1
|
Naseripour M, Mirshahi R, Kasraei H, Sedaghat A, Azimi F. Spotlight on Targeted Chemotherapy in Retinoblastoma: Safety, Efficacy, and Patient Outcomes. Onco Targets Ther 2022; 15:1545-1561. [PMID: 36579184 PMCID: PMC9792108 DOI: 10.2147/ott.s370878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
As the most common primary intraocular malignancy of childhood, retinoblastoma (RB) has had a complex journey in its management, following a course from enucleation as the first life-saving treatment to numerous globe-salvaging therapies during the last century. Currently, this potentially lethal disease has achieved high survival rates owing to multidisciplinary management and the introduction of neoadjuvant and multimodal chemotherapy. Therefore, the goal of treatment is shifting toward conserving the globe and vision as much as possible. Up until recently, many advanced cases of RB were enucleated primarily; however, targeted chemotherapy via the ophthalmic artery and management of intraocular seeding by local administration of chemotherapeutic agents have revolutionized the globe-conserving therapies. The added benefit of avoiding systemic complications of cytotoxic drugs resulted in these methods gaining popularity, and they are becoming a main part of care in many referral centers. Initially, there were some safety concerns regarding these approaches; however, increasing experience has shown that these modalities are relatively safe procedures and many complications can be averted by changing the choice of the drug and using some prophylactic measures. It is hoped that, in the near future, with advances in early diagnosis and patient-targeted molecular therapies, as well as gene-editing techniques, the patient's vision can be saved even in advanced RB.
Collapse
Affiliation(s)
- Masood Naseripour
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran,Correspondence: Masood Naseripour, Department of Ophthalmology, Iran University of Medical Sciences (IUMS), Rassoul Akram Hospital, Niayesh Ave, 14455-364, Tehran, Iran, Fax +98 21 66509162, Email
| | - Reza Mirshahi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran,Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hengameh Kasraei
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ahad Sedaghat
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, The Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gao W, Chen Y, Yang J, Zhuo C, Huang S, Zhang H, Shi Y. Clinical Perspectives on Liquid Biopsy in Metastatic Colorectal Cancer. Front Genet 2021; 12:634642. [PMID: 33584829 PMCID: PMC7876389 DOI: 10.3389/fgene.2021.634642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy, which generally refers to the analysis of biological components such as circulating nuclear acids and circulating tumor cells in body fluids, particularly in peripheral blood, has shown good capacity to overcome several limitations faced by conventional tissue biopsies. Emerging evidence in recent decades has confirmed the promising role of liquid biopsy in the clinical management of various cancers, including colorectal cancer, which is one of the most prevalent cancers and the second leading cause of cancer-related deaths worldwide. Despite the challenges and poor clinical outcomes, patients with metastatic colorectal cancer can expect potential clinical benefits with liquid biopsy. Therefore, in this review, we focus on the clinical prospects of liquid biopsy in metastatic colorectal cancer, specifically with regard to the recently discovered various biomarkers identified on liquid biopsy. These biomarkers have been shown to be potentially useful in multiple aspects of metastatic colorectal cancer, such as auxiliary diagnosis of metastasis, prognosis prediction, and monitoring of therapy response.
