1
|
Zhang LM, Zheng LL, Yu FH. Parental effects of physiological integration on growth of a clonal herb. FRONTIERS IN PLANT SCIENCE 2025; 15:1518400. [PMID: 39898261 PMCID: PMC11782264 DOI: 10.3389/fpls.2024.1518400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025]
Abstract
Although numerous studies have independently tested the roles of physiological integration and parental effects on the performance of clonal plant species, few have assessed them simultaneously. Moreover, the capacity for physiological integration differs greatly within species of clonal plants. We conducted a greenhouse experiment with eight genotypes of the clonal herb Hydrocotyle verticillata. In the first phase, we either severed or maintained the connections between the original proximal nodes (the basal portion) and the new distal nodes (the apical portion) of each genotype. In the second phase, the ramets in the apical portion produced in the first phase were selected and cultivated, and their connections were subjected to the same severance treatments. In the first phase, the negative effects of severance on the apical portion balanced the positive effects of severance on the basal portion, resulting in no net effect of severance on total mass, leaf mass, stem mass, and ramet number for the whole clone. In the second phase, the effects of parental severance on stem mass of the apical portion of H. verticillata varied among the eight genotypes. Additionally, the positive effect of physiological integration on offspring generations was greater in the apical portion and the whole clone of one genotype when the parental connections were intact than when they were severed, whereas it was greater in the apical portion of another genotype when the parental connections were severed than when they were intact. Our results suggest that clonal parental effects can influence the capacity for physiological integration of offspring generations and that these effects may differ among genotypes within a species.
Collapse
Affiliation(s)
| | | | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University,
Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Adomako MO, Wu J, Yu FH. Ecological and evolutionary responses of earthworm holobionts to environmental changes. THE ISME JOURNAL 2025; 19:wraf044. [PMID: 40057975 PMCID: PMC11936110 DOI: 10.1093/ismejo/wraf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Global environmental change substantially affects soil detritivores, including earthworms, impacting host-microbiota interactions and altering key soil biogeochemical processes such as litter decomposition. As microbial communities are inherently capable of rapid evolution, responses of earthworms and associated microbiota (i.e. earthworm holobionts) to global environmental change may likely involve the interplay of ecological and evolutionary processes and feedback. Although species-level responses of earthworms to global environmental change are well studied, the potential ecological and evolutionary responses of earthworm holobionts to environmental change remain unexplored. Here, we provide a conceptual framework to elaborate on the complex network of earthworm host-microbiota interactions that modify their traits in response to global environmental change, jointly shaping their ecology and evolution. Based on the literature, we synthesize evidence of global environmental change impacts on earthworm host-microbiota and discuss evidence of their ecological and evolutionary responses to environmental change. Lastly, we highlight the agro- and eco-system-level consequences of environmental change-mediated shift in earthworm host-microbiota functions. Soil legacies of environmental change have cascading detrimental impacts on the abundance, diversity, and functional dynamics of earthworm host-microbiota interactions in agriculture and ecosystems. The primary mechanisms driving such responses of earthworm hosts and associated microbial communities to environmental change include altered litter quality and host dietary preferences, competitive interactions and exclusion, habitat homogenization, and a shift in soil physicochemical and biological processes. Therefore, advancing knowledge of the intricate animal-microorganism interactions is crucial for belowground biodiversity management in a changing global environment.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Fei-Hai Yu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
3
|
Gao G, Wen X, Wu Z, Zhong H, Pan Y, Zhang X. Growth Characteristics of Ramet System in Phyllostachys praecox Forest under Mulch Management. PLANTS (BASEL, SWITZERLAND) 2024; 13:1761. [PMID: 38999601 PMCID: PMC11243432 DOI: 10.3390/plants13131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
