1
|
Pineda-Castro D, Diaz H, Soto J, Urban MO. LysipheN: a gravimetric IoT device for near real-time high-frequency crop phenotyping: a case study on common beans. PLANT METHODS 2024; 20:39. [PMID: 38486284 PMCID: PMC10938686 DOI: 10.1186/s13007-024-01170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Climate instability directly affects agro-environments. Water scarcity, high air temperature, and changes in soil biota are some factors caused by environmental changes. Verified and precise phenotypic traits are required for assessing the impact of various stress factors on crop performance while keeping phenotyping costs at a reasonable level. Experiments which use a lysimeter method to measure transpiration efficiency are often expensive and require complex infrastructures. This study presents the development and testing process of an automated, reliable, small, and low-cost prototype system using IoT with high-frequency potential in near-real time. Because of its waterproofness, our device-LysipheN-assesses each plant individually and can be deployed for experiments in different environmental conditions (farm, field, greenhouse, etc.). LysipheN integrates multiple sensors, automatic irrigation according to desired drought scenarios, and a remote, wireless connection to monitor each plant and device performance via a data platform. During testing, LysipheN proved to be sensitive enough to detect and measure plant transpiration, from early to ultimate plant developmental stages. Even though the results were generated on common beans, the LysipheN can be scaled up/adapted to other crops. This tool serves to screen transpiration, transpiration efficiency, and transpiration-related physiological traits. Because of its price, endurance, and waterproof design, LysipheN will be useful in screening populations in a realistic ecological and breeding context. It operates by phenotyping the most suitable parental lines, characterizing genebank accessions, and allowing breeders to make a target-specific selection using functional traits (related to the place where LysipheN units are located) in line with a realistic agronomic background.
Collapse
Affiliation(s)
- Duvan Pineda-Castro
- The Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Apartado Aereo 7613, Cali, 763537, Colombia.
| | - Harold Diaz
- The Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Apartado Aereo 7613, Cali, 763537, Colombia
| | - Jonatan Soto
- The Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Apartado Aereo 7613, Cali, 763537, Colombia
| | - Milan Oldřich Urban
- The Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Apartado Aereo 7613, Cali, 763537, Colombia.
| |
Collapse
|
2
|
Felouah OC, Ammad F, Adda A, Bouzid A, Gharnaout ML, Evon P, Merah O. Morpho-Anatomical Modulation of Seminal Roots in Response to Water Deficit in Durum Wheat ( Triticum turgidum var. durum). PLANTS (BASEL, SWITZERLAND) 2024; 13:487. [PMID: 38498479 PMCID: PMC10892463 DOI: 10.3390/plants13040487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The productivity of durum wheat in Mediterranean regions is greatly reduced by water deficits that vary in intensity and time of occurrence. The development of more tolerant cultivars is the main solution for fighting these stresses, but this requires prior study of their mechanisms. The involvement of the root system in drought avoidance is of major importance. It is in this context that the present work attempts to establish the impact of morpho-anatomical remodeling of seminal roots on dehydration avoidance at the javelina stage in five durum wheat genotypes grown under three water regimes, 100%, 60% and 30% of field capacity (FC). In the last two treatments, which were applied by stopping irrigation, moisture was concentrated mainly in the depths of the substrate cylinders and was accompanied by greater root elongation compared with the control. The elongation reached rates of 20 and 22% in the ACSAD 1231 genotype and 12 and 13% in the Waha genotype, in the 60% FC and 30% FC treatments respectively. The seminal roots anatomy was also modified by water deficit in all genotypes but to different degrees. The diameter of vessels in the late metaxylem vessels was reduced, reaching 17.3 and 48.2% in the Waha genotype in the 60% FC and 30% FC treatments, respectively. The water deficit also increased the number of vessels in the early metaxylem, while reducing the diameter of its conducting vessels. ACSAD 1361 and Langlois genotypes stood out with the highest rates of diameter reduction. The morpho-anatomical transformations of the roots contributed effectively to the plants' absorption of water and, consequently, to the maintenance of a fairly high relative water content, approaching 80%.
Collapse
Affiliation(s)
- Oum Cheikh Felouah
- Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University Ibn-Khaldoun, Tiaret 14000, Algeria (A.B.)
