsi K, Pandi-Perumal SR, Seeman MV. Exploring the association between serum β-Carotene and metabolic syndrome in patients with schizophrenia. HEART AND MIND 2023; 7:264-269. [DOI: 10.4103/hm.hm-d-23-00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/29/2023] [Indexed: 03/05/2025] Open
Abstract
Background and Aims:
There has been no previous investigation into the relationship between serum β-Carotene levels and metabolic syndrome in patients with schizophrenia. This research aims to explore the association between schizophrenia, metabolic syndrome, and serum β-Carotene levels. Specifically, this study addresses this knowledge gap and examines whether lower serum β-Carotene levels are associated with an increased risk for metabolic syndrome in patients with schizophrenia.
Methods and Results:
The present study involved 38 patients with schizophrenia (n = 38). We collected demographic data, anthropometric measurements, blood samples for lipid panels, sugar levels, and serum β-Carotene levels, as well as participant responses to food frequency questionnaires. Results revealed the median serum β-Carotene was 0.87 (range: 0.69–1.14 μmol/L). The median metabolic syndrome Z-score using waist circumference was 0.13 (range: −1.10–2.39). Pairwise Spearman's correlation between metabolic syndrome Z-score versus β-Carotene showed a rho = −0.56, P< 0.001 for the overall sample. Linear regression between metabolic syndrome Z-score as a dependent variable and serum β-Carotene as an independent variable showed a regression coefficient of −3.11, P< 0.001.
Conclusion:
The findings of this study offer suggestive evidence of a statistically significant positive correlation between reduced serum β-Carotene levels in individuals with schizophrenia and a heightened global risk of developing metabolic syndrome. This preliminary study has implications for the management of schizophrenia patients, suggesting that patients' serum levels of β-Carotene be periodically checked and referrals made to dieticians as necessary.
Collapse
Affiliation(s)
- Haitham Jahrami
- Government Hospitals, Manama, Bahrain
- Department of Psychiatry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | | | - Khaled Trabelsi
- High Institute of Sport and Physical Education of Sfax, Sfax, Tunisia
- Research Laboratory: Education, Motricity, Sport and Health, EM2S, LR19JS01, University of Sfax, Sfax, Tunisia
| | - Seithikurippu R. Pandi-Perumal
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
6
|
Fujii R, Ando Y, Yamada H, Tsuboi Y, Munetsuna E, Yamazaki M, Mizuno G, Maeda K, Ohashi K, Ishikawa H, Watanabe M, Imaeda N, Goto C, Wakai K, Hashimoto S, Suzuki K. Integration of methylation quantitative trait loci (mQTL) on dietary intake on DNA methylation levels: an example of n-3 PUFA and ABCA1 gene. Eur J Clin Nutr 2023; 77:881-887. [PMID: 37542202 DOI: 10.1038/s41430-023-01315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Epigenetic studies have reported relationships between dietary nutrient intake and methylation levels. However, genetic variants that may affect DNA methylation (DNAm) pattern, called methylation quantitative loci (mQTL), are usually overlooked in these analyses. We investigated whether mQTL change the relationship between dietary nutrient intake and leukocyte DNAm levels with an example of estimated fatty acid intake and ATP-binding cassette transporter A1 (ABCA1). METHODS A cross-sectional study on 231 participants (108 men, mean age: 62.7 y) without clinical history of cancer and no prescriptions for dyslipidemia. We measured leukocyte DNAm levels of 8 CpG sites within ABCA1 gene by pyrosequencing method and used mean methylation levels for statistical analysis. TaqMan assay was used for genotyping a genetic variant of ABCA1 (rs1800976). Dietary fatty acid intake was estimated with a validated food frequency questionnaire and adjusted for total energy intake by using residual methods. RESULTS Mean ABCA1 DNAm levels were 5% lower with the number of minor alleles in rs1800976 (CC, 40.6%; CG, 35.9%; GG, 30.6%). Higher dietary n-3 PUFA intake was associated with lower ABCA1 DNAm levels (1st (ref) vs. 4th, β [95% CI]: -2.52 [-4.77, -0.28]). After controlling for rs180076, the association between dietary n-3 PUFA intake and ABCA1 DNAm levels was attenuated, but still showed an independent association (1st (ref) vs. 4th, β [95% CI]: -2.00 [-3.84, -0.18]). The interaction of mQTL and dietary n-3 PUFA intake on DNAm levels was not significant. CONCLUSIONS This result suggested that dietary n-3 PUFA intake would be an independent predictor of DNAm levels in ABCA1 gene after adjusting for individual genetic background. Considering mQTL need to broaden into other genes and nutrients for deeper understanding of DNA methylation, which can contribute to personalized nutritional intervention.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
- Institute for Biomedicine (affiliated to the University of Lübeck), Eurac Research, Via Alessandro Volta 21, Bolzano/Bozen, Italy
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure-cho, Takamatsu, Japan
| | - Genki Mizuno
- Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota-ku, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Mami Watanabe
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Nahomi Imaeda
- Department of Nutrition, Faculty of Wellness, Shigakkan University, 55 Nakoyama, Yokonemachi, Obu, Japan
| | - Chiho Goto
- Department of Health and Nutrition, Nagoya Bunri University, 365 Maeda, Inazawa-city, Inazawa, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Japan.
