1
|
Bautista GFM, Musl O, Easson MLAE, Kruse LH, Gordon H, Bacher M, Sumerskii I, Watrelot AA, Bohlmann J, Potthast A, Rosenau T, Rojas OJ. Strong Association between Proanthocyanidins and Polysaccharides in the Cell Walls of Western Redcedar Bark. Biomacromolecules 2025. [PMID: 40327454 DOI: 10.1021/acs.biomac.5c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The co-occurrence of polysaccharides and proanthocyanidins in the aqueous extracts of western redcedar (Thuja plicata Donn; WRC) bark limits their commercial utilization. To better understand their association, proanthocyanidins and polysaccharides were extracted with cold water (3.4% w/w bark) and isolated as an alcohol-insoluble residue (AIR, 1.0% w/w bark). The polysaccharide content (∼30% w/w AIR) was analyzed by acidic and enzymatic depolymerization, revealing the presence of pectins, xyloglucans, and xylans. NMR spectroscopy identified features, such as acetylation and methyl esterification. Thiolysis followed by HPLC-DAD revealed that proanthocyanidins (1.46% w/w AIR) exhibit a mean degree of polymerization of 5.3, a cis/trans ratio of 0.40, and a procyanidin/prodelphinidin ratio of 3.90. This study provides a detailed structural characterization of proanthocyanidins and polysaccharides in the AIR of WRC bark. The findings highlight their strong association, which may contribute to distinctive properties that warrant further exploration, particularly in efforts to valorize bark residues.
Collapse
Affiliation(s)
- Gio Ferson M Bautista
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Oliver Musl
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Natural Sciences and Sustainable Resources, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Science (BOKU), Tulln, Vienna A-3430, Austria
| | - Michael L A E Easson
- Michael Smith Laboratories, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Lars H Kruse
- Michael Smith Laboratories, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Harley Gordon
- Faculty of Land and Food Systems, The University of British Columbia, 2357 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Markus Bacher
- Department of Natural Sciences and Sustainable Resources, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Science (BOKU), Tulln, Vienna A-3430, Austria
| | - Ivan Sumerskii
- Core Facility "Analysis of Lignocellulosics" (ALICE), University of Natural Resources and Life Sciences, Tulln, Vienna A-3430, Austria
| | - Aude A Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Lane, Ames, Iowa 50011, United States
| | - Jörg Bohlmann
- Michael Smith Laboratories, The University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Botany, The University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Antje Potthast
- Department of Natural Sciences and Sustainable Resources, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Science (BOKU), Tulln, Vienna A-3430, Austria
| | - Thomas Rosenau
- Department of Natural Sciences and Sustainable Resources, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Science (BOKU), Tulln, Vienna A-3430, Austria
| | - Orlando J Rojas
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Wood Science, The University of British Columbia, 2424 Main Mall #2900, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Bioproducts and Biosystems, Vuorimiehentie 1, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
2
|
Xu X, Zhu X, Jiang F, Li Q, Zhang A, Zhang H, Li J. Mechanism of abscisic acid in promoting softening of postharvest 'Docteur Jules Guyot' pear ( Pyrus communis L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1502623. [PMID: 39741670 PMCID: PMC11685007 DOI: 10.3389/fpls.2024.1502623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 01/03/2025]
Abstract
Abscisic acid (ABA) is a key hormone in plant growth and development, playing a central role in responses to various biotic and abiotic stresses as well as in fruit ripening. The present study examined the impact of ABA and nordihydroguaiaretic acid (NDGA) on various postharvest 'Docteur Jules Guyot' pear fruit characteristics, including firmness, pectinase activity, pectin content, volatile aromatic substances, and the expression of correlated genes. The results showed that ABA quickly reduced fruit firmness, increasing the activity of pectin degradation-related enzymes. The contents of water-soluble pectin (WSP) and ionic-soluble pectin (ISP) increased, and covalent binding pectin (CBP) decreased under ABA treatment. Among the detected volatile aromatic substances, the highest-level substance of the fruit was ester, and the ABA treatment significantly promoted the amount of ester substances. The cell wall disassembly-related genes PcPME3, PcPG1, PcPG2, PcPL, PcARF2, and PcGAL1, as well as ABA biosynthesis-related genes PcNCED1 and PcNCED2, were also significantly induced by ABA. Conversely, all these genes were repressed in the NDGA treatment group. Therefore, it was speculated that ABA may promote the softening of postharvest European pear fruit by affecting the activity of pectin degradation enzymes in fruit cell walls.
