1
|
Xie Q, Yuan Z, Hou H, Zhao H, Chen H, Ni X. Effects of ROS and caspase-3-like protein on the growth and aerenchyma formation of Potamogeton perfoliatus stem. PROTOPLASMA 2023; 260:307-325. [PMID: 35689107 DOI: 10.1007/s00709-022-01780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Aerenchyma formation plays an important role in the survival of Potamogeton perfoliatus in submerged environment. To understand the regulatory role of reactive oxygen species (ROS) and caspase 3-like protein signaling molecules in aerenchyma formation, we investigated the effects of exogenous NADPH oxidase inhibitor (diphenyleneiodonium chloride, DPI), catalase inhibitor (3-amino-1,2,4-triazole, AT), and caspase-3-like protein inhibitor (AC-DEVD-CHO, DEVD) on morphological and physiological characteristics and aerenchyma formation in P. perfoliatus. The results showed that after DPI treatment, caspase-3-like protein activity decreased, ROS-related enzyme activities increased, and H2O2 content decreased, thereby inhibiting aerenchyma formation. When the concentration of DPI was approximately 1 μmol/L, the inhibitory effect was the most obvious. On the contrary, after the AT treatment, caspase-3-like protein activity increased, ROS-related enzyme activities decreased, and the H2O2 content increased, ultimately promoting aerenchyma formation, and the promotion was the most obvious under treatment with approximately 500 μmol/L AT. After DEVD treatment, the inhibition of vegetative growth caused by DPI or AT treatment was alleviated, significantly reducing caspase-3-like activity and inhibiting aerenchyma development. The results of this study show that ROS has a positive regulatory effect on aerenchyma formation, and caspase-3-like protein is activated to promote ROS-mediated aerenchyma formation. This experiment provides a new theoretical basis for further exploration of the signal transduction effects of ROS and caspase-3-like protein in plant cells and their roles in plant development.
Collapse
Affiliation(s)
- Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China
| | - Zhongxun Yuan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China
| | - Hongliang Zhao
- School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Hao Chen
- School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China.
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China.
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, 750000, China.
| |
Collapse
|
2
|
Shoman N, Solomonova E, Akimov A, Rylkova OA, Meger Y. Responses of Prorocentrum cordatum (Ostenfeld) Dodge, 1975 (Dinoflagellata) to copper nanoparticles and copper ions effect. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1625-1637. [PMID: 36389098 PMCID: PMC9530086 DOI: 10.1007/s12298-022-01228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In the present study, changes were determined in morphological, structural-functional, and fluorescent parameters of Prorocentrum cordatum with the addition of CuO nanoparticles (NPs) and copper ions (CuSO4). A stimulating effect of low Cu2+ concentrations (30 μg L-1) on algal growth characteristics was observed. Higher Cu2+ concentration of 60-600 μg L-1 and CuO NPs concentration of 100-520 μg L-1 inhibited algal growth. Ionic copper is more toxic to P. cordatum than NPs. After 72 h of algae cultivation in the medium supplemented with CuSO4 and CuO NPs, EC50 values (calculated based on cell abundance) were of 60 and 300 μg L-1 (in terms of copper ions), respectively. Reduction in algal growth rate is due to disruption in cell cycle, changes in nuclear morphology, chromatin dispersion, and DNA damage. The studied pollutants slightly affected the efficiency of P. cordatum photosynthetic apparatus. Addition of the pollutants resulted in an increased production of reactive oxygen species (ROS). At a concentration of Cu2+ of 120 μg L-1 and a concentration of CuO NPs 0-300 μg L-1 of CuO NPs increase in ROS production is short-term with a decrease at later stages of the experiment. This is probably due to the activation of antioxidant mechanisms in cells and an increase in the concentration of carotenoids (peridinin) in cells. The high values of ROS production persisted throughout the experiment at sublethal copper concentrations (400-600 μg L-1 of CuSO4 and 520 μg L-1 of CuO NPs). Sublethal concentrations of pollutants caused restructuring of cell membranes in P. cordatum. Shedding of cell membranes (ecdysis) and formation of immobile stages (temporary or resting cysts) were recorded. The pronounced mechanical impact of NPs on the cell surface was observed such as-deformation and damage of a cell wall, its "wrinkling" and shrinkage, and adsorption of NP aggregates.
Collapse
Affiliation(s)
- Natalia Shoman
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Ekaterina Solomonova
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Arkadii Akimov
- Algae Ecological Physiology Department, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Olga A. Rylkova
- Department of Biotechnology and Phytoresources, Moscow Representative Office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Moscow, Russian Federation
| | - Yakov Meger
- Sevastopol State University, Sevastopol, Russian Federation
| |
Collapse
|
3
|
The Effective Pollination Period of European Plum (Prunus domestica L.) Cultivars in Western Norway. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study evaluated the effective pollination period (EPP) in four European plum (Prunus domestica L.) cultivars (‘Mallard’, ‘Edda’, ‘Jubileum’, and ‘Reeves’) during two years (2018–2019) under the environmental conditions in western Norway. The pollination of plum cultivars was carried out one, three, five, seven, and nine days after anthesis (DAA) with a pollen mix of two compatible cultivars (‘Victoria’ and ‘Opal’). Initial, middle-season, and final fruit set was recorded after one month and two months after pollination and just before the harvest, respectively. On average from both years cultivar ‘Jubileum’ had the highest fruit set when pollinated one, three, five, seven, and nine DAA (33.23%, 30.83%, 8.47%, 3.08%, and 1.15%, respectively), which was more than two folds higher fruit set than in the other studied cultivars. Cultivar ‘Jubileum’ showed significantly reduced fruit set between pollination on five and nine DAA, while cultivars ‘Mallard’, ‘Edda’, and ‘Reeves’ had markedly reduced fruit set if pollinated three to five DAA, implying that the EPP in ‘Jubileum’ was five days while in the rest it was three days. Variation of weather conditions during the flowering period in both years did not have a major effect on the receptivity of stigmas in the studied plum cultivars, which means that the existing differences in the length of EPP is maternal-genotype dependent.