| |
Collapse
|
7
|
Li Z, Li Y, Hou Y, Fan Y, Jiang H, Li B, Zhu H, Liu Y, Zhang L, Zhang J, Wu M, Ma T, Zhao T, Ma L. Association of Plasma Vitamins and Carotenoids, DNA Methylation of LCAT, and Risk of Age-Related Macular Degeneration. Nutrients 2023; 15:2985. [PMID: 37447314 DOI: 10.3390/nu15132985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Dysregulation of lipid metabolism has been implicated in age-related macular degeneration (AMD), the leading cause of blindness among the elderly. Lecithin cholesterol acyltransferase (LCAT) is an important enzyme responsible for lipid metabolism, which could be regulated by DNA methylation during the development of various age-related diseases. This study aimed to assess the association between LCAT DNA methylation and the risk of AMD, and to examine whether plasma vitamin and carotenoid concentrations modified this association. A total of 126 cases of AMD and 174 controls were included in the present analysis. LCAT DNA methylation was detected by quantitative real-time methylation-1specific PCR (qMSP). Circulating vitamins and carotenoids were measured using reversed-phase high-performance liquid chromatography (RP-HPLC). DNA methylation of LCAT was significantly higher in patients with AMD than those in the control subjects. After multivariable adjustment, participants in the highest tertile of LCAT DNA methylation had a 5.37-fold higher risk (95% CI: 2.56, 11.28) of AMD compared with those in the lowest tertile. Each standard deviation (SD) increment of LCAT DNA methylation was associated with a 2.23-fold (95% CI: 1.58, 3.13) increased risk of AMD. There was a J-shaped association between LCAT DNA methylation and AMD risk (Pnon-linearity = 0.03). Higher concentrations of plasma retinol and β-cryptoxanthin were significantly associated with decreased levels of LCAT DNA methylation, with the multivariate-adjusted β coefficient being -0.05 (95% CI: -0.08, -0.01) and -0.25 (95% CI: -0.42, -0.08), respectively. In joint analyses of LCAT DNA methylation and plasma vitamin and carotenoid concentrations, the inverse association between increased LCAT DNA methylation and AMD risk was more pronounced among participants who had a lower concentration of plasma retinol and β-cryptoxanthin. These findings highlight the importance of comprehensively assessing LCAT DNA methylation and increasing vitamin and carotenoid status for the prevention of AMD.
Collapse
Affiliation(s)
- Zhaofang Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yajing Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yijing Hou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yahui Fan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Baoyu Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hailu Zhu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yaning Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Min Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tianyou Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China
| | - Tong Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an 710061, China
| |
Collapse
|
8
|
Feng Y, Chen X, Pan Y, Yang Y. The associations of dietary folate and serum folate with lipid profiles: findings from the national health and nutrition examination survey 2011-2016. Lipids Health Dis 2023; 22:30. [PMID: 36859278 PMCID: PMC9979480 DOI: 10.1186/s12944-023-01793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Folate is considered to be related to lipid metabolism. With the increasing numbers of folic acid fortification nations, the associations of dietary folate and serum folate with lipid profiles deserve more attention and are worth further study. METHODS US adults aged ≥ 20 years from the National Health and Nutrition Examination Survey (NHANES) were evaluated. Participants taking folic acid supplements were excluded. The multivariate linear regression model and smooth curve fitting were applied to assess the associations. The segmented regression model was employed to examine the threshold effect of nonlinear relationships. RESULTS Our cross-sectional study included 3706 participants in total. There was a negative relationship between serum folate (log transformed) and triglycerides (β = -0.223, 95% CI: -0.337, -0.110) and low-density lipoprotein cholesterol (LDL-C) (β = -0.152, 95% CI: -0.296, -0.007) and a positive relationship between serum folate (log transformed) and high-density lipoprotein cholesterol (HDL-C) (β = 0.090, 95% CI: 0.033,0.146). There was a negative association between dietary folate (log transformed) and total cholesterol (TC) (β = -0.299, 95% CI: -0.465, -0.134) and LDL-C (β = -0.266, 95% CI: -0.409, -0.123). A nonlinear relationship was found between dietary folate (log transformed) and HDL-C. Threshold effect analysis showed that the inflection point was 377.57 ug. Within the inflection point, the β-coefficient of HDL-C was 0.105 (95% CI: 0.018, 0.192); beyond the inflection point, there was no relationship (β = -0.067, 95% CI: -0.162, 0.028). CONCLUSIONS Optimal dietary folate and high serum folate were associated with favorable lipid profiles. Dietary folate, in the recommended 300-400 ug/d, had a beneficial effect on improving lipid profiles.
Collapse
Affiliation(s)
- Yunfu Feng
- Department of General Practice, First Peopleple’s Hospital of Kunshan, Kunshan, 215300 China
| | - Xiaohua Chen
- Department of General Practice, First Peopleple’s Hospital of Kunshan, Kunshan, 215300 China
| | - Ying Pan
- Department of General Practice, First Peopleple’s Hospital of Kunshan, Kunshan, 215300 China
| | - Yanting Yang
- Department of Gastroenterology, Third Peopleple's Hospital of Kunshan, Kunshan, 215300, China.
| |
Collapse
|
9
|
Gevaert AB, Wood N, Boen JRA, Davos CH, Hansen D, Hanssen H, Krenning G, Moholdt T, Osto E, Paneni F, Pedretti RFE, Plösch T, Simonenko M, Bowen TS. Epigenetics in the primary and secondary prevention of cardiovascular disease: influence of exercise and nutrition. Eur J Prev Cardiol 2022; 29:2183-2199. [PMID: 35989414 DOI: 10.1093/eurjpc/zwac179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 01/11/2023]
Abstract
Increasing evidence links changes in epigenetic systems, such as DNA methylation, histone modification, and non-coding RNA expression, to the occurrence of cardiovascular disease (CVD). These epigenetic modifications can change genetic function under influence of exogenous stimuli and can be transferred to next generations, providing a potential mechanism for inheritance of behavioural intervention effects. The benefits of exercise and nutritional interventions in the primary and secondary prevention of CVD are well established, but the mechanisms are not completely understood. In this review, we describe the acute and chronic epigenetic effects of physical activity and dietary changes. We propose exercise and nutrition as potential triggers of epigenetic signals, promoting the reshaping of transcriptional programmes with effects on CVD phenotypes. Finally, we highlight recent developments in epigenetic therapeutics with implications for primary and secondary CVD prevention.
