1
|
Nguyen TH, Kang BY, Kim HH. Chromosomal dynamics in Senna: comparative PLOP-FISH analysis of tandem repeats and flow cytometric nuclear genome size estimations. FRONTIERS IN PLANT SCIENCE 2023; 14:1288220. [PMID: 38173930 PMCID: PMC10762312 DOI: 10.3389/fpls.2023.1288220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/08/2023] [Indexed: 01/05/2024]
Abstract
Introduction Tandem repeats (TRs) occur abundantly in plant genomes. They play essential roles that affect genome organization and evolution by inducing or generating chromosomal rearrangements such as duplications, deletions, inversions, and translocations. These impact gene expression and chromosome structure and even contribute to the emergence of new species. Method We investigated the effects of TRs on speciation in Senna genus by performing a comparative analysis using fluorescence in situ hybridization (FISH) with S. tora-specific TR probes. We examined the chromosomal distribution of these TRs and compared the genome sizes of seven Senna species (estimated using flow cytometry) to better understand their evolutionary relationships. Results Two (StoTR03_159 and StoTR04_55) of the nine studied TRs were not detected in any of the seven Senna species, whereas the remaining seven were found in all or some species with patterns that were similar to or contrasted with those of S. tora. Of these studies species, only S. angulata showed significant genome rearrangements and dysploid karyotypes resembling those of S. tora. The genome sizes varied among these species and did not positively correlate with chromosome number. Notably, S. angulata had the fewest chromosomes (2n = 22) but a relatively large genome size. Discussion These findings reveal the dynamics of TRs and provide a cytogenetic depiction of chromosomal rearrangements during speciation in Senna. To further elucidate the dynamics of repeat sequences in Senna, future studies must include related species and extensive repeatomic studies, including those on transposable elements.
Collapse
Affiliation(s)
| | | | - Hyun Hee Kim
- Chromosome Research Institute, Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Luo X, He Z, Liu J, Wu H, Gong X. FISH Mapping of Telomeric and Non-Telomeric (AG3T3)3 Reveal the Chromosome Numbers and Chromosome Rearrangements of 41 Woody Plants. Genes (Basel) 2022; 13:genes13071239. [PMID: 35886022 PMCID: PMC9323580 DOI: 10.3390/genes13071239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Data for the chromosomal FISH mapping localization of (AG3T3)3 are compiled for 37 species belonging 27 families; for 24 species and 14 families, this is the first such report. The chromosome number and length ranged from 14–136 and 0.56–14.48 μm, respectively. A total of 23 woody plants presented chromosome length less than 3 μm, thus belonging to the small chromosome group. Telomeric signals were observed at each chromosome terminus in 38 plants (90.5%) and were absent at several chromosome termini in only four woody plants (9.5%). Non-telomeric signals were observed in the chromosomes of 23 plants (54.8%); in particular, abundant non-telomeric (AG3T3)3 was obviously observed in Chimonanthus campanulatus. Telomeric signals outside of the chromosome were observed in 11 woody plants (26.2%). Overall, ten (AG3T3)3 signal pattern types were determined, indicating the complex genome architecture of the 37 considered species. The variation in signal pattern was likely due to chromosome deletion, duplication, inversion, and translocation. In addition, large primary constriction was observed in some species, probably due to or leading to chromosome breakage and the formation of new chromosomes. The presented results will guide further research focused on determining the chromosome number and disclosing chromosome rearrangements of woody plants.