Collapse
Affiliation(s)
- Xiaofei Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Xinxin Zhu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| | - Fudong Jiang
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingyu Li
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Aidi Zhang
- School of Food Engineering, Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
- Zhaoyuan Shenghui Agricultural Technology Development Co., Ltd, Zhaoyuan, Shandong, China
| | - Jianzhao Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
| |
Collapse
|
3
|
Li R, Rosado-Souza L, Sampathkumar A, Fernie AR. The relationship between cell wall and postharvest physiological deterioration of fresh produce. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108568. [PMID: 38581806 DOI: 10.1016/j.plaphy.2024.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
Postharvest physiological deterioration (PPD) reduces the availability and economic value of fresh produces, resulting in the waste of agricultural products and becoming a worldwide problem. Therefore, many studies have been carried out at the anatomical structural, physiological and biochemical levels and molecular levels of PPD of fresh produces to seek ways to manage the postharvest quality of fresh produce. The cell wall is the outermost structure of a plant cell and as such represents the first barrier to prevent external microorganisms and other injuries. Many studies on postharvest quality of crop storage organs relate to changes in plant cell wall-related components. Indeed, these studies evidence the non-negligible role of the plant cell wall in postharvest storage ability. However, the relationship between cell wall metabolism and postharvest deterioration of fresh produces has not been well summarized. In this review, we summarize the structural changes of cell walls in different types of PPD, metabolic changes, and the possible molecular mechanism regulating cell wall metabolism in PPD of fresh produce. This review provides a basis for further research on delaying the occurrence of PPD of fresh produce.
Collapse
Affiliation(s)
- Ruimei Li
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute/Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya, China; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Laise Rosado-Souza
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
4
|
Al-Hinai TZS, Mackay CL, Fry SC. Fruit softening: evidence for rhamnogalacturonan lyase action in vivo in ripe fruit cell walls. ANNALS OF BOTANY 2024; 133:547-558. [PMID: 38180460 PMCID: PMC11037484 DOI: 10.1093/aob/mcad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
BACKGROUND AND AIMS The softening of ripening fruit involves partial depolymerization of cell-wall pectin by three types of reaction: enzymic hydrolysis, enzymic elimination (lyase-catalysed) and non-enzymic oxidative scission. Two known lyase activities are pectate lyase and rhamnogalacturonan lyase (RGL), potentially causing mid-chain cleavage of homogalacturonan and rhamnogalacturonan-I (RG-I) domains of pectin respectively. However, the important biological question of whether RGL exhibits action in vivo had not been tested. METHODS We developed a method for specifically and sensitively detecting in-vivo RGL products, based on Driselase digestion of cell walls and detection of a characteristic unsaturated 'fingerprint' product (tetrasaccharide) of RGL action. KEY RESULTS In model experiments, potato RG-I that had been partially cleaved in vitro by commercial RGL was digested by Driselase, releasing an unsaturated tetrasaccharide ('ΔUA-Rha-GalA-Rha'), taken as diagnostic of RGL action. This highly acidic fingerprint compound was separated from monosaccharides (galacturonate, galactose, rhamnose, etc.) by electrophoresis at pH 2, then separated from ΔUA-GalA (the fingerprint of pectate lyase action) by thin-layer chromatography. The 'ΔUA-Rha-GalA-Rha' was confirmed as 4-deoxy-β-l-threo-hex-4-enopyranuronosyl-(1→2)-l-rhamnosyl-(1→4)-d-galacturonosyl-(1→2)-l-rhamnose by mass spectrometry and acid hydrolysis. Driselase digestion of cell walls from diverse ripe fruits [date, sea buckthorn, cranberry, yew (arils), mango, plum, blackberry, apple, pear and strawberry] yielded the same fingerprint compound, demonstrating that RGL had been acting in vivo in these fruits prior to harvest. The 'fingerprint' : (galacturonate + rhamnose) ratio in digests from ripe dates was approximately 1 : 72 (mol/mol), indicating that ~1.4 % of the backbone Rha→GalA bonds in endogenous RG-I had been cleaved by in-vivo RGL action. CONCLUSIONS The results provide the first demonstration that RGL, previously known from studies of fruit gene expression, proteomic studies and in-vitro enzyme activity, exhibits enzyme action in the walls of soft fruits and may thus be proposed to contribute to fruit softening.
