1
|
Nge FJ, Hammer TA, Vasconcelos T, Biffin E, Kellermann J, Waycott M. Polyploidy linked with species richness but not diversification rates or niche breadth in Australian Pomaderreae (Rhamnaceae). ANNALS OF BOTANY 2025; 135:531-548. [PMID: 39441970 PMCID: PMC11920800 DOI: 10.1093/aob/mcae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Polyploidy is an important evolutionary driver for plants and has been linked with higher species richness and increases in diversification rate. These correlations between ploidy and plant radiations could be the result of polyploid lineages exploiting broader niche space and novel niches due to their enhanced adaptability. The evolution of ploidy and its link to plant diversification across the Australian continent is not well understood. Here, we focus on the ploidy evolution of the Australasian Rhamnaceae tribe Pomaderreae. METHODS We generated a densely sampled phylogeny (90 %, 215/240 species) of the tribe and used it to test for the evolution of ploidy. We obtained 30 orthologous nuclear loci per sample and dated the phylogeny using treePL. Ploidy estimates for each sequenced species were obtained using nQuire, based on phased sequence data. We used MiSSE to obtain tip diversification rates and tested for significant relationships between diversification rates and ploidy. We also assessed for relationships between ploidy level and niche breadth, using distributional records, species distributional modelling and WorldClim data. KEY RESULTS Polyploidy is extensive across the tribe, with almost half (45 %) of species and the majority of genera exhibiting this trait. We found a significant positive relationship between polyploidy and genus size (i.e. species richness), but a non-significant positive relationship between polyploidy and diversification rates. Polyploidy did not result in significantly wider niche space occupancy for Pomaderreae; however, polyploidy did allow transitions into novel wetter niches. Spatially, eastern Australia is the diversification hotspot for Pomaderreae in contrast to the species hotspot of south-west Western Australia. CONCLUSIONS The relationship between polyploidy and diversification is complex. Ancient polyploidization events likely played an important role in the diversification of species-rich genera. A lag time effect may explain the uncoupling of tip diversification rates and polyploidy of extant lineages. Further studies on other groups are required to validate these hypotheses.
Collapse
Affiliation(s)
- Francis J Nge
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- National Herbarium of New South Wales, Botanic Gardens of Sydney, Mount Annan, NSW 2567, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
- IRD – Institut de Recherche pour le Développement, Montpellier, BP 64501, France
| | - Timothy A Hammer
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Thais Vasconcelos
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ed Biffin
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Jürgen Kellermann
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| | - Michelle Waycott
- School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA 5000, Australia
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Adelaide, SA 5000, Australia
| |
Collapse
|
2
|
Reproductive biology and population structure of the endangered shrub Grevillea bedggoodiana (Proteaceae). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNarrowly endemic species are particularly vulnerable to catastrophic events. Compared to widespread species, they may also be less capable of adapting to shifts in environmental pressures as a result of specialisation on a narrow range of local condition and limited ability to disperse. However, life-history traits, such as preferential outcrossing and high fecundity can maintain genetic diversity and evolutionary potential, and boost species resilience. The endangered Grevillea bedggoodiana (Enfield Grevillea) is an understorey shrub restricted to an area of ca. 150 km2 in south-eastern Australia with a legacy of large-scale anthropogenic disturbance. Prior to this study little was known about its biology and population structure. Here, its breeding system was assessed through a controlled pollination experiment at one of its central populations, and eight populations were sampled for genetic analysis with microsatellite markers. The species was found to be preferentially outcrossing, with no evidence of pollination limitation. In most populations, allelic richness, observed heterozygosity and gene diversity were high (Ar: 3.8–6.3; Ho: 0.45–0.65, He: 0.60 − 0.75). However, the inbreeding coefficients were significant in at least four populations, ranging from Fi -0.061 to 0.259 despite high outcrossing rates. Estimated reproductive rates varied among sampled populations but were independent of gene diversity and inbreeding. Despite its small geographic range, the species’ populations showed moderate differentiation (AMOVA: FST = 0.123), which was largely attributable to isolation by distance. We interpret these results as suggesting that G. bedggoodiana is reproductively healthy and has maintained high levels of genetic diversity despite recent disturbance.