- Laboratory of Plant Physiology Applied to Aboveground Crops, Faculty of Nature and Life Sciences, University-Ibn-Khaldoun, Tiaret 14000, Algeria
| | - Faiza Ammad
- Laboratoire de Recherché Protection et Valorisation des Produits Agrobiologiques, Departement de Biotechnologie, Faculté des Sciences de la Nature et de la vie, Université Blida-1, BP 270, Blida 09000, Algeria;
| | - Ahmed Adda
- Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University Ibn-Khaldoun, Tiaret 14000, Algeria (A.B.)
| | - Assia Bouzid
- Laboratory of Agro-Biotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University Ibn-Khaldoun, Tiaret 14000, Algeria (A.B.)
- Laboratory of Plant Physiology Applied to Aboveground Crops, Faculty of Nature and Life Sciences, University-Ibn-Khaldoun, Tiaret 14000, Algeria
| | | | - Philippe Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAe, INPT, 31030 Toulouse, France;
| | - Othmane Merah
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France;
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, INRAe, INPT, 31030 Toulouse, France;
| |
Collapse
|
3
|
Honda S, Imamura A, Seki Y, Chigira K, Iwasa M, Hayami K, Nomura T, Ohkubo S, Ookawa T, Nagano AJ, Matsuoka M, Tanaka Y, Adachi S. Genome-wide association study of leaf photosynthesis using a high-throughput gas exchange system in rice. PHOTOSYNTHESIS RESEARCH 2024; 159:17-28. [PMID: 38112862 DOI: 10.1007/s11120-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Enhancing leaf photosynthetic capacity is essential for improving the yield of rice (Oryza sativa L.). Although the exploitation of natural genetic resources is considered a promising approach to enhance photosynthetic capacity, genomic factors related to the genetic diversity of leaf photosynthetic capacity have yet to be fully elucidated due to the limitation of measurement efficiency. In this study, we aimed to identify novel genomic regions for the net CO2 assimilation rate (A) by combining genome-wide association study (GWAS) and the newly developed rapid closed gas exchange system MIC-100. Using three MIC-100 systems in the field at the vegetative stage, we measured A of 168 temperate japonica rice varieties with six replicates for three years. We found that the modern varieties exhibited higher A than the landraces, while there was no significant relationship between the release year and A among the modern varieties. Our GWAS scan revealed two major peaks located on chromosomes 4 and 8, which were repeatedly detected in the different experiments and in the generalized linear modelling approach. We suggest that high-throughput gas exchange measurements combined with GWAS is a reliable approach for understanding the genetic mechanisms underlying photosynthetic diversities in crop species.
Collapse
Affiliation(s)
- Sotaro Honda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Ayumu Imamura
- Graduate School of Agriculture, Ibaraki University, Ibaraki, 300-0393, Japan
| | - Yoshiaki Seki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Koki Chigira
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Marina Iwasa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Kentaro Hayami
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Tomohiro Nomura
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Satoshi Ohkubo
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Taiichiro Ookawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0017, Japan
| | - Makoto Matsuoka
- Faculty of Food and Agricultural Sciences, Institute of Fermentation Sciences, Fukushima University, Fukushima, 960-1296, Japan
| | - Yu Tanaka
- Graduate School of Environment and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shunsuke Adachi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
| |
Collapse
|
4
|
Boursiac Y, Protto V, Rishmawi L, Maurel C. Experimental and conceptual approaches to root water transport. PLANT AND SOIL 2022; 478:349-370. [PMID: 36277078 PMCID: PMC9579117 DOI: 10.1007/s11104-022-05427-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/03/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Root water transport, which critically contributes to the plant water status and thereby plant productivity, has been the object of extensive experimental and theoretical studies. However, root systems represent an intricate assembly of cells in complex architectures, including many tissues at distinct developmental stages. Our comprehension of where and how molecular actors integrate their function in order to provide the root with its hydraulic properties is therefore still limited. SCOPE Based on current literature and prospective discussions, this review addresses how root water transport can be experimentally measured, what is known about the underlying molecular actors, and how elementary water transport processes are scaled up in numerical/mathematical models. CONCLUSIONS The theoretical framework and experimental procedures on root water transport that are in use today have been established a few decades ago. However, recent years have seen the appearance of new techniques and models with enhanced resolution, down to a portion of root or to the tissue level. These advances pave the way for a better comprehension of the dynamics of water uptake by roots in the soil.