Collapse
|
3
|
Stepanenko A, Chen G, Hoang PTN, Fuchs J, Schubert I, Borisjuk N. The Ribosomal DNA Loci of the Ancient Monocot Pistia stratiotes L. (Araceae) Contain Different Variants of the 35S and 5S Ribosomal RNA Gene Units. FRONTIERS IN PLANT SCIENCE 2022; 13:819750. [PMID: 35310643 PMCID: PMC8928438 DOI: 10.3389/fpls.2022.819750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
The freshwater plant water lettuce (Pistia stratiotes L.) grows in warm climatic zones and is used for phytoremediation and biomass production. P. stratiotes belongs to the Araceae, an ecologically and structurally diverse early monocot family, but the phylogenetic relationships among Araceae members are poorly understood. Ribosomal DNAs (rDNAs), including the 35S and 5S rDNA, encode the RNA components of ribosomes and are widely used in phylogenetic and evolutionary studies of various plant taxa. Here, we comprehensively characterized the chromosomal locations and molecular organization of 35S and 5S rDNA genes in water lettuce using karyological and molecular methods. Fluorescence in situ hybridization revealed a single location for the 35S and 5S rDNA loci, each on a different pair of the species' 28 chromosomes. Molecular cloning and nucleotide sequencing of 35S rDNA of P. stratiotes, the first representative Araceae sensu stricto in which such a study was performed, displayed typical structural characteristics. The full-length repeat showed high sequence conservation of the regions producing the 18S, 5.8S, and 25S rRNAs and divergence of the internal transcribed spacers ITS1 and ITS2 as well as the large intergenic spacer (IGS). Alignments of the deduced sequence of 18S rDNA with the sequences available for other Araceae and representatives of other clades were used for phylogenetic analysis. Examination of 11 IGS sequences revealed significant intra-genomic length variability due to variation in subrepeat number, with four types of units detected within the 35S rDNA locus of the P. stratiotes genome (estimated size 407 Mb/1C). Similarly, the 5S rDNA locus harbors gene units comprising a conserved 119-bp sequence encoding 5S rRNA and two types of non-transcribed spacer (NTS) sequences. Type I was classified into four subtypes, which apparently originated via progressive loss of subrepeats within the duplicated NTS region containing the 3' part of the 5S rRNA gene. The minor Type II NTS is shorter than Type I and differs in nucleotide composition. Some DNA clones containing two or three consecutive 5S rDNA repeats harbored 5S rDNA genes with different types of NTSs, confirming the mosaic composition of the 5S rDNA locus.
Collapse
Affiliation(s)
- Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| | - Phuong T. N. Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Faculty of Biology, Dalat University, Đà Lạt, Vietnam
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake and Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, School of Life Sciences, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
4
|
Maravilla AJ, Rosato M, Álvarez I, Nieto Feliner G, Rosselló JA. Interstitial Arabidopsis-Type Telomeric Repeats in Asteraceae. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122794. [PMID: 34961265 PMCID: PMC8705333 DOI: 10.3390/plants10122794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Tandem repeats of telomeric-like motifs at intra-chromosomal regions, known as interstitial telomeric repeats (ITR), have drawn attention as potential markers of structural changes, which might convey information about evolutionary relationships if preserved through time. Building on our previous work that reported outstanding ITR polymorphisms in the genus Anacyclus, we undertook a survey across 132 Asteraceae species, focusing on the six most speciose subfamilies and considering all the ITR data published to date. The goal was to assess whether the presence, site number, and chromosomal location of ITRs convey any phylogenetic signal. We conducted fluorescent in situ hybridization (FISH) using an Arabidopsis-type telomeric sequence as a probe on karyotypes obtained from mitotic chromosomes. FISH signals of ITR sites were detected in species of subfamilies Asteroideae, Carduoideae, Cichorioideae, Gymnarhenoideae, and Mutisioideae, but not in Barnadesioideae. Although six small subfamilies have not yet been sampled, altogether, our results suggest that the dynamics of ITR formation in Asteraceae cannot accurately trace the complex karyological evolution that occurred since the early diversification of this family. Thus, ITRs do not convey a reliable signal at deep or shallow phylogenetic levels and cannot help to delimitate taxonomic categories, a conclusion that might also hold for other important families such as Fabaceae.
Collapse
Affiliation(s)
- Alexis J. Maravilla
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Marcela Rosato
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
| | - Inés Álvarez
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Gonzalo Nieto Feliner
- Real Jardín Botánico (RJB), Consejo Superior de Investigaciones Científicas (CSIC), Plaza de Murillo 2, E-28014 Madrid, Spain; (I.Á.); (G.N.F.)
| | - Josep A. Rosselló
- Jardín Botánico, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, c/Quart 80, E-46008 Valencia, Spain; (A.J.M.); (M.R.)