Collapse
Affiliation(s)
- Wei Gao
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yigui Chen
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianwei Yang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Changhua Zhuo
- Department of Gastrointestinal Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Sha Huang
- Department of Internal Medicine-Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Hepatopancreatobiliary Surgical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yi Shi
- Department of Molecular Pathology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
3
|
Liu X, Zhang X, Chen J, Ye B, Ren S, Lin Y, Sun XF, Zhang H, Shen B. CRC-EBD: Epigenetic Biomarker Database for Colorectal Cancer. Front Genet 2020; 11:907. [PMID: 33133126 PMCID: PMC7573234 DOI: 10.3389/fgene.2020.00907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xingyun Liu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China.,Center for Systems Biology, University, Suzhou, China
| | - Xueli Zhang
- Center for Systems Biology, University, Suzhou, China.,School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden.,Department of Ophthalmology, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Jing Chen
- School of Science, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Benchen Ye
- Center for Systems Biology, University, Suzhou, China
| | - Shumin Ren
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Lin
- Center for Systems Biology, University, Suzhou, China
| | - Xiao-Feng Sun
- Department of Oncology and Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hong Zhang
- School of Medicine, Institute of Medical Sciences, Örebro University, Örebro, Sweden
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China.,Center for Systems Biology, University, Suzhou, China
| |
Collapse
|
4
|
Tarazona N, Roda D, Roselló S, Huerta M, Cervantes A. New guidelines for optimal patient care with localized colon cancer: recommending what is proven, but also watching what research is bringing. Ann Oncol 2020; 31:1287-1288. [PMID: 32710931 DOI: 10.1016/j.annonc.2020.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022] Open
Affiliation(s)
- N Tarazona
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - D Roda
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - S Roselló
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - M Huerta
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - A Cervantes
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Tarazona N, Gimeno-Valiente F, Gambardella V, Zuñiga S, Rentero-Garrido P, Huerta M, Roselló S, Martinez-Ciarpaglini C, Carbonell-Asins JA, Carrasco F, Ferrer-Martínez A, Bruixola G, Fleitas T, Martín J, Tébar-Martínez R, Moro D, Castillo J, Espí A, Roda D, Cervantes A. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer. Ann Oncol 2019; 30:1804-1812. [PMID: 31562764 DOI: 10.1093/annonc/mdz390] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND A high percentage of patients diagnosed with localized colon cancer (CC) will relapse after curative treatment. Although pathological staging currently guides our treatment decisions, there are no biomarkers determining minimal residual disease (MRD) and patients are at risk of being undertreated or even overtreated with chemotherapy in this setting. Circulating-tumor DNA (ctDNA) can to be a useful tool to better detect risk of relapse. PATIENTS AND METHODS One hundred and fifty patients diagnosed with localized CC were prospectively enrolled in our study. Tumor tissue from those patients was sequenced by a custom-targeted next-generation sequencing (NGS) panel to characterize somatic mutations. A minimum variant allele frequency (VAF) of 5% was applied for variant filtering. Orthogonal droplet digital PCR (ddPCR) validation was carried out. We selected known variants with higher VAF to track ctDNA in the plasma samples by ddPCR. RESULTS NGS found known pathological mutations in 132 (88%) primary tumors. ddPCR showed high concordance with NGS (r = 0.77) for VAF in primary tumors. Detection of ctDNA after surgery and in serial plasma samples during follow-up were associated with poorer disease-free survival (DFS) [hazard ratio (HR), 17.56; log-rank P = 0.0014 and HR, 11.33; log-rank P = 0.0001, respectively]. Tracking at least two variants in plasma increased the ability to identify MRD to 87.5%. ctDNA was the only significantly independent predictor of DFS in multivariable analysis. In patients treated with adjuvant chemotherapy, presence of ctDNA after therapy was associated with early relapse (HR 10.02; log-rank P < 0.0001). Detection of ctDNA at follow-up preceded radiological recurrence with a median lead time of 11.5 months. CONCLUSIONS Plasma postoperative ctDNA detected MRD and identified patients at high risk of relapse in localized CC. Mutation tracking with more than one variant in serial plasma samples improved our accuracy in predicting MRD.
