1
|
Mishina K, Morita M, Matsumoto S, Sakuma S. Optimizing Visualization of Pollen Tubes in Wheat Pistils. PLANTS (BASEL, SWITZERLAND) 2024; 13:3600. [PMID: 39771297 PMCID: PMC11678161 DOI: 10.3390/plants13243600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat (Triticum aestivum) cultivars is limited. Introducing favorable alleles from related wild and cultivated wheat species is a promising breeding strategy for resolving this issue. However, wide hybridization between bread wheat and its relatives is hampered by the presence of suppressor genes and difficulties in crossing. Optimized methods for observing pollen tubes are essential for understanding the mechanism of crossability between wheat and its relatives. Here, we improved the crossing procedure between bread wheat and rye (Secale cereale) and established an optimized protocol for visualizing pollen tube behavior. Crossing via detached spike culture significantly enhanced crossing efficiency and phenotypic stability. A combination of canonical aniline blue staining and optimized clearing and sectioning allowed us to visualize pollen tube behavior. The proportion of rye pollen tubes reaching the micropyle was lower than that for pollen tubes germinated on the stigmatic hair, explaining why the hybrid seed-setting rate was approximately 75% instead of 100%. This method sheds light on wide hybridization through deeper visualization of the insides of pistils.
Collapse
Affiliation(s)
| | | | | | - Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan; (K.M.)
| |
Collapse
|
2
|
Luo X, Yang Y, Lin X, Xiao J. Deciphering spike architecture formation towards yield improvement in wheat. J Genet Genomics 2023; 50:835-845. [PMID: 36907353 DOI: 10.1016/j.jgg.2023.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
Wheat is the most widely grown crop globally, providing 20% of the daily consumed calories and protein content around the world. With the growing global population and frequent occurrence of extreme weather caused by climate change, ensuring adequate wheat production is essential for food security. The architecture of the inflorescence plays a crucial role in determining the grain number and size, which is a key trait for improving yield. Recent advances in wheat genomics and gene cloning techniques have improved our understanding of wheat spike development and its applications in breeding practices. Here, we summarize the genetic regulation network governing wheat spike formation, the strategies used for identifying and studying the key factors affecting spike architecture, and the progress made in breeding applications. Additionally, we highlight future directions that will aid in the regulatory mechanistic study of wheat spike determination and targeted breeding for grain yield improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiman Yang
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Han J, Liu Y, Shen Y, Zhang D, Li W. Transcriptome Dynamics during Spike Differentiation of Wheat Reveal Amazing Changes in Cell Wall Metabolic Regulators. Int J Mol Sci 2023; 24:11666. [PMID: 37511426 PMCID: PMC10380499 DOI: 10.3390/ijms241411666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Coordinated cell proliferation and differentiation result in the complex structure of the inflorescence in wheat. It exhibits unique differentiation patterns and structural changes at different stages, which have attracted the attention of botanists studying the dynamic regulation of its genes. Our research aims to understand the molecular mechanisms underlying the regulation of spike development genes at different growth stages. We conducted RNA-Seq and qRT-PCR evaluations on spikes at three stages. Our findings revealed that genes associated with the cell wall and carbohydrate metabolism showed high expression levels between any two stages throughout the entire process, suggesting their regulatory role in early spike development. Furthermore, through transgenic experiments, we elucidated the role of the cell wall regulator gene in spike development regulation. These research results contribute to identifying essential genes associated with the morphology and development of wheat spike tissue.
Collapse
Affiliation(s)
- Junjie Han
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yichen Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Yiting Shen
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Donghai Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| | - Weihua Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
5
|
Wang Y, Du F, Wang J, Wang K, Tian C, Qi X, Lu F, Liu X, Ye X, Jiao Y. Improving bread wheat yield through modulating an unselected AP2/ERF gene. NATURE PLANTS 2022; 8:930-939. [PMID: 35851621 DOI: 10.1038/s41477-022-01197-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Crop breeding heavily relies on natural genetic variation. However, additional new variations are desired to meet the increasing human demand. Inflorescence architecture determines grain number per spike, a major determinant of bread wheat (Triticum aestivum L.) yield. Here, using Brachypodium distachyon as a wheat proxy, we identified DUO-B1, encoding an APETALA2/ethylene response factor (AP2/ERF) transcription factor, regulating spike inflorescence architecture in bread wheat. Mutations of DUO-B1 lead to mild supernumerary spikelets, increased grain number per spike and, importantly, increased yield under field conditions without affecting other major agronomic traits. DUO-B1 suppresses cell division and promotes the expression of BHt/WFZP, whose mutations could lead to branched 'miracle-wheat'. Pan-genome analysis indicated that DUO-B1 has not been utilized in breeding, and holds promise to increase wheat yield further.