Collapse
Affiliation(s)
- Yann Boursiac
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Virginia Protto
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Louai Rishmawi
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| |
Collapse
|
5
|
Sakoda K, Kaga A, Tanaka Y, Suzuki S, Fujii K, Ishimoto M, Shiraiwa T. Two novel quantitative trait loci affecting the variation in leaf photosynthetic capacity among soybeans. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110300. [PMID: 31928682 DOI: 10.1016/j.plantsci.2019.110300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 05/13/2023]
Abstract
There is a large variation in CO2 assimilation rate per unit of leaf area (A) within or among crop species, which can be exploited to improve A by elucidating the mechanisms underlying such variation. The objective of the present study is to elucidate the genetic factors affecting the variation in leaf photosynthetic capacity among soybeans. Here, we conducted field experiments over three years, using Enrei, a leading variety in Japan, Peking, a landrace from China and the chromosome segment substitution lines derived from their progenies. The gas exchange measurements were conducted to evaluate A among soybean. Peking showed higher A than Enrei after the flowering in all the years. The genetic analysis identified two novel quantitative trait loci (QTLs) related to variation in A, which were located on chromosome 13 (qLPC13) and 20 (qLPC20). The Peking allele at qLPC13 increased A by 8.3 % in the Enrei genetic background, while the Peking allele at qLPC20 decreased A by 15.3 %. The present study is the first report on QTLs affecting a genotypic variation in leaf photosynthetic capacity among field-grown soybeans. The identification of the causal genes in these QTLs can provide a novel strategy to enhance leaf photosynthetic capacity with soybean breeding.
Collapse
Affiliation(s)
- Kazuma Sakoda
- Crop Science Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto-city, Kyoto 606-8502, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan.
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba-city, Ibaraki, Japan.
| | - Yu Tanaka
- Crop Science Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto-city, Kyoto 606-8502, Japan; JST, PRESTO, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Seita Suzuki
- Crop Science Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto-city, Kyoto 606-8502, Japan.
| | - Kenichiro Fujii
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba-city, Ibaraki, Japan.
| | - Masao Ishimoto
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8518, Japan.
| | - Tatsuhiko Shiraiwa
- Crop Science Laboratory, Graduate School of Agriculture, Kyoto University, Kyoto-city, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Caroline Silva Lopes E, Pereira Rodrigues W, Ruas Fraga K, Machado Filho JA, Rangel da Silva J, Menezes de Assis-Gomes M, Moura Assis Figueiredo FAM, Gresshoff PM, Campostrini E. Hypernodulating soybean mutant line nod4 lacking 'Autoregulation of Nodulation' (AON) has limited root-to-shoot water transport capacity. ANNALS OF BOTANY 2019; 124:979-991. [PMID: 30955042 PMCID: PMC6881229 DOI: 10.1093/aob/mcz040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Although hypernodulating phenotype mutants of legumes, such as soybean, possess a high leaf N content, the large number of root nodules decreases carbohydrate availability for plant growth and seed yield. In addition, under conditions of high air vapour pressure deficit (VPD), hypernodulating plants show a limited capacity to replace water losses through transpiration, resulting in stomatal closure, and therefore decreased net photosynthetic rates. Here, we used hypernodulating (nod4) (282.33 ± 28.56 nodules per plant) and non-nodulating (nod139) (0 nodules per plant) soybean mutant lines to determine explicitly whether a large number of nodules reduces root hydraulic capacity, resulting in decreased stomatal conductance and net photosynthetic rates under high air VPD conditions. METHODS Plants were either inoculated or not inoculated with Bradyrhizobium diazoefficiens (strain BR 85, SEMIA 5080) to induce nitrogen-fixing root nodules (where possible). Absolute root conductance and root conductivity, plant growth, leaf water potential, gas exchange, chlorophyll a fluorescence, leaf 'greenness' [Soil Plant Analysis Development (SPAD) reading] and nitrogen content were measured 37 days after sowing. KEY RESULTS Besides the reduced growth of hypernodulating soybean mutant nod4, such plants showed decreased root capacity to supply leaf water demand as a consequence of their reduced root dry mass and root volume, which resulted in limited absolute root conductance and root conductivity normalized by leaf area. Thereby, reduced leaf water potential at 1300 h was observed, which contributed to depression of photosynthesis at midday associated with both stomatal and non-stomatal limitations. CONCLUSIONS Hypernodulated plants were more vulnerable to VPD increases due to their limited root-to-shoot water transport capacity. However, greater CO2 uptake caused by the high N content can be partly compensated by the stomatal limitation imposed by increased VPD conditions.