Collapse
Affiliation(s)
- Andreas B Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Jente R A Boen
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Campus Drie Eiken D.T.228, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Constantinos H Davos
- Cardiovascular Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Dominique Hansen
- Department of Cardiology, Heart Center Hasselt, Jessa Hospital, Hasselt, Belgium.,BIOMED-REVAL-Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Henner Hanssen
- Department of Sport, Exercise and Health, Sports and Exercise Medicine, Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian Institute of Science and Technology (NTNU), Trondheim, Norway.,Department of Women's Health, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Elena Osto
- Institute of Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland.,University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Laboratory of Translational Nutrition Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Roberto F E Pedretti
- Cardiovascular Department, IRCCS MultiMedica, Care and Research Institute, Milan, Italy
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Maria Simonenko
- Physiology Research and Blood Circulation Department, Cardiopulmonary Exercise Test SRL, Federal State Budgetary Institution, 'V.A. Almazov National Medical Research Centre' of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russian Federation
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
Han X, Liu T, Zhai J, Liu C, Wang W, Nie C, Wang Q, Zhu X, Zhou H, Tian W. Association between EPHA5 methylation status in peripheral blood leukocytes and the risk and prognosis of gastric cancer. PeerJ 2022; 10:e13774. [PMID: 36164608 PMCID: PMC9508887 DOI: 10.7717/peerj.13774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023] Open
Abstract
Purpose Altered DNA methylation, genetic alterations, and environmental factors are involved in tumorigenesis. As a tumor suppressor gene, abnormal EPHA5 methylation was found in gastric cancer (GC) tissues and was linked to the initiation, progression and prognosis of GC. In this study, the EPHA5 methylation level in peripheral blood leukocytes (PBLs) was detected to explore its relationship with GC risk and prognosis. Methods A total of 366 GC cases and 374 controls were selected as the subjects of this study to collect their environmental factors, and the EPHA5 methylation status was detected through the methylation-sensitive high-resolution melting method. Logistic regression analysis was utilized to evaluate the associations among EPHA5 methylation, environmental factors and GC risk. Meanwhile, the propensity score (PS) was used to adjust the imbalance of some independent variables. Results After PS adjustment, EPHA5 Pm (positive methylation) was more likely to increase the GC risk than EPHA5 Nm (negative methylation) (ORb = 1.827, 95% CI [1.202-2.777], P = 0.005). EPHA5 Pm had a more significant association with GC risk in the elderly (ORa = 2.785, 95% CI [1.563-4.961], P = 0.001) and H. pylori-negative groups (ORa = 2.758, 95% CI [1.369-5.555], P = 0.005). Moreover, the combined effects of EPHA5 Pm and H. pylori infection (ORc a = 3.543, 95% CI [2.233-5.621], P < 0.001), consumption of alcohol (ORc a = 2.893, 95% CI [1.844-4.539], P < 0.001), and salty food intake (ORc a = 4.018, 95% CI [2.538-6.362], P < 0.001) on increasing the GC risk were observed. In addition, no convincing association was found between EPHA5 Pm and the GC prognosis. Conclusions EPHA5 methylation in PBLs and its combined effects with environmental risk factors are related to the GC risk.