- Correspondence: ; Tel.: +34-963-156-800
| |
Collapse
|
5
|
Maravilla AJ, Rosato M, Rosselló JA. Interstitial Telomeric-like Repeats (ITR) in Seed Plants as Assessed by Molecular Cytogenetic Techniques: A Review. PLANTS (BASEL, SWITZERLAND) 2021; 10:2541. [PMID: 34834904 PMCID: PMC8621592 DOI: 10.3390/plants10112541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 05/12/2023]
Abstract
The discovery of telomeric repeats in interstitial regions of plant chromosomes (ITRs) through molecular cytogenetic techniques was achieved several decades ago. However, the information is scattered and has not been critically evaluated from an evolutionary perspective. Based on the analysis of currently available data, it is shown that ITRs are widespread in major evolutionary lineages sampled. However, their presence has been detected in only 45.6% of the analysed families, 26.7% of the sampled genera, and in 23.8% of the studied species. The number of ITR sites greatly varies among congeneric species and higher taxonomic units, and range from one to 72 signals. ITR signals mostly occurs as homozygous loci in most species, however, odd numbers of ITR sites reflecting a hemizygous state have been reported in both gymnosperm and angiosperm groups. Overall, the presence of ITRs appears to be poor predictors of phylogenetic and taxonomic relatedness at most hierarchical levels. The presence of ITRs and the number of sites are not significantly associated to the number of chromosomes. The longitudinal distribution of ITR sites along the chromosome arms indicates that more than half of the ITR presences are between proximal and terminal locations (49.5%), followed by proximal (29.0%) and centromeric (21.5%) arm regions. Intraspecific variation concerning ITR site number, chromosomal locations, and the differential presence on homologous chromosome pairs has been reported in unrelated groups, even at the population level. This hypervariability and dynamism may have likely been overlooked in many lineages due to the very low sample sizes often used in cytogenetic studies.
Collapse
Affiliation(s)
| | | | - Josep A. Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/Quart 80, E-46008 València, Spain; (A.J.M.); (M.R.)
| |
Collapse
|
6
|
Maughan PJ, Lee R, Walstead R, Vickerstaff RJ, Fogarty MC, Brouwer CR, Reid RR, Jay JJ, Bekele WA, Jackson EW, Tinker NA, Langdon T, Schlueter JA, Jellen EN. Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol 2019; 17:92. [PMID: 31757219 PMCID: PMC6874827 DOI: 10.1186/s12915-019-0712-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.
Collapse
Affiliation(s)
- Peter J Maughan
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA.
| | - Rebekah Lee
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Rachel Walstead
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | - Melissa C Fogarty
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| | - Cory R Brouwer
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Robert R Reid
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Jeremy J Jay
- University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | | | | | | | - Tim Langdon
- IBERS, Aberystwyth University, Aberystwyth, Wales, UK
| | | | - Eric N Jellen
- Department of Plant & Wildlife Sciences, Brigham Young University, 4105 LSB, Provo, UT, 84602, USA
| |
Collapse
|
7
|
Karyotype heterogeneity in Philodendron s.l. (Araceae) revealed by chromosome mapping of rDNA loci. PLoS One 2018; 13:e0207318. [PMID: 30440003 PMCID: PMC6237374 DOI: 10.1371/journal.pone.0207318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.
Collapse
|
8
|
Ribeiro T, Buddenhagen CE, Thomas WW, Souza G, Pedrosa-Harand A. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). PROTOPLASMA 2018; 255:263-272. [PMID: 28844108 DOI: 10.1007/s00709-017-1154-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 05/23/2023]
Abstract
Karyotype evolution in species with non-localised centromeres (holocentric chromosomes) is usually very dynamic and associated with recurrent fission and fusion (also termed agmatoploidy/symploidy) events. In Rhynchospora (Cyperaceae), one of the most species-rich sedge genera, all analysed species have holocentric chromosomes and their numbers range from 2n = 4 to 2n = 84. Agmatoploidy/symploidy and polyploidy were suggested as the main processes in the reshuffling of Rhynchospora karyotypes, although testing different scenarios of chromosome number evolution in a phylogenetic framework has not been attempted until now. Here, we used maximum likelihood and model-based analyses, in combination with genome size estimation and ribosomal DNA distribution, to understand chromosome evolution in Rhynchospora. Overall, chromosome number variation showed a significant phylogenetic signal and the majority of the lineages maintained a karyotype of 2n = 10 (~48% of the species), the most likely candidate for the ancestral number of the genus. Higher and lower chromosome numbers were restricted to specific clades, whilst polyploidy and/or fusion/fission events were present in specific branches. Variation in genome size and ribosomal DNA site number showed no correlation with ploidy level or chromosome number. Although different mechanisms of karyotype evolution (polyploidy, fusion and fission) seem to be acting in distinct lineages, the degree of chromosome variation and the main mechanisms involved are comparable to those found in some monocentric genera and lower than expected for a holocentric genus.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | | | - Gustavo Souza