The ramet system is a typical structural type in the life history of clonal plants. This massive structure is formed by many similar ramets connected by underground rhizomes, which are independent and mutually influential. Therefore, the ramet system is unique to bamboo forests, and its role in the construction, maintenance, and productivity of bamboo populations is irreplaceable. Mulch management is a high-level cultivation model for bamboo forests that is used to cultivate bamboo shoots. However, the basic conditions of bamboo ramet systems in this managed model are poorly understood. This study analyzed the underground rhizome morphology, bud bank, and branching of bamboo ramets in a Phyllostachys praecox C.D. Chu et C.S. Chao 'Prevernalis' forest to explore the growth patterns of bamboo ramets in high-level management fields. In mulched bamboo forests, the bamboo rhizomes, distributed in intermediate positions of the bamboo ramet system, were long with many lateral buds and branches, and those at the initial and distal ends were short with few lateral buds and branches. The initial end of the ramet system reduced the ramet system, the intermediate part expanded the ramet system, and the distal end promoted ramet system regeneration. Owing to the continuous reduction, expansion, and renewal of ramet systems, the bamboo rhizome system demonstrates mobility and adaptability. This study found that a higher level of bamboo forest management increased the possibility of artificial fragmentation of the ramet system and that improving the efficiency of the ramet system was beneficial for maintaining its high vitality. Thus, this study provides a crucial reference for guiding the precise regulation of bamboo ramet systems in artificial bamboo forests.
Collapse
Affiliation(s)
- Guibin Gao
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| | - Xing Wen
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| | - Zhizhuang Wu
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| | - Hao Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| | - Yanhong Pan
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| | - Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou 310012, China; (G.G.); (X.W.); (Z.W.); (H.Z.); (Y.P.)
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou, Plain, Hangzhou 310012, China
| |
Collapse
|
4
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
5
|
Firth LB, Foggo A, Watts T, Knights AM, deAmicis S. Invasive macroalgae in native seagrass beds: vectors of spread and impacts. ANNALS OF BOTANY 2024; 133:41-50. [PMID: 37787519 PMCID: PMC10921828 DOI: 10.1093/aob/mcad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND AND AIMS Worldwide, invasive species are spreading through marine systems at an unprecedented rate with both positive and negative consequences for ecosystems and the biological functioning of organisms. Human activities from shipping to habitat damage and modification are known vectors of spread, although biological interactions including epibiosis are increasingly recognized as potentially important to introduction into susceptible habitats. METHODS We assessed a novel mechanism of spread - limpets as transporters of an invasive alga, Sargassum muticum, into beds of the seagrass Zostera marina - and the physiological impact of its invasion. The association of S. muticum with three limpet species and other habitats was assessed using intertidal surveys on rocky shores and snorkelling at two seagrass sites in the UK. A 4-year field study tested the effect of S. muticum on Z. marina shoot density, dry weight and phenolic compounds (caffeic and tannic acid) content, and a laboratory experiment tested the impact of S. muticum on nutrient partitioning (C/H/N/P/Si), photosynthetic efficiency (Fv/Fm) and growth of Z. marina. RESULTS On rocky shores 15 % of S. muticum occurrences were attached to the shells of live limpets. In seagrass beds 5 % of S. muticum occurrences were attached to the shells of dead limpets. The remainder were attached to rock, to cobblestones, to the seagrass matrix or embedded within the sand. Z. marina density and phenolics content was lower when S. muticum co-occurred with it. Over 3 years, photosynthetic responses of Z. marina to S. muticum were idiosyncratic, and S. muticum had no effect on nutrient partitioning in Z. marina. CONCLUSIONS Our results show limpets support S. muticum as an epibiont and may act as a previously unreported transport mechanism introducing invaders into sensitive habitats. S. muticum reduced production of phenolics in Z. marina, which may weaken its defensive capabilities and facilitate proliferation of S. muticum. The effect of S. muticum on Z. marina photosynthesis requires further work but having no effect on the capacity of Z. marina to sequester nutrients suggests a degree of resilience to this invader.