Collapse
|
11
|
Mizuno G, Yamada H, Munetsuna E, Yamazaki M, Ando Y, Fujii R, Tsuboi Y, Teshigawara A, Kageyama I, Osakabe K, Sugimoto K, Ishikawa H, Ichino N, Ohta Y, Ohashi K, Hashimoto S, Suzuki K. Association between the Extent of Peripheral Blood DNA Methylation of HIF3A and Accumulation of Adiposity in community-dwelling Women: The Yakumo Study. Endocr Res 2022; 47:130-137. [PMID: 36104828 DOI: 10.1080/07435800.2022.2121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION DNA methylation in the CpG sites of intron 1 of HIF3A is associated with body mass index (BMI). This cross-sectional study investigated correlations between DNA methylation of HIF3A and BMI or adiposity parameters in the Japanese population. METHOD DNA methylation of HIF3A was quantified via pyrosequencing. RESULT DNA methylation of HIF3A differed only in women; DNA methylation level at cg27146050 was associated with visceral adipose tissue thickness and correlated with BMI and percent (%) body fat after excluding smokers. CONCLUSION Peripheral blood DNA methylation at the CpG site (cg27146050) of HIF3A correlated with VAT thickness in Japanese women.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Osakabe
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keiko Sugimoto
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Naohiro Ichino
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiji Ohta
- Department of Chemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
12
|
Fujii R, Sato S, Tsuboi Y, Cardenas A, Suzuki K. DNA methylation as a mediator of associations between the environment and chronic diseases: A scoping review on application of mediation analysis. Epigenetics 2022; 17:759-785. [PMID: 34384035 PMCID: PMC9336467 DOI: 10.1080/15592294.2021.1959736] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/03/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
DNA methylation (DNAm) is one of the most studied epigenetic modifications. DNAm has emerged as a key biological mechanism and biomarkers to test associations between environmental exposure and outcomes in epidemiological studies. Although previous studies have focused on associations between DNAm and either exposure/outcomes, it is useful to test for mediation of the association between exposure and outcome by DNAm. The purpose of this scoping review is to introduce the methodological essence of statistical mediation analysis and to examine emerging epidemiological research applying mediation analyses. We conducted this scoping review for published peer-reviewed journals on this topic using online databases (PubMed, Scopus, Cochrane, and CINAHL) ending in December 2020. We extracted a total of 219 articles by initial screening. After reviewing titles, abstracts, and full texts, a total of 69 articles were eligible for this review. The breakdown of studies assigned to each category was 13 for smoking (18.8%), 8 for dietary intake and famine (11.6%), 6 for other lifestyle factors (8.7%), 8 for clinical endpoints (11.6%), 22 for environmental chemical exposures (31.9%), 2 for socioeconomic status (SES) (2.9%), and 10 for genetic factors and race (14.5%). In this review, we provide an exposure-wide summary for the mediation analysis using DNAm levels. However, we found heterogenous methods and interpretations in mediation analysis with typical issues such as different cell compositions and tissue-specificity. Further accumulation of evidence with diverse exposures, populations and with rigorous methodology will be expected to provide further insight in the role of DNAm in disease susceptibility.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, California, US
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
13
|
Mizuno G, Yamada H, Munetsuna E, Ando Y, Teshigawara A, Ito M, Kageyama I, Nouchi Y, Wakasugi T, Sakakibara T, Yamazaki M, Fujii R, Ishikawa H, Suzuki K, Hashimoto S, Ohashi K. High-fructose corn syrup intake has stronger effects on the transcription level of hepatic lipid metabolism-related genes, via DNA methylation modification, in childhood and adolescence than in other generations. Life Sci 2022; 301:120638. [PMID: 35588866 DOI: 10.1016/j.lfs.2022.120638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS This study aimed to analyze differences in sensitivity to hepatic lipid metabolism at different ages, through DNA methylation, using an experimental rat model of high-fructose corn syrup (HFCS) intake. MAIN METHODS The experimental was divided into three periods: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (C: control group) or 20% HFCS solution (H: HFCS-fed group). We measured hepatic mRNA levels of peroxisome proliferator-activated receptor alpha (Ppara), carnitine palmitoyltransferase 1A (Cpt1a), fatty acid synthase (Fasn), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (Pgc1a) using real-time PCR. Additionally, we examined the DNA methylation levels of Ppara, Cpt1a, Fasn, and Pgc1a using pyrosequencing. KEY FINDINGS Gene expressions of Cpt1a and Ppara in childhood and adolescence were significantly lower in the H group than in the C group. Conversely, Fasn and Pgc1a expressions were significantly higher in the H group than in the C group. Additionally, there was hypermethylation of Cpt1a and Ppara and hypomethylation of Fasn and Pgc1a in the H groups of childhood and adolescence. However, only one gene expression and methylation change was observed in young adulthood and adulthood groups. We found that HFCS intake in rats had stronger lipid metabolic effects in childhood and adolescence than in other generations, and that its mechanism involved epigenetic regulation. SIGNIFICANCE We anticipate that these research findings will be a breakthrough for elucidating the varying effects of growth stage in the future.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Manaka Ito
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure Town Takamatsu, Kagawa 761-0123, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
14
|
Maeda K, Yamada H, Munetsuna E, Fujii R, Yamazaki M, Ando Y, Mizuno G, Ishikawa H, Ohashi K, Tsuboi Y, Hattori Y, Ishihara Y, Hashimoto S, Hamajima N, Suzuki K. Association of drinking behaviors with TXNIP DNA methylation levels in leukocytes among the general Japanese population. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:302-310. [PMID: 35416731 DOI: 10.1080/00952990.2022.2037137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Background: Thioredoxin-interacting protein (TXNIP) controls the cellular redox balance by binding to and inhibiting the expression and function of thioredoxin. DNA methylation of the TXNIP gene is involved in the regulation of TXNIP mRNA expression. Changes in TXNIP DNA methylation levels are associated with the development of various diseases such as type 2 diabetes mellitus (T2DM). However, few studies have focused on the influence of lifestyle factors such as alcohol intake on TXNIP DNA methylation.Objectives: This research examines the association of drinking behaviors with TXNIP DNA methylation levels in the general Japanese population.Methods: We conducted a cross-sectional study of 404 subjects (176 males and 228 females) who were divided into non-, moderate and heavy drinkers based on self-reported drinking behaviors. TXNIP DNA methylation levels in leukocytes were determined using a pyrosequencing assay.Results: The mean TXNIP DNA methylation level in heavy drinkers (74.2%) was significantly lower than that in non- and moderate drinkers (non: 77.7%, p < .001; moderate: 76.6%, p = .011). Multivariable linear regression analysis showed that log-transformed values of daily (b = -1.34; p < .001) and cumulative (b = -1.06; p = .001) alcohol consumption were associated with decreased TXNIP DNA methylation levels.Conclusion: TXNIP DNA methylation levels in heavy drinkers was lower than in non- and- moderate drinkers. Decreased TXNIP DNA methylation level increases the expression of TXNIP and elevates the risk of developing of diseases such as T2DM. Therefore, decreasing alcohol use in heavy drinkers may lessen the likelihood of some alcohol-related illnesses moderated through TXNIP DNA methylation.