Collapse
Affiliation(s)
- Yuange Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Caihuan Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China.
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| |
Collapse
|
6
|
Irshad A, Guo H, Ur Rehman S, Gu J, Ahmed RI, Hussain M, Ammar A, Ali I, Zafar A, Wang C, Zhou C, Qiu L, Liu L. Induction of Semi-Dwarf Trait to a Three Pistil Tall Mutant Through Breeding With Increased Grain Numbers in Wheat. Front Genet 2022; 13:828866. [PMID: 35211160 PMCID: PMC8863213 DOI: 10.3389/fgene.2022.828866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Multi-ovary wheat (three pistil) is a unique germplasm for the seed production of hybrid wheat. The purpose of the present study was to transfer the multi-ovary trait to semi-dwarf plants to increase the production of grains in wheat crops. Therefore, tall, semi-dwarf, and dwarf plants were crossed with plants with the three-pistil trait. A three-pistil tall plant was used as the female parent, while tall (Synthetic hexaploid), semi-dwarf, and dwarf plants were used as male parents. F1 and F2 progenies with parents were planted in 2015-16 using RCBD. The outcome of the crosses showed that multi-ovary tall plants gave significant difference for all five traits (days to maturity, plant height, number of seeds per spike, grain weight per spike, and grain yield per unit area) in both generations. The greatest number of grains per spike and grain yield per unit area were obtained from the cross of three-pistil tall and dwarf parent (P1/P6) in the F1 and F2 generations. The cross also resulted in a significant reduction in height (96 cm). Further heterosis studies conducted with crosses between three-pistil tall and dwarf parent (P1/P6) showed the greatest heterosis and heterobeltiosis for the number of grains per spike (60.0 and 26.19%, respectively) and grain yield per m2 (27.68 and 2.85%, respectively). In the case of grain weight per spike, the heterosis value was also positive and significant (17.7). Meanwhile, for other traits, their values were negative for heterosis and heterobeltiosis. High numbers of grains and grain weight were found to be associated with positive heterobeltiosis and in turn the grain yield per m2, but plant height and maturity had negative affirmation with heterobeltiosis. Heterosis studies also indicated the dominant gene action for the three-pistil trait. Thus, the study clearly signified that grain yield can be increased by using the multi-ovary genotype with the semi-dwarf height. This new germplasm will be helpful for breeders to increase the production of wheat crops in the southern climate of Pakistan.
Collapse
Affiliation(s)
- Ahsan Irshad
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shoaib Ur Rehman
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Jiayu Gu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rana Imtiaz Ahmed
- Regional Agricultural Research Institute, Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Manzoor Hussain
- Regional Agricultural Research Institute, Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Ali Ammar
- Regional Agricultural Research Institute, Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Imtiaz Ali
- Regional Agricultural Research Institute, Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Akash Zafar
- Regional Agricultural Research Institute, Bahawalpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Chaojie Wang
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyun Zhou
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Qiu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory of Crop Molecular Breeding, National Center of Space Mutagenesis for Crop Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X, Ma J, Liu D, Wei Y, Zheng Y, Fu X, Mao L, Lan X, Li A. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:75-88. [PMID: 34487615 PMCID: PMC8710900 DOI: 10.1111/pbi.13696] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/22/2021] [Indexed: 05/13/2023]
Abstract
The AGAMOUS-LIKE6 (AGL6)-like genes are ancient MADS-box genes and are functionally studied in a few model plants. The knowledge of these genes in wheat remains limited. Here, by studying a 'double homoeolog mutant' of the AGL6 gene in tetraploid wheat, we showed that AGL6 was required for the development of all four whorls of floral organs with dosage-dependent effect on floret fertility. Yeast two-hybrid analyses detected interactions of AGL6 with all classes of MADS-box proteins in the ABCDE model for floral organ development. AGL6 was found to interact with several additional proteins, including the G protein β and γ (DEP1) subunits. Analysis of the DEP1-B mutant showed a significant reduction in spikelet number per spike in tetraploid wheat, while overexpression of AGL6 in common wheat increased the spikelet number per spike and hence the grain number per spike. RNA-seq analysis identified the regulation of several meristem activity genes by AGL6, such as FUL2 and TaMADS55. Our work therefore extensively updated the wheat ABCDE model and proposed an alternative approach to improve wheat grain yield by manipulating the AGL6 gene.