Collapse
Affiliation(s)
- Emile Caroline Silva Lopes
- Setor de Fisiologia Vegetal, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz, CEP, Ilhéus, Bahia, Braz il
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Weverton Pereira Rodrigues
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Katherine Ruas Fraga
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - José Altino Machado Filho
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural, Vitória, ES, Brazil
| | - Jefferson Rangel da Silva
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Mara Menezes de Assis-Gomes
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | | | - Peter M Gresshoff
- Integrative Legume Research Group, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, LMGV, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S. Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1-25. [PMID: 30483819 DOI: 10.1007/s00122-018-3219-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 10/24/2018] [Indexed: 05/27/2023]
Abstract
CSSLs are a complete library of introgression lines with chromosomal segments of usually a distant genotype in an adapted background and are valuable genetic resources for basic and applied research on improvement of complex traits. Chromosome segment substitution lines (CSSLs) are genetic stocks representing the complete genome of any genotype in the background of a cultivar as overlapping segments. Ideally, each CSSL has a single chromosome segment from the donor with a maximum recurrent parent genome recovered in the background. CSSL development program requires population-wide backcross breeding and genome-wide marker-assisted selection followed by selfing. Each line in a CSSL library has a specific marker-defined large donor segment. CSSLs are evaluated for any target phenotype to identify lines significantly different from the parental line. These CSSLs are then used to map quantitative trait loci (QTLs) or causal genes. CSSLs are valuable prebreeding tools for broadening the genetic base of existing cultivars and harnessing the genetic diversity from the wild- and distant-related species. These are resources for genetic map construction, mapping QTLs, genes or gene interactions and their functional analysis for crop improvement. In the last two decades, the utility of CSSLs in identification of novel genomic regions and QTL hot spots influencing a wide range of traits has been well demonstrated in food and commercial crops. This review presents an overview of how CSSLs are developed, their status in major crops and their use in genomic studies and gene discovery.
Collapse
Affiliation(s)
- Divya Balakrishnan
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Malathi Surapaneni
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sukumar Mesapogu
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India
| | - Sarla Neelamraju
- ICAR- National Professor Project, ICAR- Indian Institute of Rice Research, Hyderabad, India.
| |
Collapse
|
8
|
Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nat Commun 2018; 9:3884. [PMID: 30250259 PMCID: PMC6155316 DOI: 10.1038/s41467-018-06430-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Soil water uptake by roots is a key component of plant performance and adaptation to adverse environments. Here, we use a genome-wide association analysis to identify the XYLEM NAC DOMAIN 1 (XND1) transcription factor as a negative regulator of Arabidopsis root hydraulic conductivity (Lpr). The distinct functionalities of a series of natural XND1 variants and a single nucleotide polymorphism that determines XND1 translation efficiency demonstrate the significance of XND1 natural variation at species-wide level. Phenotyping of xnd1 mutants and natural XND1 variants show that XND1 modulates Lpr through action on xylem formation and potential indirect effects on aquaporin function and that it diminishes drought stress tolerance. XND1 also mediates the inhibition of xylem formation by the bacterial elicitor flagellin and counteracts plant infection by the root pathogen Ralstonia solanacearum. Thus, genetic variation at XND1, and xylem differentiation contribute to resolving the major trade-off between abiotic and biotic stress resistance in Arabidopsis. Soil water uptake is a major determinant of plant performance and stress tolerance. Here the authors show that, by affecting xylem formation in the root, natural variation at the Arabidopsis XND1 locus has contrasting effects on root hydraulics and drought tolerance versus pathogen resistance.