Collapse
Affiliation(s)
- N Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - F Gimeno-Valiente
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - V Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - S Zuñiga
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Precision Medicine Unit, Valencia, Spain; Bioinformatics and Biostatistics Unit, Valencia, Spain
| | - P Rentero-Garrido
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Precision Medicine Unit, Valencia, Spain
| | - M Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - S Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - C Martinez-Ciarpaglini
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Departments of Pathology, Valencia, Spain
| | - J A Carbonell-Asins
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Precision Medicine Unit, Valencia, Spain; Bioinformatics and Biostatistics Unit, Valencia, Spain
| | - F Carrasco
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Precision Medicine Unit, Valencia, Spain
| | - A Ferrer-Martínez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Precision Medicine Unit, Valencia, Spain
| | - G Bruixola
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - T Fleitas
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - J Martín
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Bioinformatics and Biostatistics Unit, Valencia, Spain
| | - R Tébar-Martínez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Precision Medicine Unit, Valencia, Spain
| | - D Moro
- Departments of Surgery, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - J Castillo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - A Espí
- Departments of Surgery, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - D Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - A Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
| |
Collapse
|
6
|
Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med 2019; 25:403-418. [PMID: 30842676 DOI: 10.1038/s41591-019-0376-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022]
Abstract
Epigenetic dysregulation is a common feature of most cancers, often occurring directly through alteration of epigenetic machinery. Over the last several years, a new generation of drugs directed at epigenetic modulators have entered clinical development, and results from these trials are now being disclosed. Unlike first-generation epigenetic therapies, these new agents are selective, and many are targeted to proteins which are mutated or translocated in cancer. This review will provide a summary of the epigenetic modulatory agents currently in clinical development and discuss the opportunities and challenges in their development. As these drugs advance in the clinic, drug discovery has continued with a focus on both novel and existing epigenetic targets. We will provide an overview of these efforts and the strategies being employed.
Collapse
|
7
|
IJzerman MJ, Berghuis AMS, de Bono JS, Terstappen LWMM. Health economic impact of liquid biopsies in cancer management. Expert Rev Pharmacoecon Outcomes Res 2018; 18:593-599. [PMID: 30052095 DOI: 10.1080/14737167.2018.1505505] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Liquid biopsies (LBs) are referred to as the sampling and analysis of non-solid tissue, primarily blood, as a diagnostic and monitoring tool for cancer. Because LBs are largely non-invasive, they are a less-costly alternative for serial analysis of tumor progression and heterogeneity to facilitate clinical management. Although a variety of tumor markers are proposed (e.g., free-circulating DNA), the clinical evidence for Circulating Tumor Cells (CTCs) is currently the most developed. Areas covered: This paper presents a health economic perspective of LBs in cancer management. We first briefly introduce the requirements in biomarker development and validation, illustrated for CTCs. Second, we discuss the state-of-art on the clinical utility of LBs in breast cancer in more detail. We conclude with a future perspective on the clinical use and reimbursement of LBs Expert commentary: A significant increase in clinical research on LBs can be observed and the results suggest a rapid change of cancer management. In addition to studies evaluating clinical utility of LBs, a smooth translation into clinical practice requires systematic assessment of the health economic benefits. This paper argues that (early stage) health economic research is required to facilitate its clinical use and to prioritize further evidence development.
Collapse
Affiliation(s)
- Maarten J IJzerman
- a Department of Health Technology and Services Research , University of Twente , Enschede , the Netherlands.,b University of Melbourne, Faculty of Medicine, Dentistry and Health Sciences , Victorian Comprehensive Cancer Centre and Centre for Cancer Research , Melbourne , Australia.,c Luxembourg Institute of Health, Dept. Health Economics and Evidence Synthesis , Luxembourg
| | - A M Sofie Berghuis
- a Department of Health Technology and Services Research , University of Twente , Enschede , the Netherlands
| | - Johann S de Bono
- d Royal Marsden Hospital, Institute for Cancer Research , Clinical studies department , Surrey , UK