Collapse
Affiliation(s)
- Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Genki Mizuno
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuji Hattori
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yuya Ishihara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| |
Collapse
|
15
|
Yamazaki M, Yamada H, Munetsuna E, Maeda K, Ando Y, Mizuno G, Fujii R, Tsuboi Y, Ohashi K, Ishikawa H, Hashimoto S, Hamajima N, Suzuki K. DNA methylation level of the gene encoding thioredoxin-interacting protein in peripheral blood cells is associated with metabolic syndrome in the Japanese general population. Endocr J 2022; 69:319-326. [PMID: 34645728 DOI: 10.1507/endocrj.ej21-0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Metabolic syndrome (MetS) is cluster of metabolic diseases, including abdominal obesity, hyperglycemia, high blood pressure, and dyslipidemia, that directly escalate the risk of type 2 diabetes, heart disease, and stroke. Thioredoxin-interacting protein (TXNIP) is a binding protein for thioredoxin, a molecule that is a key inhibitor of cellular oxidation, and thus regulates the cellular redox state. Epigenetic alteration of the TXNIP-encoding locus has been associated with components of MetS. In the present study, we sought to determine whether the level of TXNIP methylation in blood is associated with MetS in the general Japanese population. DNA was extracted from the peripheral blood cells of 37 subjects with and 392 subjects without MetS. The level of TXNIP methylation at cg19693031 was assessed by the bisulfite-pyrosequencing method. We observed that TXNIP methylation levels were lower in MetS subjects (median 74.9%, range 71.7-78.4%) than in non-MetS subjects (median 77.7%, range 74.4-80.5%; p = 0.0024). Calculation of the confounding factor-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for hypomethylation revealed that subjects with MetS exhibited significantly higher ORs for hypomethylation than did those without MetS (OR, 2.92; 95% CI, 1.33-6.62; p = 0.009). Our findings indicated that lower levels of TXNIP methylation are associated with MetS in the general Japanese population. Altered levels of DNA methylation in TXNIP at cg19693031 might play an important role in the pathogenesis of MetS.
Collapse
Affiliation(s)
- Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu 761-0123, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Keisuke Maeda
- Department of Clinical Physiology, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Genki Mizuno
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake 470-1192, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
| |
Collapse
|
16
|
Xiang Y, Liang B, Zhang X, Qiu X, Deng Q, Yu L, Yu H, Lu Z, Zheng F. Atheroprotective mechanism by which folic acid regulates monocyte subsets and function through DNA methylation. Clin Epigenetics 2022; 14:32. [PMID: 35227297 PMCID: PMC8887029 DOI: 10.1186/s13148-022-01248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Background Recent studies have suggested that folic acid can restore abnormal DNA methylation and monocyte subset shifts caused by hyperhomocysteinemia (HHcy) and hyperlipidemia (HL). However, the exact mechanism of action is still not fully understood. In this study, we further investigated the reversal effect and underlying mechanism of folic acid on the shift in monocyte subsets induced by aberrant lipids and Hcy metabolism via DNA methylation in vitro and in vivo. Results Our results showed that intermediate monocytes were significantly increased but had the lowest global 5-methylcytosine (5-mC) levels in coronary artery disease (CAD) patients, which might lead to a decrease in the global 5-mC levels of peripheral blood leukocytes (PBLs). We also discovered that ARID5B might mediate the increased proportion of intermediate monocytes, as this factor was related to the proportion of monocyte subsets and the expression of CCR2. The expression of ARID5B was inversely associated with the hypermethylated cg25953130 CpG site, which was induced by HL and HHcy. ARID5B could also regulate monocyte CCR2, MCP-1, and TNF-α expression, adhesion and migration, macrophage polarization, and monocyte/macrophage apoptosis, which might explain the regulatory effect of ARID5B on monocyte subset shifting. Folic acid reversed HL- and HHcy-mediated aberrant global and cg25953130 DNA methylation, reduced the proportion of intermediate monocytes, and inhibited the formation of atherosclerotic plaques. Conclusion Folic acid plays a protective role against atherosclerosis through the regulation of DNA methylation, ARID5B expression, and monocyte subsets. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01248-0.
Collapse
Affiliation(s)
- Yang Xiang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Bin Liang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xiaokang Zhang
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Xueping Qiu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Yu
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Hong Yu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, Hubei, China
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis, and Department of Clinical Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, China.