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Andrea Pedrosa-Harand
- Departamento de Botânica, Centro de Biociências, Laboratório de Citogenética e Evolução Vegetal, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
9
|
Moraes AP, Koehler S, Cabral JS, Gomes SSL, Viccini LF, Barros F, Felix LP, Guerra M, Forni-Martins ER. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:298-308. [PMID: 27917576 DOI: 10.1111/plb.12527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Orchidaceae is a widely distributed plant family with very diverse vegetative and floral morphology, and such variability is also reflected in their karyotypes. However, since only a low proportion of Orchidaceae has been analysed for chromosome data, greater diversity may await to be unveiled. Here we analyse both genome size (GS) and karyotype in two subtribes recently included in the broadened Maxillariinea to detect how much chromosome and GS variation there is in these groups and to evaluate which genome rearrangements are involved in the species evolution. To do so, the GS (14 species), the karyotype - based on chromosome number, heterochromatic banding and 5S and 45S rDNA localisation (18 species) - was characterised and analysed along with published data using phylogenetic approaches. The GS presented a high phylogenetic correlation and it was related to morphological groups in Bifrenaria (larger plants - higher GS). The two largest GS found among genera were caused by different mechanisms: polyploidy in Bifrenaria tyrianthina and accumulation of repetitive DNA in Scuticaria hadwenii. The chromosome number variability was caused mainly through descending dysploidy, and x=20 was estimated as the base chromosome number. Combining GS and karyotype data with molecular phylogeny, our data provide a more complete scenario of the karyotype evolution in Maxillariinae orchids, allowing us to suggest, besides dysploidy, that inversions and transposable elements as two mechanisms involved in the karyotype evolution. Such karyotype modifications could be associated with niche changes that occurred during species evolution.
Collapse
Affiliation(s)
- A P Moraes
- Departamento de Biologia Vegetal, Instituto de Biociências, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética, Instituto de Biociências, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu, Brazil
- Instituto de Ciências e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
| | - S Koehler
- Departamento de Biologia Vegetal, Instituto de Biociências, Universidade Estadual de Campinas, Campinas, Brazil
| | - J S Cabral
- Departamento de Botânica, Centro de Ciências Biológicas, Cidade Universitária, Universidade Federal de Pernambuco, Recife, Brazil
- Synthesis Centre, German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Center for Computational and Theoretical Biology, Ecosystem Modeling, University of Würzburg, Würzburg, Germany
| | - S S L Gomes
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - L F Viccini
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - F Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado de São Paulo, São Paulo, Brazil
| | - L P Felix
- Departamento de Ciências Biológicas, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Rodovia, Areias, Brazil
| | - M Guerra
- Departamento de Botânica, Centro de Ciências Biológicas, Cidade Universitária, Universidade Federal de Pernambuco, Recife, Brazil
| | - E R Forni-Martins
- Departamento de Biologia Vegetal, Instituto de Biociências, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
10
|
Mota L, Torices R, Loureiro J. The Evolution of Haploid Chromosome Numbers in the Sunflower Family. Genome Biol Evol 2016; 8:3516-3528. [PMID: 27797951 PMCID: PMC5203788 DOI: 10.1093/gbe/evw251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering plants, the Asteraceae. Specifically, a phylogenetic supertree of this family was used to reconstruct the ancestral chromosome number and infer genomic events. Our approach inferred that the ancestral chromosome number of the family is n = 9. Also, according to the model that best explained our data, the evolution of haploid chromosome numbers in Asteraceae was a very dynamic process, with genome duplications and descending dysploidy being the most frequent genomic events in the evolution of this family. This model inferred more than one hundred whole genome duplication events; however, it did not find evidence for a paleopolyploidization at the base of this family, which has previously been hypothesized on the basis of sequence data from a limited number of species. The obtained results and potential causes of these discrepancies are discussed.