Collapse
|
3
|
Wagutu GK, Fan X, Fu W, Tengwer MC, Li W, Chen Y. Genetic structure of wild rice Zizania latifolia in an expansive heterogeneous landscape along a latitudinal gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.929944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Global aquatic habitats are undergoing rapid degradation and fragmentation as a result of climate change and changes in land use. Understanding the genetic variability and adaptive potential of aquatic plant species is thus important for conservation purposes. In this study, we investigated the genetic diversity and structure of the extant natural populations of Zizania latifolia from five river basins in China based on 46 microsatellite markers. We tested isolation by environment (IBE), isolation by resistance (IBR), and isolation by distance (IBD) patterns using a reciprocal causal model (RCM). Furthermore, we elucidated the impact of the environment on Z. latifolia genetic diversity using generalized linear models (GLMs) and spatially explicit mixed models. Low genetic diversity (HE = 0.125–0.433) and high genetic differentiation (FST = 0.641, Øpt = 0.654) were found. Higher historical gene flow (MH = 0.212–2.354) than contemporary gene flow (MC = 0.0112–0.0247) and significant bottlenecks in almost all populations were identified, highlighting the negative impact of wetland fragmentation. The IBE model was exclusively supported for all populations and in three river basins. The IBD and IBR models were supported in one river basin each. The maximum temperature of the warmest month and precipitation seasonality were the plausible environmental parameters responsible for the observed pattern of genetic diversity. Local adaptation signatures were found, with nine loci identified as outliers, four of which were gene-linked and associated with environmental variables. Based on these findings, IBE is more important than IBD and IBR in shaping the genetic structure of Z. latifolia.
Collapse
|
4
|
Radosavljević I, Antonić O, Hruševar D, Križan J, Satovic Z, Turković D, Liber Z. The Influence of a Seedling Recruitment Strategy and a Clonal Architecture on a Spatial Genetic Structure of a Salvia brachyodon (Lamiaceae) Population. PLANTS 2020; 9:plants9070828. [PMID: 32630143 PMCID: PMC7412074 DOI: 10.3390/plants9070828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
By performing a high-resolution spatial-genetic analysis of a partially clonal Salvia brachyodon population, we elucidated its clonal architecture and seedling recruitment strategy. The sampling of the entire population was based on a 1 × 1 m grid and each sampled individual was genotyped. Population-genetic statistics were combined with geospatial analyses. On the population level, the presence of both sexual and clonal reproduction and repeated seedling recruitment as the prevailing strategy of new genets establishment were confirmed. On the patch level, a phalanx clonal architecture was detected. A significant negative correlation between patches' sizes and genotypic richness was observed as young plants were not identified within existing patches of large genets but almost exclusively in surrounding areas. The erosion of the genetic variability of older patches is likely caused by the inter-genet competition and resulting selection or by a random die-off of individual genets accompanied by the absence of new seedlings establishment. This study contributes to our understanding of how clonal architecture and seedling recruitment strategies can shape the spatial-genetic structure of a partially clonal population and lays the foundation for the future research of the influence of the population's clonal organization on its sexual reproduction.