Collapse
Affiliation(s)
- Xingchen Kong
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Ke Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xingguo Ye
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Ma
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Xiangdong Fu
- The State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujin Lan
- Triticeae Research InstituteSichuan Agricultural UniversityChengduChina
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Dobrovolskaya OB. Supernumerary Spikelet Wheat Forms as Models for Studying Genetic Regulation of Inflorescence Development. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Wolde GM, Schnurbusch T. Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched head t (bh t-A1) near isogenic lines. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1023-1035. [PMID: 32172750 DOI: 10.1071/fp19041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Substantial genetic and physiological efforts were made to understand the causal factors of floral abortion and grain filling problem in wheat. However, the vascular architecture during wheat spikelet development is surprisingly under-researched. We used the branched headt near-isogenic lines, FL-bht-A1-NILs, to visualise the dynamics of spikelet fertility and dry matter accumulation in spikelets sharing the same rachis node (henceforth Primary Spikelet, PSt, and Secondary Spikelet, SSt). The experiment was conducted after grouping FL-bht-A1-NILs into two groups, where tillers were consistently removed from one group. Our results show differential spikelet fertility and dry matter accumulation between the PSt and SSt, but also showed a concomitant improvement after de-tillering. This suggests a tight regulation of assimilate supply and dry matter accumulation in wheat spikelets. Since PSt and SSt share the same rachis node, the main vascular bundle in the rachis/rachilla is expected to bifurcate to connect each spikelet/floret to the vascular system. We postulate that the vascular structure in the wheat spikelet might even follow Murray's law, where the wide conduits assigned at the base of the spikelet feed the narrower conduits of the distal florets. We discuss our results based on the two modalities of the vascular network systems in plants.
Collapse
Affiliation(s)
- Gizaw M Wolde
- Independent HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany; and Present address: Department of Plant Sciences, University of California, Davis, CA 95616, USA; and Corresponding authors. Emails: ;
| | - Thorsten Schnurbusch
- Independent HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany; and Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany; and Corresponding authors. Emails: ;
| |
Collapse
|
10
|
Kim DY, Hong MJ, Seo YW. Genome-wide transcript analysis of inflorescence development in wheat. Genome 2019; 62:623-633. [PMID: 31269405 DOI: 10.1139/gen-2018-0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The process of inflorescence development is directly related to yield components that determine the final grain yield in most cereal crops. Here, microarray analysis was conducted for four different developmental stages of inflorescence to identify genes expressed specifically during inflorescence development. To select inflorescence-specific expressed genes, we conducted meta-analysis using 1245 Affymetrix GeneChip array sets obtained from various development stages, organs, and tissues of members of Poaceae. The early stage of inflorescence development was accompanied by a significant upregulation of a large number of cell differentiation genes, such as those associated with the cell cycle, cell division, DNA repair, and DNA synthesis. Moreover, key regulatory genes, including the MADS-box gene, KNOTTED-1-like homeobox genes, GROWTH-REGULATING FACTOR 1 gene, and the histone methyltransferase gene, were highly expressed in the early inflorescence development stage. In contrast, fewer genes were expressed in the later stage of inflorescence development, and played roles in hormone biosynthesis and meiosis-associated genes. Our work provides novel information regarding the gene regulatory network of cell division, key genes involved in the differentiation of inflorescence in wheat, and regulation mechanism of inflorescence development that are crucial stages for determining final grain number per spike and the yield potential of wheat.
Collapse
Affiliation(s)
- Dae Yeon Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
Floret fertility is a key determinant of the number of grains per inflorescence in cereals. During the evolution of wheat (Triticum sp.), floret fertility has increased, such that current bread wheat (Triticum aestivum) cultivars set three to five grains per spikelet. However, little is known regarding the genetic basis of floret fertility. The locus Grain Number Increase 1 (GNI1) is shown here to be an important contributor to floret fertility. GNI1 evolved in the Triticeae through gene duplication. The gene, which encodes a homeodomain leucine zipper class I (HD-Zip I) transcription factor, was expressed most abundantly in the most apical floret primordia and in parts of the rachilla, suggesting that it acts to inhibit rachilla growth and development. The level of GNI1 expression has decreased over the course of wheat evolution under domestication, leading to the production of spikes bearing more fertile florets and setting more grains per spikelet. Genetic analysis has revealed that the reduced-function allele GNI-A1 contributes to the increased number of fertile florets per spikelet. The RNAi-based knockdown of GNI1 led to an increase in the number of both fertile florets and grains in hexaploid wheat. Mutants carrying an impaired GNI-A1 allele out-yielded WT allele carriers under field conditions. The data show that gene duplication generated evolutionary novelty affecting floret fertility while mutations favoring increased grain production have been under selection during wheat evolution under domestication.