Collapse
|
9
|
Qi L, Sun Y, Li J, Su L, Zheng X, Wang X, Li K, Yang Q, Qiao W. Identify QTLs for grain size and weight in common wild rice using chromosome segment substitution lines across six environments. BREEDING SCIENCE 2017; 67:472-482. [PMID: 29398941 PMCID: PMC5790038 DOI: 10.1270/jsbbs.16082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/02/2017] [Indexed: 05/21/2023]
Abstract
Grain size and weight are important determinants of rice yield. The identification of beneficial genes from wild rice that have been lost or weakened in cultivated rice has become increasingly important for modern breeding strategies. In this study, we constructed a set of chromosome segment substitution lines (CSSLs) of wild rice, Oryza rufipogon with the indica cultivar 9311 genetic background. Four grain-related traits, i.e., grain length (GL), grain width (GW), length-width ratio (LWR), and thousand grain weight (TGW), were screened across six environments. A total of 37 quantitative trait loci (QTLs) were identified in these environments and mapped to 12 chromosomes. Sixteen QTLs were detected in at least two environments, and two QTL clusters were observed on Chr. 4 and Chr. 8. Based on a comparative analysis with QTLs identified in previous studies, the CSSLs between Oryza rufipogon accessions and 9311 had high genetic diversity. Among the sixteen stable QTLs, seven for TGW, LWR, GL, and GW were not previously identified, indicating potentially novel alleles from wild rice. These CSSLs provide powerful tools for functional studies and the cloning of essential genes in rice; furthermore, we identified elite germplasm for rice variety improvement.
Collapse
Affiliation(s)
- Lan Qi
- Institute of Tropical Agriculture and Forestry, Hainan University,
Haikou 570228,
China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Yan Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Jing Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Long Su
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Xiaoming Zheng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Xiaoning Wang
- Key Laboratory of Crop Genetic Breeding, Hainan Academy of Agricultural Science,
Haikou 571100,
China
| | - Kaimian Li
- Institute of Tropical Agriculture and Forestry, Hainan University,
Haikou 570228,
China
| | - Qingwen Yang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
| | - Weihua Qiao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences,
Beijing 100081,
China
- Corresponding author (e-mail: )
| |
Collapse
|
10
|
Henry A, Wehler R, Grondin A, Franke R, Quintana M. Environmental and physiological effects on grouping of drought-tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought. ANNALS OF BOTANY 2016; 118:711-724. [PMID: 27192712 PMCID: PMC5055623 DOI: 10.1093/aob/mcw068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 03/03/2016] [Indexed: 05/26/2023]
Abstract
Background and Aims Root hydraulic limitations (i.e. intra-plant restrictions to water movement) may be related to crop performance under drought, and groupings in the hydraulic function of drought-tolerant and drought-susceptible rice (Oryza sativa) varieties have been previously reported. This study aimed to better understand the environmental and physiological relationships with rice root hydraulics under drought. Methods Xylem sap bleeding rates in the field (gsap g-1shoot) were measured on seasonal and diurnal time frames, during which time environmental conditions were monitored and physiological measurements were conducted. Complementary experiments on the effects of vapour pressure deficit (VPD) on root hydraulic conductivity and on transpiration rates of de-rooted tillers were conducted in growth chambers. Key Results The diurnal effects on bleeding rate were more closely related to irradiance than VPD, and VPD effects on root hydraulic conductivity measured on 21-day-old plants were due to effects on plant growth including root surface area, maximum root depth and root:shoot ratio. Leaf osmotic potential was related to the grouping of drought-tolerant and drought-susceptible varieties in rice root hydraulics, and these groupings were independent of differences in phenology. Low single-tiller bleeding rates were observed under high evapo-transpirational demand, higher bleeding rates were observed at more negative leaf osmotic potentials in drought-susceptible varieties, and drought-tolerant and susceptible varieties differed in the VPD-induced increase in transpiration rates of de-rooted tillers. Low root suberin amounts in some of the drought-susceptible varieties may have resulted in higher ion transport, as evidenced by higher sap K+ concentration and higher bleeding rates in those varieties. Conclusions These results provide evidence of the environmental effects on shoots that can influence root hydraulics. The consistent groupings of drought-tolerant and susceptible varieties suggest that traits affecting plant osmotic status may regulate root hydraulic response to drought in rice.