| | - Leon W M M Terstappen
- e Department of Medical Cell Biophysics , University of Twente , Enschede , the Netherlands
| |
Collapse
|
8
|
Berry JL, Xu L, Kooi I, Murphree AL, Prabakar RK, Reid M, Stachelek K, Le BHA, Welter L, Reiser BJ, Chévez-Barrios P, Jubran R, Lee TC, Kim JW, Kuhn P, Cobrinik D, Hicks J. Genomic cfDNA Analysis of Aqueous Humor in Retinoblastoma Predicts Eye Salvage: The Surrogate Tumor Biopsy for Retinoblastoma. Mol Cancer Res 2018; 16:1701-1712. [PMID: 30061186 DOI: 10.1158/1541-7786.mcr-18-0369] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/29/2023]
Abstract
Tumor-derived cell-free DNA (cfDNA) has biomarker potential; therefore, this study aimed to identify cfDNA in the aqueous humor (AH) of retinoblastoma eyes and correlate somatic chromosomal copy-number alterations (SCNA) with clinical outcomes, specifically eye salvage. AH was extracted via paracentesis during intravitreal injection of chemotherapy or enucleation. Shallow whole-genome sequencing was performed using isolated cfDNA to assess for highly recurrent SCNAs in retinoblastoma including gain of 1q, 2p, 6p, loss of 13q, 16q, and focal MYCN amplification. Sixty-three clinical specimens of AH from 29 eyes of 26 patients were evaluated; 13 eyes were enucleated and 16 were salvaged (e.g., saved). The presence of detectable SCNAs was 92% in enucleated eyes versus 38% in salvaged eyes (P = 0.006). Gain of chromosome 6p was the most common SCNA found in 77% of enucleated eyes, compared with 25% of salvaged eyes (P = 0.0092), and associated with a 10-fold increased odds of enucleation (OR, 10; 95% CI, 1.8-55.6). The median amplitude of 6p gain was 1.47 in enucleated versus 1.07 in salvaged eyes (P = 0.001). The presence of AH SCNAs was correlated retrospectively with eye salvage. The probability of ocular salvage was higher in eyes without detectable SCNAs in the AH (P = 0.0028), specifically 6p gain. This is the first study to correlate clinical outcomes with SCNAs in the AH from retinoblastoma eyes, as such these findings indicate that 6p gain in the aqueous humor is a potential prognostic biomarker for poor clinical response to therapy.Implications: The correlation of clinical outcomes and SCNAs in the AH identified in the current study requires prospective studies to validate these finding before SCNAs, like 6p gain, can be used to predict clinical outcomes at diagnosis. Mol Cancer Res; 16(11); 1701-12. ©2018 AACR.
Collapse
Affiliation(s)
- Jesse L Berry
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California. .,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Liya Xu
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | | | - A Linn Murphree
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Rishvanth K Prabakar
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Mark Reid
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California
| | - Kevin Stachelek
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California
| | - Bao Han A Le
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Lisa Welter
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Bibiana J Reiser
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Patricia Chévez-Barrios
- Departments of Pathology and Genomic Medicine and Ophthalmology, Houston Methodist, Weill Cornell Medical College, Houston, Texas
| | - Rima Jubran
- The Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, Los Angeles, California
| | - Thomas C Lee
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Jonathan W Kim
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California
| | - Peter Kuhn
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - David Cobrinik
- The Vision Center at Children's Hospital Los Angeles, Los Angeles, California.,USC Roski Eye Institute, Keck Medical School of the University of Southern CA, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - James Hicks
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Norcic G. Liquid Biopsy in Colorectal Cancer-Current Status and Potential Clinical Applications. MICROMACHINES 2018; 9:mi9060300. [PMID: 30424233 PMCID: PMC6187650 DOI: 10.3390/mi9060300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most frequent solid malignancies worldwide. The treatment is either surgical or multimodal and depends on the stage of the disease at diagnosis. Accurate disease assessment is thus of great importance for choosing the most optimal treatment strategy. However, the standard means of disease assessment by radiological imaging or histopathological analysis of the removed tumor tissue lack the sensitivity in detecting the early systemic spread of the disease. To overcome this deficiency, the concept of liquid biopsy from the peripheral blood of patients has emerged as a new, very promising diagnostic tool. In this article, we provide an overview of the current status of clinical research on liquid biopsy in colorectal cancer. We also highlight the clinical situations in which the concept might be of the greatest benefit for the management of colorectal cancer patients in the future.
Collapse
Affiliation(s)
- Gregor Norcic
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloska Cesta 7, Ljubljana 1000, Slovenia.
| |
Collapse
|