Collapse
|
12
|
Dobrovolskaya OB, Dresvyannikova AE. Cereal inflorescence: features of morphology, development and genetic regulation of morphogenesis. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cereals (Poaceae Barnh.) are the largest family of monocotyledonous flowering plants growing on all continents and constituting a significant part of Earth's many ecological communities. The Poaceae includes many important crops, such as rice, maize, wheat, barley, and rye. The qualitative and quantitative characteristics of cereal inflorescences are directly related to yield and are determined by the features of inflorescence development. This review considers modern concepts of the morphology, development and genetic mechanisms regulating the cereal inflorescence development. A common feature of cereal inflorescences is a spikelet, a reduced branch that bears florets with a similar structure and common scheme of development in all cereals. The length and the structure of the main axis, the presence and type of lateral branches cause a great variety of cereal inflorescences. Complex cereal inflorescences are formed from meristems of several types. The transition from the activity of one meristem to another is a multi-step process. The genes involved in the control of the cereal inflorescence development have been identified using mutants (mainly maize and rice) with altered inflorescence and floret morphology; most of these genes regulate the initiation and fate of meristems. The presence of some genetic mechanisms in cereals confirms the models previously discovered in dicotyledonous plants; on the other hand, there are cereal-specific developmental processes that are controlled by new modules of genetic regulation, in particular, associated with the formation of a branched inflorescence. An important aspect is the presence of quantitative variability of traits under the control of developmental genes, which is a prerequisite for the use of weak alleles contributing to the variability of plant growth and yield in breeding programs (for example, genes of the CLAVATA signaling pathway).
Collapse
Affiliation(s)
- O. B. Dobrovolskaya
- Institute of Cytology and Genetics, SB RAS; All-Russian Plant Quarantine Centre
| | | |
Collapse
|
13
|
Dobrovolskaya OB, Amagai Y, Popova KI, Dresvyannikova AE, Martinek P, Krasnikov AA, Watanabe N. Genes WHEAT FRIZZY PANICLE and SHAM RAMIFICATION 2 independently regulate differentiation of floral meristems in wheat. BMC PLANT BIOLOGY 2017; 17:252. [PMID: 29297328 PMCID: PMC5751757 DOI: 10.1186/s12870-017-1191-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
BACKGROUND Inflorescences of wheat species, spikes, are characteristically unbranched and bear one sessile spikelet at a spike rachis node. Development of supernumerary spikelets (SSs) at rachis nodes or on the extended rachillas is abnormal. Various wheat morphotypes with altered spike morphology, associated with the development of SSs, present an important genetic resource for studies on genetic regulation of wheat inflorescence development. RESULTS Here we characterized diploid and tetraploid wheat lines of various non-standard spike morphotypes, which allowed for identification of a new mutant allele of the WHEAT FRIZZY PANICLE (WFZP) gene that determines spike branching in diploid wheat Ttiticum monococcum L. Moreover, we found that the development of SSs and spike branching in wheat T. durum Desf. was a result of a wfzp-A/TtBH-A1 mutation that originated from spontaneous hybridization with T. turgidum convar. сompositum (L.f.) Filat. Detailed characterization of the false-true ramification phenotype controlled by the recessive sham ramification 2 (shr2) gene in tetraploid wheat T. turgidum L. allowed us to suggest putative functions of the SHR2 gene that may be involved in the regulation of spikelet meristem fate and in specification of floret meristems. The results of a gene interaction test suggested that genes WFZP and SHR2 function independently in different processes during spikelet development, whereas another spike ramification gene(s) interact(s) with SHR2 and share(s) common functions. CONCLUSIONS SS mutants represent an important genetic tool for research on the development of the wheat spikelet and for identification of genes that control meristem activities. Further studies on different non-standard SS morphotypes and wheat lines with altered spike morphology will allow researchers to identify new genes that control meristem identity and determinacy, to elucidate the interaction between the genes, and to understand how these genes, acting in concert, regulate the development of the wheat spike.