Collapse
Affiliation(s)
- Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Thomas Watts
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Stacey deAmicis
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
6
|
Yu WH, Zhang LM, Luo FL, Yu FH, Li MH. Roles of clonal parental effects in regulating interspecific competition between two floating plants. FRONTIERS IN PLANT SCIENCE 2022; 13:924001. [PMID: 35937331 PMCID: PMC9355590 DOI: 10.3389/fpls.2022.924001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Parental effects can influence offspring fitness, which may further impact interspecific competition. However, few studies have tested the role of clonal parental effects in regulating interspecific interactions and examined the underlying mechanisms. We conducted two consecutive experiments with two clonal plants (Pistia stratiotes and Eichhornia crassipes). In the first experiment, the mother ramet of P. stratiotes and E. crassipes were grown in two nutrient levels and treated with a DNA demethylation reagent (5-azacytidine) or not. In the second experiment, the offspring ramets from each of the four treatments in the first experiment were grown alone (no competition) or with a heterospecific neighbor (with interspecific competition). We found no parental nutrient effect on the competitive ability of E. crassipes, but a significant parental nutrient effect of both E. crassipes and P. stratiotes on the competitive ability of P. stratiotes. Furthermore, the parental nutrient effect of P. stratiotes on the competitive ability of P. stratiotes varied depending on the DNA methylation status of both P. stratiotes and E. crassipes. These clonal parental effects were related to resource provisioning and/or DNA methylation. We conclude that clonal parental nutrient effects can regulate interspecific competition between P. stratiotes and E. crassipes by altering the competitive ability of P. stratiotes. Both resource provisioning and epigenetic mechanisms can be involved in these clonal parental effects. By regulating interspecific competition, clonal parental effects may further influence species coexistence, community structure, and ecosystem functioning.
Collapse
Affiliation(s)
- Wen-Han Yu
- Institute of Wetland Ecology and Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Li-Min Zhang
- Institute of Wetland Ecology and Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Fang-Li Luo
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology and Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Zhang LM, Roiloa SR, Zhang JF, Yu WH, Qiu CY, Wang DH, Yu FH. Clonal Parental Effects on Offspring Growth of Different Vegetative Generations in the Aquatic Plant Pistia stratiotes. FRONTIERS IN PLANT SCIENCE 2022; 13:890309. [PMID: 35832222 PMCID: PMC9272891 DOI: 10.3389/fpls.2022.890309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Parental (environmental) effects can modify the growth of offspring, which may play an essential role in their adaptation to environmental variation. While numerous studies have tested parental effects on offspring growth, most have considered offspring growth of only one generation and very few have considered offspring growth of different generations. We conducted a greenhouse experiment with an aquatic clonal plant Pistia stratiotes. We grew a single ramet of P. stratiotes under low or high nutrients, the initial (parent) ramets produced three different generations of offspring ramets, and these offspring ramets were also subjected to the same two nutrient levels. High nutrients currently experienced by the offspring increased biomass accumulation and ramet number of all three offspring generations of P. stratiotes. However, these positive effects on biomass were greater when the offspring ramets originated from the parent ramets grown under low nutrients than when they were produced by the parent ramets grown under high nutrients. These results suggest that parental effects can impact the performance of different offspring generations of clonal plants. However, heavier offspring ramets produced under high nutrients in parental conditions did not increase the subsequent growth of the offspring generations. This finding indicates that parental provisioning in favorable conditions may not always increase offspring growth, partly depending on root allocation but not ramet size such as ramet biomass.
Collapse
Affiliation(s)
- Li-Min Zhang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Sergio R. Roiloa
- BioCost Group, Department of Biology, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Jia-Fan Zhang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Wen-Han Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Chen-Yan Qiu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Dan-Hao Wang
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Taizhou University, Taizhou, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| |
Collapse
|
8
|
Zhang LM, Roiloa SR, Xue W, Yu FH. Effects of temporal heterogeneity in nutrient supply on intra- and inter-genet competition of a clonal herb. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|