Collapse
Affiliation(s)
- Thurayya Z S Al-Hinai
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - C Logan Mackay
- EastCHEM School of Chemistry, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3FJ, UK
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Hu Z, Liu J, Xu H, Tian L, Liu D. Exploring the mechanism of Lycium barbarum fruit cell wall polysaccharide remodeling reveals potential pectin accumulation contributors. Int J Biol Macromol 2024; 258:128958. [PMID: 38154707 DOI: 10.1016/j.ijbiomac.2023.128958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The level of polysaccharides in the mature Lycium barbarum fruit (LBF) cell wall depends on their metabolism, trafficking, and reassembly within the cell. In this study, we examined the composition, content, and ultrastructure of the cell wall polysaccharides of LBF during maturation, and further analyzed cell wall polysaccharide remodeling using isotope tagging with relative and absolute quantification (iTRAQ)-based proteomics. The results showed that the contents of cellulose and hemicellulose tended to increase in the pre-maturation stage and decrease in the later stage, while pectin level increased before fruit maturing. The differential expression of the 54 proteins involved in the metabolic pathways for glucose, fructose, galactose, galacturonic acid and arabinose was found to be responsible for these alterations. The work provides a biological framework for the reorganization of polysaccharides in the LBF cell wall, and supports the hypothesis that pectic polysaccharide glycosyl donors come from starch, cellulose, hemicellulose and isomorphic pectin.
Collapse
Affiliation(s)
- Ziying Hu
- School of Food Science and Technology, Ningxia University, 750021 Yinchuan, China
| | - Jun Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China.
| | - Hao Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Lingli Tian
- School of Food Science and Technology, Ningxia University, 750021 Yinchuan, China
| | - Dunhua Liu
- School of Food Science and Technology, Ningxia University, 750021 Yinchuan, China.
| |
Collapse
|
6
|
Brummell DA, Bowen JK, Gapper NE. Biotechnological approaches for controlling postharvest fruit softening. Curr Opin Biotechnol 2022; 78:102786. [PMID: 36081292 DOI: 10.1016/j.copbio.2022.102786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Fruit softening is the major factor determining the postharvest life of fruit, affecting bruise and damage susceptibility, pathogen colonisation, and consumer satisfaction, all of which contribute to product losses in the supply chain and consumers' homes. Ripening-related changes to the cell wall, cuticle and soluble sugars largely determine softening, and some are amenable to biotechnological intervention, for example, by manipulation of the expression of genes encoding cell wall-modifying proteins or wax and cutin synthases. In this review, we discuss work exploring the role of genes involved in cell wall and cuticle properties, and recent developments in the silencing of multiple genes by targeting single transcription factors. Identification of transcription factors that control the expression of suites of genes encoding cell wall-modifying proteins provides exciting targets for biotechnology.
Collapse
Affiliation(s)
- David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Begum RA, Fry SC. Boron bridging of rhamnogalacturonan-II in Rosa and arabidopsis cell cultures occurs mainly in the endo-membrane system and continues at a reduced rate after secretion. ANNALS OF BOTANY 2022; 130:703-715. [PMID: 36112021 PMCID: PMC9670748 DOI: 10.1093/aob/mcac119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Rhamnogalacturonan-II (RG-II) is a domain of primary cell-wall pectin. Pairs of RG-II domains are covalently cross-linked via borate diester bridges, necessary for normal cell growth. Interpreting the precise mechanism and roles of boron bridging is difficult because there are conflicting hypotheses as to whether bridging occurs mainly within the Golgi system, concurrently with secretion or within the cell wall. We therefore explored the kinetics of RG-II bridging. METHODS Cell-suspension cultures of Rosa and arabidopsis were pulse-radiolabelled with [14C]glucose, then the boron bridging status of newly synthesized [14C]RG-II domains was tracked by polyacrylamide gel electrophoresis of endo-polygalacturonase digests. KEY RESULTS Optimal culture ages for 14C-labelling were ~5 and ~1 d in Rosa and arabidopsis respectively. De-novo [14C]polysaccharide production occurred for the first ~90 min; thereafter the radiolabelled molecules were tracked as they 'aged' in the wall. Monomeric and (boron-bridged) dimeric [14C]RG-II domains appeared simultaneously, both being detectable within 4 min of [14C]glucose feeding, i.e. well before the secretion of newly synthesized [14C]polysaccharides into the apoplast at ~15-20 min. The [14C]dimer : [14C]monomer ratio of RG-II remained approximately constant from 4 to 120 min, indicating that boron bridging was occurring within the Golgi system during polysaccharide biosynthesis. However, [14C]dimers increased slightly over the following 15 h, indicating that limited boron bridging was continuing after secretion. CONCLUSIONS The results show where in the cell (and thus when in the 'career' of an RG-II domain) boron bridging occurs, helping to define the possible biological roles of RG-II dimerization and the probable localization of boron-donating glycoproteins or glycolipids.