Collapse
Affiliation(s)
- Oxana B. Dobrovolskaya
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090 Russia
| | - Yumiko Amagai
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Karina I. Popova
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
| | - Alina E. Dresvyannikova
- Institute of Cytology and Genetics, SB RAS, Lavrenvieva ave. 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, Pirogova, 2, Novosibirsk, 630090 Russia
| | | | | | | |
Collapse
|
14
|
Feng N, Song G, Guan J, Chen K, Jia M, Huang D, Wu J, Zhang L, Kong X, Geng S, Liu J, Li A, Mao L. Transcriptome Profiling of Wheat Inflorescence Development from Spikelet Initiation to Floral Patterning Identified Stage-Specific Regulatory Genes. PLANT PHYSIOLOGY 2017; 174:1779-1794. [PMID: 28515146 PMCID: PMC5490901 DOI: 10.1104/pp.17.00310] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/13/2017] [Indexed: 05/20/2023]
Abstract
Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields.
Collapse
Affiliation(s)
- Nan Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gaoyuan Song
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiantao Guan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dehua Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China
| | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuying Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Tanaka M, Tanaka H, Shitsukawa N, Kitagawa S, Takumi S, Murai K. Homoeologous copy-specific expression patterns of MADS-box genes for floral formation in allopolyploid wheat. Genes Genet Syst 2015; 90:217-29. [PMID: 26616759 DOI: 10.1266/ggs.15-00029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The consensus model for floral organ formation in higher plants, the so-called ABCDE model, proposes that floral whorl-specific combinations of class A, B, C, D, and E genes specify floral organ identity. Class A, B, C, D and E genes encode MADS-box transcription factors; the single exception being the class A gene APETALA2. Bread wheat (Triticum aestivum) is a hexaploid species with a genome constitution AABBDD; the hexaploid originated from a cross between tetraploid T. turgidum (AABB) and diploid Aegilops tauschii (DD). Tetraploid wheat is thought to have originated from a cross between the diploid species T. urartu (AA) and Ae. speltoides (BB). Consequently, the hexaploid wheat genome contains triplicated homoeologous copies (homoeologs) of each gene derived from the different ancestral diploid species. In this study, we examined the expression patterns of homoeologs of class B, C and D MADS-box genes during floral development. For the class B gene wheat PISTILLATA2 (WPI2), the homoeologs from the A and D genomes were expressed, while expression of the B genome homoeolog was suppressed. For the class C gene wheat AGAMOUS1 (WAG1), the homoeologs on the A and B genomes were expressed, while expression of the D genome homoeolog was suppressed. For the class D gene wheat SEEDSTICK (WSTK), the B genome homoeolog was preferentially expressed. These differential patterns of homoeolog expression were consistently observed among different hexaploid wheat varieties and synthetic hexaploid wheat lines developed by artificial crosses between tetraploid wheat and Ae. tauschii. These results suggest that homoeolog-specific regulation of the floral MADS-box genes occurs in allopolyploid wheat.
Collapse
Affiliation(s)
- Miku Tanaka
- Department of Bioscience, Fukui Prefectural University
| | | | | | | | | | | |
Collapse
|
16
|
Guo J, Zhang Y, Shi W, Zhang B, Zhang J, Xu Y, Cheng X, Cheng K, Zhang X, Hao C, Cheng S. Association Analysis of Grain-setting Rates in Apical and Basal Spikelets in Bread Wheat (Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2015; 6:1029. [PMID: 26635852 PMCID: PMC4653486 DOI: 10.3389/fpls.2015.01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/06/2015] [Indexed: 05/29/2023]
Abstract
The rates of grain-setting in apical and basal spikelets in wheat directly affect the kernel number per spike (KNPS). In this study, 220 wheat lines from 18 Chinese provinces and five foreign countries were used as a natural population. Phenotypic analysis showed differences in grain-setting rates between apical and basal spikelets. The broad-sense heritability of grain-setting rate in apical spikelets (18.7-21.0%) was higher than that for basal spikelets (9.4-16.4%). Significant correlations were found between KNPS and grain numbers in apical (R (2) = 0.40-0.45, P < 0.01) and basal (R (2) = 0.41-0.56, P < 0.01) spikelets. Seventy two of 106 SSR markers were associated with grain setting, 32 for apical spikelets, and 34 for basal spikelets. The SSR loci were located on 17 chromosomes, except 3A, 3D, 4A, and 7D, and explained 3.7-22.9% of the phenotypic variance. Four markers, Xcfa2153-1A 202 , Xgwm186-5A 118 , Xgwm156-3B 319 , and Xgwm537-7B 210 , showed the largest effects on grain numbers in apical and basal spikelets. High grain numbers in apical and basal spikelets were associated with elite alleles. Ningmai 9, Ning 0569, and Yangmai 18 with high grain-setting rates carried larger numbers of favorable alleles. Comparison of grain numbers in basal and apical spikelets of 35 Yangmai and Ningmai lines indicated that the Ningmai lines had better grain-setting rates (mean 21.4) than the Yangmai lines (16.5).