Collapse
Affiliation(s)
- Lucie Mota
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rubén Torices
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - João Loureiro
- Centre for Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Detecting Mechanisms of Karyotype Evolution in Heterotaxis (Orchidaceae). PLoS One 2016; 11:e0165960. [PMID: 27832130 PMCID: PMC5104408 DOI: 10.1371/journal.pone.0165960] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/22/2023] Open
Abstract
The karyotype is shaped by different chromosome rearrangements during species evolution. However, determining which rearrangements are responsible for karyotype changes is a challenging task and the combination of a robust phylogeny with refined karyotype characterization, GS measurements and bioinformatic modelling is necessary. Here, this approach was applied in Heterotaxis to determine what chromosome rearrangements were responsible for the dysploidy variation. We used two datasets (nrDNA and cpDNA, both under MP and BI) to infer the phylogenetic relationships among Heterotaxis species and the closely related genera Nitidobulbon and Ornithidium. Such phylogenies were used as framework to infer how karyotype evolution occurred using statistical methods. The nrDNA recovered Ornithidium, Nitidobulbon and Heterotaxis as monophyletic under both MP and BI; while cpDNA could not completely separate the three genera under both methods. Based on the GS, we recovered two groups within Heterotaxis: (1) "small GS", corresponding to the Sessilis grade, composed of plants with smaller genomes and smaller morphological structure, and (2) "large GS", corresponding to the Discolor clade, composed of plants with large genomes and robust morphological structures. The robust karyotype modeling, using both nrDNA phylogenies, allowed us to infer that the ancestral Heterotaxis karyotype presented 2n = 40, probably with a proximal 45S rDNA on a metacentric chromosome pair. The chromosome number variation was caused by ascending dysploidy (chromosome fission involving the proximal 45S rDNA site resulting in two acrocentric chromosome pairs holding a terminal 45S rDNA), with subsequent descending dysploidy (fusion) in two species, H. maleolens and H. sessilis. However, besides dysploidy, our analysis detected another important chromosome rearrangement in the Orchidaceae: chromosome inversion, that promoted 5S rDNA site duplication and relocation.
Collapse
|
12
|
Rockinger A, Sousa A, Carvalho FA, Renner SS. Chromosome number reduction in the sister clade of Carica papaya with concomitant genome size doubling. AMERICAN JOURNAL OF BOTANY 2016; 103:1082-8. [PMID: 27234227 DOI: 10.3732/ajb.1600134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 05/03/2016] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Caricaceae include six genera and 34 species, among them papaya, a model species in plant sex chromosome research. The family was held to have a conserved karyotype with 2n = 18 chromosomes, an assumption based on few counts. We examined the karyotypes and genome size of species from all genera to test for possible cytogenetic variation. METHODS We used fluorescent in situ hybridization using standard telomere, 5S, and 45S rDNA probes. New and published data were combined with a phylogeny, molecular clock dating, and C values (available for ∼50% of the species) to reconstruct genome evolution. KEY RESULTS The African genus Cylicomorpha, which is sister to the remaining Caricaceae (all neotropical), has 2n = 18, as do the species in two other genera. A Mexican clade of five species that includes papaya, however, has 2n = 18 (papaya), 2n = 16 (Horovitzia cnidoscoloides), and 2n = 14 (Jarilla caudata and J. heterophylla; third Jarilla not counted), with the phylogeny indicating that the dysploidy events occurred ∼16.6 and ∼5.5 million years ago and that Jarilla underwent genome size doubling (∼450 to 830-920 Mbp/haploid genome). Pericentromeric interstitial telomere repeats occur in both Jarilla adjacent to 5S rDNA sites, and the variability of 5S rDNA sites across all genera is high. CONCLUSIONS On the basis of outgroup comparison, 2n = 18 is the ancestral number, and repeated chromosomal fusions with simultaneous genome size increase as a result of repetitive elements accumulating near centromeres characterize the papaya clade. These results have implications for ongoing genome assemblies in Caricaceae.