Collapse
Affiliation(s)
- Amelia Henry
- International Rice Research Institute, Los Baños, Philippines and
| | | | | | | | | |
Collapse
|
11
|
Shahzad Z, Canut M, Tournaire-Roux C, Martinière A, Boursiac Y, Loudet O, Maurel C. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics. Cell 2016; 167:87-98.e14. [PMID: 27641502 DOI: 10.1016/j.cell.2016.08.068] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023]
Abstract
Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.
Collapse
Affiliation(s)
- Zaigham Shahzad
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 34060 Montpellier, France
| | - Matthieu Canut
- Institut Jean-Pierre Bourgin, INRA/AgroParisTech/CNRS/Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 34060 Montpellier, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 34060 Montpellier, France
| | - Yann Boursiac
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 34060 Montpellier, France
| | - Olivier Loudet
- Institut Jean-Pierre Bourgin, INRA/AgroParisTech/CNRS/Université Paris-Saclay, RD10, 78026 Versailles Cedex, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, UMR5004, INRA/CNRS/Montpellier SupAgro/Université Montpellier, 34060 Montpellier, France.
| |
Collapse
|
12
|
Nada RM, Abogadallah GM. Restricting the above ground sink corrects the root/shoot ratio and substantially boosts the yield potential per panicle in field-grown rice (Oryza sativa L.). PHYSIOLOGIA PLANTARUM 2016; 156:371-386. [PMID: 26296302 DOI: 10.1111/ppl.12377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 06/05/2015] [Indexed: 06/04/2023]
Abstract
Rice has shallow, weak roots, but it is unknown how much increase in yield potential could be achieved if the root/shoot ratio is corrected. Removing all tillers except the main one, in a japonica (Sakha 101) and an indica (IR64) rice cultivar, instantly increased the root/shoot ratio from 0.21 to 1.16 in Sakha 101 and from 0.16 to 1.46 in IR64. Over 30 days after detillering, the root/shoot ratios of the detillered plants decreased to 0.49 in Sakha 101 and 0.46 in IR64 but remained significantly higher than in the controls. The detillered plants showed two- or fourfold increase in the main tiller fresh weight, as a consequence of more positive midday leaf relative water content (RWC), and consistently higher rates of stomatal conductance and photosynthesis, but not transpiration, compared with the controls. The enhanced photosynthesis in Sakha 101 after detillering resulted from both improved water status and higher Rubisco contents whereas in IR64, increasing the Rubisco content did not contribute to improving photosynthesis. Detillering did not increase the carbohydrate contents of leaves but prevented starch depletion at the end of grain filling. The leaf protein content during vegetative and reproductive stages, the grain filling rate, the number of filled grains per panicle were greatly improved, bringing about 38.3 and 35.9% increase in the harvested grain dry weight per panicle in Sakha 101 and IR64, respectively. We provide evidence that improving the root performance by increasing the root/shoot ratio would eliminate the current limitations to photosynthesis and growth in rice.
Collapse
Affiliation(s)
- Reham M Nada
- Department of Botany, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Gaber M Abogadallah
- Department of Botany, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| |
Collapse
|
13
|
Yamamoto T, Suzuki T, Suzuki K, Adachi S, Sun J, Yano M, Ookawa T, Hirasawa T. Detection of QTL for exudation rate at ripening stage in rice and its contribution to hydraulic conductance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:270-277. [PMID: 26566844 DOI: 10.1016/j.plantsci.2015.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/16/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
Dry matter production of crops is determined by how much light they intercept and how efficiently they use it for carbon fixation; i.e., photosynthesis. The high-yielding rice cultivar, Akenohoshi, maintains a high photosynthetic rate in the middle of the day owing to its high hydraulic conductance in comparison with the elite commercial rice cultivar, Koshihikari. We developed 94 recombinant inbred lines derived from Akenohoshi and Koshihikari and measured their exudation rate to calculate hydraulic conductance to osmotic water transport in a paddy field. A quantitative trait locus (QTL) for exudation rate was detected on the long arm of chromosome 2 at the heading and ripening stages. We developed chromosome segment substitution lines which carried Akenohoshi segments in the Koshihikari genetic background, and measured hydraulic conductance to both osmotic and passive water transport. The QTL was confirmed to be located within a region of about 4.2Mbp on the distal end of long arm of chromosome 2. The Akenohoshi allele increased root surface area and hydraulic conductance, but didn't increase hydraulic conductivity of a plant.