Collapse
Affiliation(s)
- Jie Guo
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
- Institute for Chemical Ecology, Shanxi Agricultural UniversityTaigu, China
| | - Yong Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Weiping Shi
- Institute for Chemical Ecology, Shanxi Agricultural UniversityTaigu, China
| | - Boqiao Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Jingjuan Zhang
- Agricultural Science, School of Veterinary and Life Sciences, Murdoch UniversityMurdoch, WA, Australia
| | - Yanhao Xu
- Hubei Collaborative Innovation Centre for Grain Industry/College of Agriculture, Yangtze UniversityJingzhou, China
| | - Xiaoming Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Kai Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture/The National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Shunhe Cheng
- Key Laboratory of Wheat Biology and Genetic Improvement for Low and Middle Yangtze Valley (Ministry of Agriculture), Lixiahe Agricultural Institute of Jiangsu ProvinceYangzhou, China
| |
Collapse
|
17
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
18
|
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5411-28. [PMID: 24179097 DOI: 10.1093/jxb/ert333] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Global food security demands the development and delivery of new technologies to increase and secure cereal production on finite arable land without increasing water and fertilizer use. There are several options for boosting wheat yields, but most offer only small yield increases. Wheat is an inbred plant, and hybrids hold the potential to deliver a major lift in yield and will open a wide range of new breeding opportunities. A series of technological advances are needed as a base for hybrid wheat programmes. These start with major changes in floral development and architecture to separate the sexes and force outcrossing. Male sterility provides the best method to block self-fertilization, and modifying the flower structure will enhance pollen access. The recent explosion in genomic resources and technologies provides new opportunities to overcome these limitations. This review outlines the problems with existing hybrid wheat breeding systems and explores molecular-based technologies that could improve the hybrid production system to reduce hybrid seed production costs, a prerequisite for a commercial hybrid wheat system.
Collapse
Affiliation(s)
- Ryan Whitford
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| | | | | | | | | | | | | |
Collapse
|
19
|
Murai K. Homeotic Genes and the ABCDE Model for Floral Organ Formation in Wheat. PLANTS 2013; 2:379-95. [PMID: 27137382 PMCID: PMC4844379 DOI: 10.3390/plants2030379] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/02/2013] [Accepted: 06/18/2013] [Indexed: 12/19/2022]
Abstract
Floral organ formation has been the subject of intensive study for over 20 years, particularly in the model dicot species Arabidopsis thaliana. These studies have led to the establishment of a general model for the development of floral organs in higher plants, the so-called ABCDE model, in which floral whorl-specific combinations of class A, B, C, D, or E genes specify floral organ identity. In Arabidopsis, class A, B, C, D, E genes encode MADS-box transcription factors except for the class A gene APETALA2. Mutation of these genes induces floral organ homeosis. In this review, I focus on the roles of these homeotic genes in bread wheat (Triticum aestivum), particularly with respect to the ABCDE model. Pistillody, the homeotic transformation of stamens into pistil-like structures, occurs in cytoplasmic substitution (alloplasmic) wheat lines that have the cytoplasm of the related wild species Aegilops crassa. This phenomenon is a valuable tool for analysis of the wheat ABCDE model. Using an alloplasmic line, the wheat ortholog of DROOPING LEAF (TaDL), a member of the YABBY gene family, has been shown to regulate pistil specification. Here, I describe the current understanding of the ABCDE model for floral organ formation in wheat.