Collapse
Affiliation(s)
| | - Aretuza Sousa
- Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany
| | | | - Susanne S Renner
- Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany
| |
Collapse
|
13
|
Kirov IV, Van Laere K, Van Roy N, Khrustaleva LI. Towards a FISH-based karyotype of Rosa L. (Rosaceae). COMPARATIVE CYTOGENETICS 2016; 10:543-554. [PMID: 28123677 PMCID: PMC5240508 DOI: 10.3897/compcytogen.v10i4.9536] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/08/2016] [Indexed: 05/18/2023]
Abstract
The genus Rosa Linnaeus, 1753 has important economic value in ornamental sector and many breeding activities are going on supported by molecular studies. However, the cytogenetic studies of rose species are scarce and mainly focused on chromosome counting and chromosome morphology-based karyotyping. Due to the small size of the chromosomes and a high frequency of polyploidy in the genus, karyotyping is very challenging for rose species and requires FISH-based cytogenetic markers to be applied. Therefore, in this work the aim is to establish a FISH-based karyotype for Rosa wichurana (Crépin, 1888), a rose species with several benefits for advanced molecular cytogenetic studies of genus Rosa (Kirov et al. 2015a). It is shown that FISH signals from 5S, 45S and an Arabidopsis-type telomeric repeat are distributed on five (1, 2, 4, 5 and 7) of seven chromosome pairs. In addition, it is demonstrated that the interstitial telomeric repeat sequences (ITR) are located in the centromeric regions of four chromosome pairs. Using low hybridization stringency for ITR visualization, we showed that the number of ITR signals increases four times (1-4 signals). This study is the first to propose a FISH-based Rosa wichurana karyotype for the reliable identification of chromosomes. The possible origin of Rosa wichurana ITR loci is discussed.
Collapse
Affiliation(s)
- Ilya V. Kirov
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 49, 127550, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 3, 127550, Moscow, Russia
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 39, 9090, Melle, Belgium
| | - Katrijn Van Laere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 39, 9090, Melle, Belgium
| | - Nadine Van Roy
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - Ludmila I. Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 49, 127550, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Timiryazevskay str. 3, 127550, Moscow, Russia
| |
Collapse
|
14
|
Lakshmanan PS, Van Laere K, Eeckhaut T, Van Huylenbroeck J, Van Bockstaele E, Khrustaleva L. Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae). COMPARATIVE CYTOGENETICS 2015; 9:145-60. [PMID: 26140158 PMCID: PMC4488963 DOI: 10.3897/compcytogen.v9i2.4366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 05/04/2023]
Abstract
Karyotype analysis and FISH mapping using 45S rDNA sequences on 6 economically important plant species Anthuriumandraeanum Linden ex André, 1877, Monsteradeliciosa Liebmann, 1849, Philodendronscandens Koch & Sello, 1853, Spathiphyllumwallisii Regel, 1877, Syngoniumauritum (Linnaeus, 1759) Schott, 1829 and Zantedeschiaelliottiana (Knight, 1890) Engler, 1915 within the monocotyledonous family Araceae (aroids) were performed. Chromosome numbers varied between 2n=2x=24 and 2n=2x=60 and the chromosome length varied between 15.77 µm and 1.87 µm. No correlation between chromosome numbers and genome sizes was observed for the studied genera. The chromosome formulas contained only metacentric and submetacentric chromosomes, except for Philodendronscandens in which also telocentric and subtelocentric chromosomes were observed. The highest degree of compaction was calculated for Spathiphyllumwallisii (66.49Mbp/µm). B-chromosome-like structures were observed in Anthuriumandraeanum. Their measured size was 1.87 times smaller than the length of the shortest chromosome. After FISH experiments, two 45S rDNA sites were observed in 5 genera. Only in Zantedeschiaelliottiana, 4 sites were seen. Our results showed clear cytogenetic differences among genera within Araceae, and are the first molecular cytogenetics report for these genera. These chromosome data and molecular cytogenetic information are useful in aroid breeding programmes, systematics and evolutionary studies.
Collapse
Affiliation(s)
- Prabhu Shankar Lakshmanan
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University (UGent), Coupure links 653, 9000 Ghent, Belgium
- Center of Molecular Biotechnology, Department of Genetics and Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy (TIMACAD), 49, Timiryazevskaya str., 127550 Moscow, Russia
| | - Katrijn Van Laere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium
| | - Tom Eeckhaut
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium
| | - Johan Van Huylenbroeck
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium
| | - Erik Van Bockstaele
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Caritasstraat 21, 9090 Melle, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University (UGent), Coupure links 653, 9000 Ghent, Belgium
| | - Ludmila Khrustaleva
- Center of Molecular Biotechnology, Department of Genetics and Biotechnology, Russian State Agrarian University-Timiryazev Agricultural Academy (TIMACAD), 49, Timiryazevskaya str., 127550 Moscow, Russia
| |
Collapse
|