| |
Collapse
|
17
|
Miroshnikova VV, Panteleeva AA, Pobozheva IA, Razgildina ND, Polyakova EA, Markov AV, Belyaeva OD, Berkovich OA, Baranova EI, Nazarenko MS, Puzyrev VP, Pchelina SN. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc Disord 2021; 21:566. [PMID: 34837967 PMCID: PMC8627066 DOI: 10.1186/s12872-021-02379-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the development of coronary artery disease (CAD). ABCA1 and ABCG1 transporters regulate cell cholesterol content and reverse cholesterol transport. We aimed to determine whether DNA methylation and mRNA levels of the ABCA1 and ABCG1 genes in EAT and subcutaneous adipose tissue (SAT) were associated with CAD. METHODS Paired EAT and SAT samples were collected from 82 patients undergoing elective cardiac surgery either for coronary artery bypass grafting (CAD group, N = 66) or valve surgery (NCAD group, N = 16). ABCA1 and ABCG1 mRNA levels in EAT and SAT samples were analyzed using real time polymerase chain reaction, ABCA1 protein levels in EAT samples were assessed by western blotting. ABCA1 and ABCG1 DNA methylation analysis was performed in 24 samples from the CAD group and 9 samples from the NCAD group via pyrosequencing. RESULTS DNA methylation levels in the ABCA1 promoter and ABCG1 cg27243685 and cg06500161 CpG sites were higher in EAT samples from patients with CAD compared with NCAD (21.92% vs 10.81%, p = 0.003; 71.51% vs 68.42%, p = 0.024; 46.11% vs 37.79%, p = 0.016, respectively). In patients with CAD, ABCA1 and ABCG1 DNA methylation levels were higher in EAT than in SAT samples (p < 0.05). ABCA1 mRNA levels in EAT samples were reduced in the subgroup of patients with CAD and concomitant carotid artery disease or peripheral artery disease compared with the NCAD group (p = 0.024). ABCA1 protein levels in EAT samples tended to be lower in CAD patients than in the NCAD group (p = 0.053). DNA methylation levels at the ABCG1 cg27243685 site positively correlated with plasma triglyceride concentration (r = 0.510, p = 0.008), body mass index (r = 0.556, p = 0.013) and waist-to-hip ratio (r = 0.504, p = 0.012) in SAT samples. CONCLUSION CAD is associated with ABCA1 and ABCG1 DNA hypermethylation in EAT. CAD with concomitant carotid artery disease or peripheral artery disease is accompanied by decreased ABCA1 gene expression in EAT. DNA methylation levels at the ABCG1 cg27243685 locus in SAT are associated with hypertriglyceridemia and obesity.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation.
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation.
| | - Alexandra A Panteleeva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Irina A Pobozheva
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Natalia D Razgildina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
| | - Ekaterina A Polyakova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Anton V Markov
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Olga D Belyaeva
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Olga A Berkovich
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Elena I Baranova
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
| | - Maria S Nazarenko
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Valery P Puzyrev
- Laboratory of Population Genetics, Research Institute of Medical Genetics, Tomsk, Russian Federation
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute Named By B.P. Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
- Pavlov First Saint Petersburg State Medical University, St.-Petersburg, Russian Federation
- National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
18
|
Jones AC, Irvin MR, Claas SA, Arnett DK. Lipid Phenotypes and DNA Methylation: a Review of the Literature. Curr Atheroscler Rep 2021; 23:71. [PMID: 34468868 DOI: 10.1007/s11883-021-00965-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Epigenetic modifications via DNA methylation have previously been linked to blood lipid levels, dyslipidemias, and atherosclerosis. The purpose of this review is to discuss current literature on the role of DNA methylation on lipid traits and their associated pathologies. RECENT FINDINGS Candidate gene and epigenome-wide approaches have identified differential methylation of genes associated with lipid traits (particularly CPT1A, ABCG1, SREBF1), and novel approaches are being implemented to further characterize these relationships. Moreover, studies on environmental factors have shown that methylation variations at lipid-related genes are associated with diet and pollution exposure. Further investigation is needed to elucidate the directionality of the associations between the environment, lipid traits, and epigenome. Future studies should also seek to increase the diversity of cohorts, as European and Asian ancestry populations are the predominant study populations in the current literature.
Collapse
Affiliation(s)
- Alana C Jones
- Medical Scientist Training Program, University of Alabama-Birmingham, Birmingham, AL, USA.,Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama-Birmingham, Birmingham, AL, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY, 40508, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY, 40508, USA.
| |
Collapse
|
19
|
Lin IH, Duong TV, Wong TC, Nien SW, Tseng IH, Chiang YJ, Wang HH, Yang SH. Dietary Nutrients and Cardiovascular Risk Factors among Renal Transplant Recipients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8448. [PMID: 34444197 PMCID: PMC8391485 DOI: 10.3390/ijerph18168448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in post-renal transplant recipients (RTRs). Adequate nutrient intake is a protective factor for CVD. We examined the associations of macronutrients and micronutrients with traditional and nontraditional CVD risk factors. Conducted from September 2016 to June 2018, this cross-sectional study included 106 RTRs aged ≥18 years with a functioning allograft. Dietary intake data from 3-day dietary records were collected. Nutrient intake adequacy was defined using various instruments, including the National Kidney Foundation Kidney Disease Outcomes Quality Initiative (K/DOQI) guidelines. CVD risk factors were defined according to the K/DOQI guidelines. Bivariate and multivariate logistic regression models were used to analyze the associations. CVD risk was present in all patients; the lowest proportions of adequate intake were 2.8% for dietary fiber and 0.9% for calcium. Adequate nutrient intake was associated with a lower likelihood of the occurrence of traditional CVD risk factors (specifically, 1.9-31.3% for hyperlipidemia and 94.6% for diabetes mellitus). It was also associated with a lower likelihood of the occurrence of nontraditional CVD risk by 0.8% for hypophosphatemia and 34% for hyperuricemia. Adherence to dietary guidelines should be promoted among RTRs to decrease CVD risk.
Collapse
Affiliation(s)
- I-Hsin Lin
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (I.-H.L.); (S.-W.N.); (I.-H.T.)
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Tuyen Van Duong
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Te-Chih Wong
- Department of Nutrition and Health Sciences, Chinese Culture University, Taipei 11114, Taiwan;
| | - Shih-Wei Nien
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (I.-H.L.); (S.-W.N.); (I.-H.T.)