Collapse
Affiliation(s)
- Koji Murai
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| |
Collapse
|
20
|
Yamamoto M, Shitsukawa N, Yamada M, Kato K, Takumi S, Kawaura K, Ogihara Y, Murai K. Identification of a novel homolog for a calmodulin-binding protein that is upregulated in alloplasmic wheat showing pistillody. PLANTA 2013. [PMID: 23192388 DOI: 10.1007/s00425-012-1812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Intracellular signaling pathways between the mitochondria and the nucleus are important in both normal and abnormal development in plants. The homeotic transformation of stamens into pistil-like structures (a phenomenon termed pistillody) in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) has been suggested to be induced by mitochondrial retrograde signaling, one of the forms of intracellular communication. We showed previously that the mitochondrial gene orf260 could alter the expression of nuclear class B MADS-box genes to induce pistillody. To elucidate the interactions between orf260 and nuclear homeotic genes, we performed a microarray analysis to compare gene expression patterns in the young spikes of a pistillody line and a normal line. We identified five genes that showed higher expression levels in the pistillody line. Quantitative expression analysis using real-time PCR indicated that among these five genes, Wheat Calmodulin-Binding Protein 1 (WCBP1) was significantly upregulated in young spikes of the pistillody line. The amino acid sequence of WCBP1 was predicted from the full-length cDNA sequence and found to encode a novel plant calmodulin-binding protein. RT-PCR analysis indicated that WCBP1 was preferentially expressed in young spikes at an early stage and decreased during spike maturation, indicating that it was associated with spikelet/floret development. Furthermore, in situ hybridization analysis suggested that WCBP1 was highly expressed in the pistil-like stamens at early to late developmental stages. These results indicate that WCBP1 plays a role in formation and development of pistil-like stamens induced by mitochondrial retrograde signaling.
Collapse
Affiliation(s)
- Mika Yamamoto
- Department of Bioscience, Fukui Prefectural University, 4-1-1 Matsuoka-kenjojima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shamloo-Dashtpagerdi R, Razi H, Lindlöf A, Niazi A, Dadkhodaie A, Ebrahimie E. Comparative analysis of expressed sequence tags (ESTs) from Triticum monococcum shoot apical meristem at vegetative and reproductive stages. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
22
|
Hatano H, Mizuno N, Matsuda R, Shitsukawa N, Park P, Takumi S. Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii. THE NEW PHYTOLOGIST 2012; 194:1143-1154. [PMID: 22436033 DOI: 10.1111/j.1469-8137.2012.04125.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Common wheat is an allohexaploid species, derived through endoreduplication of an interspecific triploid hybrid produced from a cross between cultivated tetraploid wheat and the wild diploid relative Aegilops tauschii. Hybrid incompatibilities, including hybrid necrosis, have been observed in triploid wheat hybrids. A limited number of A. tauschii accessions show hybrid lethality in triploid hybrids crossed with tetraploid wheat as a result of developmental arrest at the early seedling stage, which is termed severe growth abortion (SGA). Despite the potential severity of this condition, the genetic mechanisms underlying SGA are not well understood. Here, we conducted comparative analyses of gene expression profiles in crown tissues to characterize developmental arrest in triploid hybrids displaying SGA. A number of defense-related genes were highly up-regulated, whereas many transcription factor genes, such as the KNOTTED1-type homeobox gene, which function in shoot apical meristem (SAM) and leaf primordia, were down-regulated in the crown tissues of SGA plants. Transcript accumulation levels of cell cycle-related genes were also markedly reduced in SGA plants, and no histone H4-expressing cells were observed in the SAM of SGA hybrid plants. Our findings demonstrate that SGA shows unique features among other types of abnormal growth phenotypes, such as type II and III necrosis.
Collapse
Affiliation(s)
- Hitoshi Hatano
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Ryusuke Matsuda
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Naoki Shitsukawa
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Pyoyun Park
- Laboratory of Stress Cytology, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
23
|
Diversification of three APETALA1/FRUITFULL-like genes in wheat. Mol Genet Genomics 2012; 287:283-94. [PMID: 22314801 DOI: 10.1007/s00438-012-0679-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/30/2012] [Indexed: 12/22/2022]
Abstract
The genomes of grass family species have three paralogs of APETALA1/FRUITFULL (AP1/FUL)-like genes (FUL1, FUL2 and FUL3) that are derived from the FUL lineage. In this study, we focus on the different roles of the wheat AP1/FUL-like genes, WFUL1 (identical to VRN1), WFUL2 and WFUL3, during the transition from vegetative to reproductive growth. Sequence analysis indicated that there was a high level of variability in the amino acid sequence of the C-domain among three WFUL genes. Expression analyses using the spring wheat cultivar Chinese Spring indicated that WFUL1/VRN1 was expressed in leaves as well as spike primordia of non-vernalized plants at the vegetative stage just before phase transition, while WFUL2 and WFUL3 were not expressed in leaves. This result indicates that WFUL1/VRN1 performs a distinct role in leaves before phase transition. In young spikes, WFUL1/VRN1 and WFUL3 were expressed in all developing Xoral organs, whereas WFUL2 expression was restricted in the Xoral organs to the lemma and palea. Furthermore, yeast two-hybrid and three-hybrid analyses revealed that WFUL2, but not WFUL1/VRN1 or WFUL3, interacted with class B and class E proteins. These results suggest that WFUL2 of wheat has class A functions in specifying the identities of Xoral meristems and outer Xoral organs (lemma and palea) through collaboration with class B and class E genes.