Collapse
Affiliation(s)
- Ivan Radosavljević
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-99-8353-230
| | - Oleg Antonić
- Subdepartment of Quantitative Ecology, Department of Biology, Josip Juraj Strossmayer University of Osijek, HR 31000 Osijek, Croatia;
| | - Dario Hruševar
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
| | | | - Zlatko Satovic
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, HR 10000 Zagreb, Croatia
| | - Doroteja Turković
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
| | - Zlatko Liber
- Division of Botany, Department of Biology, Faculty of Science, University of Zagreb, HR 10000 Zagreb, Croatia; (D.H.); (D.T.); (Z.L.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, HR 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Knapp S, Sagona E, Carbonell AK, Chiarini F. A revision of the Solanum elaeagnifolium clade (Elaeagnifolium clade; subgenus Leptostemonum, Solanaceae). PHYTOKEYS 2017; 84:1-104. [PMID: 29033654 PMCID: PMC5624188 DOI: 10.3897/phytokeys.84.12695] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/03/2017] [Indexed: 05/25/2023]
Abstract
The Solanum elaeagnifolium clade (Elaeagnifolium clade) contains five species of small, often rhizomatous, shrubs from deserts and dry forests in North and South America. Members of the clade were previously classified in sections Leprophora, Nycterium and Lathyrocarpum, and were not thought to be closely related. The group is sister to the species-rich monophyletic Old World clade of spiny solanums. The species of the group have an amphitropical distribution, with three species in Mexico and the southwestern United States and three species in Argentina. Solanum elaeagnifolium occurs in both North and South America, and is a noxious invasive weed in dry areas worldwide. Members of the group are highly variable morphologically, and this variability has led to much synonymy, particularly in the widespread S. elaeagnifolium. We here review the taxonomic history, morphology, relationships and ecology of these species and provide keys for their identification, descriptions, full synonymy (including designations of lectotypes) and nomenclatural notes. Illustrations, distribution maps and preliminary conservation assessments are provided for all species.
Collapse
Affiliation(s)
- Sandra Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Eva Sagona
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Orto Botanico Forestale di Abetone, Associazione Ecomuseo della Montagna Pistoese, Palazzo Achilli, Piazzetta Achilli n. 7 - 51028 Gavinana, Pistoia (PT), Italy
| | - Anna K.Z. Carbonell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Franco Chiarini
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET-UNC, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
6
|
Shaw J, Shafer HL, Leonard OR, Kovach MJ, Schorr M, Morris AB. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. AMERICAN JOURNAL OF BOTANY 2014; 101:1987-2004. [PMID: 25366863 DOI: 10.3732/ajb.1400398] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
PREMISE OF THE STUDY Noncoding chloroplast DNA (NC-cpDNA) sequences are the staple data source of low-level phylogeographic and phylogenetic studies of angiosperms. We followed up on previous papers (tortoise and hare II and III) that sought to identify the most consistently variable regions of NC-cpDNA. We used an exhaustive literature review and newly available whole plastome data to assess applicability of previous conclusions at low taxonomic levels. METHODS We aligned complete plastomes of 25 species pairs from across angiosperms, comparing the number of genetic differences found in 107 NC-cpDNA regions and matK. We surveyed Web of Science for the plant phylogeographic literature between 2007 and 2013 to assess how NC-cpDNA has been used at the intraspecific level. KEY RESULTS Several regions are consistently the most variable across angiosperm lineages: ndhF-rpl32, rpl32-trnL((UAG)), ndhC-trnV((UAC)), 5'rps16-trnQ((UUG)), psbE-petL, trnT((GGU))-psbD, petA-psbJ, and rpl16 intron. However, there is no universally best region. The average number of regions applied to low-level studies is ∼2.5, which may be too little to access the full discriminating power of this genome. CONCLUSIONS Plastome sequences have been used successfully at lower and lower taxonomic levels. Our findings corroborate earlier works, suggesting that there are regions that are most likely to be the most variable. However, while NC-cpDNA sequences are commonly used in plant phylogeographic studies, few of the most variable regions are applied in that context. Furthermore, it appears that in most studies too few NC-cpDNAs are used to access the discriminating power of the cpDNA genome.
Collapse
Affiliation(s)
- Joey Shaw
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA Botanical Research Institute of Texas, Fort Worth, Texas USA
| | - Hayden L Shafer
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - O Rayne Leonard
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132 USA
| | - Margaret J Kovach
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - Mark Schorr
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403 USA
| | - Ashley B Morris
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee 37132 USA
| |
Collapse
|
7
|
Affiliation(s)
- Ming Dong
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fei-Hai Yu
- College of Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peter Alpert
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA
| |
Collapse
|