Collapse
Affiliation(s)
- Toshio Yamamoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Tadafumi Suzuki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Kenji Suzuki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Shunsuke Adachi
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan; Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan; NARO Institute of Crop Science, Tsukuba, Ibaraki, 305-8518, Japan
| | - Jian Sun
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan; NARO Institute of Crop Science, Tsukuba, Ibaraki, 305-8518, Japan
| | - Taiichiro Ookawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Tadashi Hirasawa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
14
|
Kadam NN, Yin X, Bindraban PS, Struik PC, Jagadish KSV. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice? PLANT PHYSIOLOGY 2015; 167:1389-401. [PMID: 25614066 PMCID: PMC4378155 DOI: 10.1104/pp.114.253328] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 01/16/2015] [Indexed: 05/18/2023]
Abstract
Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed.
Collapse
Affiliation(s)
- Niteen N Kadam
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Xinyou Yin
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Prem S Bindraban
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Paul C Struik
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| | - Krishna S V Jagadish
- International Rice Research Institute, Los Baños, Laguna, Philippines (N.N.K., K.S.V.J.);Centre for Crop Systems Analysis, Wageningen University and Research Centre, 6700 AK Wageningen, The Netherlands (N.N.K., X.Y., P.C.S.); andVirtual Fertilizer Research Center, Washington, District of Columbia 20005 (P.S.B.)
| |
Collapse
|
15
|
Furuta T, Uehara K, Angeles-Shim RB, Shim J, Ashikari M, Takashi T. Development and evaluation of chromosome segment substitution lines (CSSLs) carrying chromosome segments derived from Oryza rufipogon in the genetic background of Oryza sativa L. BREEDING SCIENCE 2014; 63:468-75. [PMID: 24757386 PMCID: PMC3949583 DOI: 10.1270/jsbbs.63.468] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/25/2013] [Indexed: 05/04/2023]
Abstract
The wild relatives of rice (Oryza sativa L.) are useful sources of alleles that have evolved to adapt in diverse environments around the world. Oryza rufipogon, the known progenitor of the cultivated rice, harbors genes that have been lost in cultivated varieties through domestication or evolution. This makes O. rufipogon an ideal source of value-added traits that can be utilized to improve the existing rice cultivars. To explore the potential of the rice progenitor as a genetic resource for improving O. sativa, 33 chromosome segment substitution lines (CSSLs) of O. rufipogon (W0106) in the background of the elite japonica cultivar Koshihikari were developed and evaluated for several agronomic traits. Over 90% of the entire genome was introgressed from the donor parent into the CSSLs. A total of 99 putative QTLs were detected, of which 15 were identified as major effective QTLs that have significantly large effects on the traits examined. Among the 15 major effective QTLs, a QTL on chromosome 10 showed a remarkable positive effect on the number of grains per panicle. Comparison of the putative QTLs identified in this study and previous studies indicated a wide genetic diversity between O. rufipogon accessions.
Collapse
Affiliation(s)
- Tomoyuki Furuta
- Bioscience and Biotechnology Center, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| | - Kanako Uehara
- Bioscience and Biotechnology Center, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| | - Rosalyn B. Angeles-Shim
- Bioscience and Biotechnology Center, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| | - Junghyun Shim
- Bioscience and Biotechnology Center, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University,
Chikusa, Nagoya, Aichi 464-8601,
Japan
| | - Tomonori Takashi
- STAY GREEN Co., Ltd.,
2-1-5 Kazusa-Kamatari, Kisarazu, Chiba 292-0818,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
16
|
Kato Y, Okami M. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions. ANNALS OF BOTANY 2011; 108:575-83. [PMID: 21807692 PMCID: PMC3158697 DOI: 10.1093/aob/mcr184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. METHODS Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. KEY RESULTS Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. CONCLUSIONS Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.
Collapse
Affiliation(s)
- Yoichiro Kato
- Institute for Sustainable Agro-ecosystem Services, The University of Tokyo, Tokyo 188-0002, Japan.
| | | |
Collapse
|