Collapse
|
24
|
Sreenivasulu N, Schnurbusch T. A genetic playground for enhancing grain number in cereals. TRENDS IN PLANT SCIENCE 2012; 17:91-101. [PMID: 22197176 DOI: 10.1016/j.tplants.2011.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/03/2011] [Accepted: 11/14/2011] [Indexed: 05/18/2023]
Abstract
Improving the yield stability of cereal crops with a view to bolstering global food security is an important priority. The components of final grain number per plant at harvest are determined by fertile spikes per plant, number of fertile spikelets per spike and number of grains per spikelet. In this review article, we focus on the genetic factors of floral development and inflorescence architecture known to influence grain number and provide a broad overview of genes and genetic pathways that potentially can be manipulated to increase the yield of cereal crops, in particular wheat (Triticum aestivum) and barley (Hordeum vulgare). In addition, we discuss the outcome of multidisciplinary genomics knowledge to identify potential gene targets to develop conceptual ideotypes to meet the future demand.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Interdisciplinary Center for Crop Plant Research (IZN) Research Group Stress Genomics, Corrensstr. 3, 06466 Gatersleben, Germany
| | | |
Collapse
|
25
|
Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S. Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:114-128. [PMID: 21645146 DOI: 10.1111/j.1365-313x.2011.04667.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common wheat is an allohexaploid species originating from a naturally occurring inter-specific cross between tetraploid wheat and the diploid wild wheat Aegilops tauschii Coss. Artificial allopolyploidization can produce synthetic hexaploid wheat. However, synthetic triploid hybrids show four types of hybrid growth abnormalities: type II and III hybrid necrosis, hybrid chlorosis, and severe growth abortion. Of these hybrid abnormalities, type II necrosis is induced by low temperature. Under low temperature, elongation of stems and expansion of new leaves is repressed in type II necrosis lines, which later exhibit necrotic symptoms. Here, we characterize type II necrosis in detail. Comparative transcriptome analysis showed that a number of defense-related genes were highly up-regulated in seedling leaves that showed type II necrosis. Transmission electron microscopy revealed extensive cell death in the leaves under low-temperature conditions, accompanied by abundant generation of reactive oxygen species. In addition, down-regulation of cell cycle-related genes was observed in shoot apices of type II necrosis lines under low-temperature conditions. Quantitative RT-PCR and in situ hybridization showed repression of accumulation of histone H4 transcripts in the shoot apical meristem of type II necrosis lines. These results strongly suggest that an autoimmune response-like reaction and repression of cell division in the shoot apical meristem are associated with the abnormal growth phenotype in type II necrosis lines.
Collapse
Affiliation(s)
- Nobuyuki Mizuno
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
26
|
Prokopyk DO, Ternovska TK. Homeotic genes and their role in development of morphological traits in wheat. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci U S A 2009; 106:20103-8. [PMID: 19901325 DOI: 10.1073/pnas.0907896106] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of floral organ specification is principally conserved in angiosperms, as demonstrated by the ABC model. By contrast, mechanisms that regulate the development of organs or structures specific to a group of species remain unclear. Grasses have unique inflorescence units, comprising spikelets and florets. In the genus Oryza (rice), the single spikelet consists of a fertile floret subtended by a lemma and a palea, two sterile lemmas, and rudimentary glumes. Each sterile lemma is a tiny glume-like organ with a smooth surface. Here, we have examined a long sterile lemma1 (g1) mutant, in which the sterile lemma is enlarged like the lemma. Detailed phenotypic analysis reveals that the large sterile lemma in the g1 mutant appears to be caused by homeotic transformation of the sterile lemma into a lemma, suggesting that G1 is involved in the repression of lemma identity to specify the sterile lemma. Gene isolation reveals that G1 is a member of a plant-specific gene family that encodes proteins with a previously uncharacterized domain, named here ALOG (Arabidopsis LSH1 and Oryza G1). G1 mRNA is expressed in sterile lemma primordia throughout their development, and G1 protein is localized in the nucleus. A trans-activation assay using the yeast GAL4 system suggests that G1 is involved in transcriptional regulation. Repression of lemma identity by G1 is consistent with a hypothesis proposed to explain the morphological evolution of rice spikelets. We also show that a wild rice species, Oryza grandiglumis, that forms large sterile lemmas has serious mutations in the G1 gene.
Collapse
|