Collapse
Affiliation(s)
- Rifat Ara Begum
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, Daniel Rutherford Building, The King’s Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Dhaka, Curzon Hall, Dhaka – 1000, Bangladesh
| | | |
Collapse
|
8
|
Review: Tertiary cell wall of plant fibers as a source of inspiration in material design. Carbohydr Polym 2022; 295:119849. [DOI: 10.1016/j.carbpol.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
|
9
|
Xu Z, Dai J, Kang T, Shah K, Li Q, Liu K, Xing L, Ma J, Zhang D, Zhao C. PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. FRONTIERS IN PLANT SCIENCE 2022; 13:844055. [PMID: 35401624 PMCID: PMC8990770 DOI: 10.3389/fpls.2022.844055] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 06/12/2023]
Abstract
Pectin is the major component in the primary cell wall and middle lamella, maintaining the physical stability and mechanical strength of the cell wall. Pectate lyase (PL), a cell wall modification enzyme, has a major influence on the structure of pectin. However, little information and no comprehensive analysis is available on the PL gene family in peach (Prunus persica L. Batsch). In this study, 20 PpePL genes were identified in peach. We characterized their physicochemical characteristics, sequence alignments, chromosomal locations, and gene structures. The PpePL family members were classified into five groups based on their phylogenetic relationships. Among those, PpePL1, 9, 10, 15, and 18 had the higher expression abundance in ripe fruit, and PpePL1, 15, and 18 were upregulated during storage. Detailed RT-qPCR analysis revealed that PpePL1 and PpePL15 were responsive to ETH treatment (1 g L-1 ethephon) with an abundant transcript accumulation, which suggested these genes were involved in peach ripening and softening. In addition, virus-induced gene silencing (VIGS) technology was used to identify the roles of PpePL1 and PpePL15. Compared to controls, the RNAi fruit maintained greater firmness in the early storage stage, increased acid-soluble pectin (ASP), and reduced water-soluble pectin (WSP). Moreover, transmission electron microscopy (TEM) showed that cell wall degradation was reduced in the fruit of RNAi-1 and RNAi-15, which indicated that softening of the RNAi fruit has been delayed. Our results indicated that PpePL1 and PpePL15 play an important role in peach softening by depolymerizing pectin and degrading cell wall.
Collapse
|
10
|
Wu S, Wu D, Song J, Zhang Y, Tan Q, Yang T, Yang J, Wang S, Xu J, Xu W, Liu A. Metabolomic and transcriptomic analyses reveal new insights into the role of abscisic acid in modulating mango fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac102. [PMID: 35795388 PMCID: PMC9250656 DOI: 10.1093/hr/uhac102] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 05/16/2023]
Abstract
Mango (Mangifera indica L.) is a climacteric tropical fruit consumed around the world. Although ethylene and abscisic acid (ABA) have been considered to be stimulators that trigger mango fruit ripening, their regulation mechanisms in modulating mango fruit ripening remain uncertain. In this study, we performed integrative analyses of metabolome and transcriptome data combined with a series of physiological and experimental analyses in the 'Keitt' mango, and we characterized changes in accumulation of specific metabolites at different stages during fruit development and ripening, which were strongly correlated with transcriptional changes and embodied physiological changes as well as taste formation. Specifically, we found that ABA, rather than ethylene, was highly associated with mango ripening, and exogenous ABA application promoted mango fruit ripening. Transcriptomic analysis identified diverse ripening-related genes involved in sugar and carotenoid biosynthesis and softening-related metabolic processes. Furthermore, networks of ABA- and ripening-related genes (such as MiHY5, MiGBF4, MiABI5, and MibZIP9) were constructed, and the direct regulation by the key ABA-responsive transcription factor MiHY5 of ripening-related genes was experimentally confirmed by a range of evidence. Taken together, our results indicate that ABA plays a key role in directly modulating mango fruit ripening through MiHY5, suggesting the need to reconsider how we understand ABA function in modulating climacteric fruit ripening.
Collapse
Affiliation(s)
- Shibo Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Song
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Yanyu Zhang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Tan
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianquan Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingya Yang
- Key Laboratory of Economic plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Wei Xu
- Corresponding authors. E-mail: , , ,
| | | |
Collapse
|
11
|
Seymour GB. Pectate lyase action in vivo and fruit softening. A commentary on: 'Fruit softening: evidence for pectate lyase action in vivo in date (Phoenix dactylifera) and rosaceous fruit cell walls'. ANNALS OF BOTANY 2021; 128:i-ii. [PMID: 34342644 PMCID: PMC8422885 DOI: 10.1093/aob/mcab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Thurayya Z. S. Al Hinai, Robert A. M. Vreeburg, C. Logan Mackay, Lorna Murray, Ian H. Sadler and Stephen C. Fry. Fruit softening: evidence for pectate lyase action in vivo in date (Phoenix dactylifera) and rosaceous fruit cell walls, Annals of Botany, Volume 128, Issue 5, 8 October 2021, Pages 511–526, https://doi.org/10.1093/aob/mcab072
Collapse
Affiliation(s)
- Graham B Seymour
- Division of Plant and Crop Sciences, University of Nottingham, School of Biosciences, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| |
Collapse
|