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - I-Hsin Tseng
- Department of Medical Nutrition Therapy, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (I.-H.L.); (S.-W.N.); (I.-H.T.)
| | - Yang-Jen Chiang
- Department of Urology, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (Y.-J.C.); (H.-H.W.)
| | - Hsu-Han Wang
- Department of Urology, Linkou Chang Gung Memorial Hospital, Linkou 33305, Taiwan; (Y.-J.C.); (H.-H.W.)
| | - Shwu-Huey Yang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| |
Collapse
|
20
|
Li Y, Zhang Q, Di Zhang, Cai Q, Fan J, Venners SA, Jiang S, Li J, Xu X. The effect of ABCA1 gene DNA methylation on blood pressure levels in a Chinese hyperlipidemic population. J Hum Hypertens 2021; 35:1139-1148. [PMID: 33462393 DOI: 10.1038/s41371-020-00479-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/08/2020] [Accepted: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Hypertension is an important public health challenge worldwide. Epigenetic studies are providing novel insight into the underlying mechanisms of hypertension. We investigated the effect of DNA methylation in ATP-binding cassette transporter 1 (ABCA1) gene on blood pressure levels in a Chinese hyperlipidemic population. We randomly selected 211 individuals with hyperlipidemia who had not received any lipid-lowering treatment at baseline from our previous statin pharmacogenetics study (n = 734). DNA methylation loci at the ABCA1 gene were measured by MethylTarget, a next generation bisulfite sequencing-based multiple targeted cytosine-guanine dinucleotide methylation analysis method. Mean DNA methylation level was used in statistical analysis. In all subjects, higher mean ABCA1_B methylation was positively associated with systolic blood pressure (SBP) (β = 8.27, P = 0.008; β = 8.78, P = 0.005) and explained 2.7% and 5.8% of SBP variation before and after adjustment for lipids, respectively. We further divided all patients into three groups based on the tertile of body mass index (BMI) distribution. In the middle tertile of BMI, there was a significantly positive relationship between mean ABCA1_A methylation and SBP (β = 0.89, P = 0.003) and DBP (β = 0.32, P = 0.030). Mean ABCA1_A methylation explained 11.0% of SBP variation and 5.3% of DBP variation, respectively. Furthermore, mean ABCA1_A methylation (β = 0.79; P = 0.007) together with age and gender explained up to 24.1% of SBP variation. Our study provides new evidence that the ABCA1 DNA methylation profile is associated with blood pressure levels, which highlights that DNA methylation might be a significant molecular mechanism involved in the pathophysiological process of hypertension.
Collapse
Affiliation(s)
- Yajie Li
- School of Life Sciences, Anhui University, Hefei, China
| | - Qian Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China. .,Institute of Biomedicine, Anhui Medical University, Hefei, China.
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China.
| | - Xiping Xu
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Ong LTC, Booth DR, Parnell GP. Vitamin D and its Effects on DNA Methylation in Development, Aging, and Disease. Mol Nutr Food Res 2020; 64:e2000437. [PMID: 33079481 DOI: 10.1002/mnfr.202000437] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Indexed: 12/18/2022]
Abstract
DNA methylation is increasingly being recognized as a mechanism through which environmental exposures confer disease risk. Several studies have examined the association between vitamin D and changes in DNA methylation in areas as diverse as human and animal development, genomic stability, chronic disease risk, and malignancy. In many cases, they have demonstrated clear associations between vitamin D and DNA methylation in candidate disease pathways. Despite this, a clear understanding of the mechanisms by which these factors interact is unclear. This paper reviews the current understanding of the effects of vitamin D on DNA methylation. In light of current knowledge in the field, the potential mechanisms mediating vitamin D effects on DNA methylation are discussed, as are the limiting factors and future avenues for research into this exciting area.
Collapse
Affiliation(s)
- Lawrence T C Ong
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
- Department of Immunology, Westmead Hospital, Cnr Darcy and Hawkesbury Rds, Westmead, New South Wales, 2145, Australia
| | - David R Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales, 2145, Australia
| |
Collapse
|
22
|
Fujii R, Yamada H, Munetsuna E, Yamazaki M, Mizuno G, Ando Y, Maeda K, Tsuboi Y, Ohashi K, Ishikawa H, Hagiwara C, Wakai K, Hashimoto S, Hamajima N, Suzuki K. Dietary fish and ω-3 polyunsaturated fatty acids are associated with leukocyte ABCA1 DNA methylation levels. Nutrition 2020; 81:110951. [PMID: 33045487 DOI: 10.1016/j.nut.2020.110951] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES A diet rich in fish and ω-3 polyunsaturated fatty acids (PUFAs) has been thought to reduce the risk for cardiovascular disease (CVD). The beneficial effects of fish oil and ω-3 PUFA on CVD can be mediated by epigenetic status of the genes associated with lipid metabolism and inflammation. The aim of this study was to investigate whether dietary fish and fatty acid (FA) intakes are associated with leukocyte ATP-binding cassette transporter A1 (ABCA1) DNA methylation levels in a Japanese population. METHODS This cross-sectional study included 298 adults (137 men and 161 women) without clinical history of CVD or cancer. The pyrosequencing method was used to measure leukocyte ABCA1 DNA methylation levels. Dietary fish and FA intakes were assessed based on the validated food frequency questionnaire. RESULTS Mean ABCA1 DNA methylation levels were significantly lower in the highest fish intake groups (≥5-6/wk) compared with the lowest intake group (≤1-2/wk; P = 0.004). In multivariable linear regression analyses, higher dietary intake of ω-3 PUFAs and ω-3 highly unsaturated fatty acids was significantly associated with decreased levels of ABCA1 DNA methylation (P = 0.001 and 0.005); whereas no significant associations were seen between intake of dietary saturated fatty acid, monounsaturated fatty acid, and ω-6 PUFAs and ABCA1 DNA methylation. CONCLUSION Higher dietary fish and ω-3 PUFA intake were associated with lower ABCA1 DNA levels in a Japanese population. The present results may bring potential insights on biological mechanisms underlying the protective effects of dietary fish and ω-3 PUFA intakes on CVD.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Japan
| | - Genki Mizuno
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshitaka Ando
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Keisuke Maeda
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yoshiki Tsuboi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Koji Ohashi
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Hiroaki Ishikawa
- Department of Biomedical and Analytical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Chiharu Hagiwara
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, Toyoake, Japan
| | - Nobuyuki Hamajima
- Department of Health Care Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan.
| |
Collapse
|
23
|
Heydari H, Abroudi M, Adli A, Pirooznia N, Najafi ML, Pajohanfar NS, Dadvand P, Miri M. Maternal exposure to ambient air pollution during pregnancy and lipid profile in umbilical cord blood samples; a cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114195. [PMID: 32114123 DOI: 10.1016/j.envpol.2020.114195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/25/2023]
Abstract
Adverse health effects of exposure to air pollution have been investigated in many previous studies. However, there is no study available on the association between maternal exposure to air pollution during pregnancy and cord blood lipid profile. This study, based on 150 mother-newborn pairs residing in Sabzevar, Iran (2018), evaluated the association of exposure to ambient air pollution as well as traffic indicators (total street length in different buffers around residential address and distance to major roads) during entire pregnancy with lipid levels cord blood lipid profile. Concentrations of PM10, PM2.5, and PM1 at maternal residential address were estimated using land use regression (LUR) models. We measured triglyceride (TAG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC) levels and TC/HDL-C and TAG/HDL-C ratio in the cord blood samples to characterize their lipid profile. Multiple linear regression models were developed to estimate the association of exposure to air pollution and traffic indicators with cord blood lipid profile controlled for relevant covariates. Higher concentrations of PM2.5 and PM10 were associated with higher levels of TAG, TC, HDL-C, TC/HDL-C, and TAG/HDL-C in cord blood samples. Moreover, higher concentration of PM1 was associated with higher levels of TAG, TC and LDL-C. There was also a positive association between total street length in 100 m buffer around home and serum levels of TC, TAG, LDL-C and TC/HDL ratio (β = 3.73, 95% confidence intervals (CI): 1.76, 5.71; β = 2.75, 95% CI: 0.97, 4.53; β = 1.87, 95% CI: 0.64, 3.09; β = 0.06, 95% CI: 0.01, 0.11, respectively). However, the associations for total street length in larger buffers and distance to major roads were not statistically significant. Our findings support a relationship between exposure to air pollution during pregnancy and increase in cord blood lipid levels.
Collapse
Affiliation(s)
- Hafez Heydari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nazanin Pirooznia
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mohammad Miri
- Non-communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
24
|
Schiano C, Benincasa G, Franzese M, Della Mura N, Pane K, Salvatore M, Napoli C. Epigenetic-sensitive pathways in personalized therapy of major cardiovascular diseases. Pharmacol Ther 2020; 210:107514. [PMID: 32105674 DOI: 10.1016/j.pharmthera.2020.107514] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex pathobiology underlying cardiovascular diseases (CVDs) has yet to be explained. Aberrant epigenetic changes may result from alterations in enzymatic activities, which are responsible for putting in and/or out the covalent groups, altering the epigenome and then modulating gene expression. The identification of novel individual epigenetic-sensitive trajectories at single cell level might provide additional opportunities to establish predictive, diagnostic and prognostic biomarkers as well as drug targets in CVDs. To date, most of studies investigated DNA methylation mechanism and miRNA regulation as epigenetics marks. During atherogenesis, big epigenetic changes in DNA methylation and different ncRNAs, such as miR-93, miR-340, miR-433, miR-765, CHROME, were identified into endothelial cells, smooth muscle cells, and macrophages. During man development, lipid metabolism, inflammation and homocysteine homeostasis, alter vascular transcriptional mechanism of fundamental genes such as ABCA1, SREBP2, NOS, HIF1. At histone level, increased HDAC9 was associated with matrix metalloproteinase 1 (MMP1) and MMP2 expression in pro-inflammatory macrophages of human carotid plaque other than to have a positive effect on toll like receptor signaling and innate immunity. HDAC9 deficiency promoted inflammation resolution and reverse cholesterol transport, which might block atherosclerosis progression and promote lesion regression. Here, we describe main human epigenetic mechanisms involved in atherosclerosis, coronary heart disease, ischemic stroke, peripheral artery disease; cardiomyopathy and heart failure. Different epigenetics mechanisms are activated, such as regulation by circular RNAs, as MICRA, and epitranscriptomics at RNA level. Moreover, in order to open new frontiers for precision medicine and personalized therapy, we offer a panoramic view on the most innovative bioinformatic tools designed to identify putative genes and molecular networks underlying CVDs in man.
Collapse
Affiliation(s)
- Concetta Schiano
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Giuditta Benincasa
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | | | | | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|