Collapse
|
4
|
Ferradás Y, Rey M, González MV. Expression analysis of ethylene synthesis and signalling genes in kiwifruit stigmatic arms and their involvement in programmed cell death processes. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153021. [PMID: 31639534 DOI: 10.1016/j.jplph.2019.153021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Kiwifruit (Actinidia chinensis var. deliciosa (A. Chev) A. Chev.) is a widely cultivated crop due to the nutritional value of its fruits. Its commercialization is related to the fruit size, which is directly linked with the number of seeds and, consequently, with pollination. In this dioecious species pollination is dependent on a short effective pollination period which is related to a Programmed Cell Death (PCD) process. At the same time, this PCD process allows the growth of many pollen tubes. Several studies suggest that ethylene can play an important role in PCD in a number of systems. In this report, we determined the full sequence of the AcACS gene, encoding the enzyme that catalyses a rate-limiting step of the ethylene synthesis. Next, we monitored the expression pattern of this gene as well as of other genes involved in ethylene synthesis (ACO2-5) and signalling (AdERS1a, AdERS1b, AdETR1, AdETR2, AdETR3, AdCTR1, AdCTR2, AdEIL1) in pollinated and non-pollinated stigmatic arms of kiwifruit female flowers. The relative expression patterns observed for AcACS, ACOs and ethylene perception and signalling genes (AdERS1, AdETR1, AdCTR1 and AdEIL1) showed that they are expressed before anthesis. After anthesis, expression of the studied genes was detected earlier in pollinated than in non-pollinated stigmatic arms, as it was previously determined for PCD hallmarks. In addition, the expression pattern of the studied genes showed a clear relationship with the PCD hallmarks described in a previous report in the secretory tissue both in non-pollinated stigmatic arms (related to the short EPP in this species) and in pollinated ones (related to the growth of many pollen tubes during progamic phase). Overall, these results suggest an involvement of ethylene with PCD contributing to the high reproductive success of this species.
Collapse
Affiliation(s)
- Yolanda Ferradás
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain; CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, Universidad de Vigo, 32004 Ourense, Spain
| | - Mª Victoria González
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Marsollier AC, Ingram G. Getting physical: invasive growth events during plant development. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:8-17. [PMID: 29981931 DOI: 10.1016/j.pbi.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/10/2023]
Abstract
Plant cells are enclosed in cell walls that weld them together, meaning that cells rarely change neighbours. Nonetheless, invasive growth events play critical roles in plant development and are often key hubs for the integration of environmental and/or developmental signalling. Here we review cellular processes involved in three such events: lateral root emergence, pollen tube growth through stigma and style tissues, and embryo expansion through the endosperm (Figures 1-3). We consider processes such as regulation of water fluxes and cell turgor (driving growth), cell wall modifications (e.g. cell separation) and cell death (for creating space) within these three contexts with the aim of identifying key mechanisms implicated in providing a chemical and biophysical environments permitting invasive growth events.
Collapse
Affiliation(s)
- Anne-Charlotte Marsollier
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France
| | - Gwyneth Ingram
- Université de Lyon, Laboratoire Reproduction et Développement des Plantes, ENS de lyon, CNRS, INRA, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
6
|
Gao Z, Daneva A, Salanenka Y, Van Durme M, Huysmans M, Lin Z, De Winter F, Vanneste S, Karimi M, Van de Velde J, Vandepoele K, Van de Walle D, Dewettinck K, Lambrecht BN, Nowack MK. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. NATURE PLANTS 2018; 4:365-375. [PMID: 29808023 PMCID: PMC7116356 DOI: 10.1038/s41477-018-0160-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/26/2018] [Indexed: 05/09/2023]
Abstract
Flowers have a species-specific functional life span that determines the time window in which pollination, fertilization and seed set can occur. The stigma tissue plays a key role in flower receptivity by intercepting pollen and initiating pollen tube growth toward the ovary. In this article, we show that a developmentally controlled cell death programme terminates the functional life span of stigma cells in Arabidopsis. We identified the leaf senescence regulator ORESARA1 (also known as ANAC092) and the previously uncharacterized KIRA1 (also known as ANAC074) as partially redundant transcription factors that modulate stigma longevity by controlling the expression of programmed cell death-associated genes. KIRA1 expression is sufficient to induce cell death and terminate floral receptivity, whereas lack of both KIRA1 and ORESARA1 substantially increases stigma life span. Surprisingly, the extension of stigma longevity is accompanied by only a moderate extension of flower receptivity, suggesting that additional processes participate in the control of the flower's receptive life span.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anna Daneva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Yuliya Salanenka
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Matthias Van Durme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Marlies Huysmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Zongcheng Lin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Freya De Winter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Yeonsu-gu, Incheon, Republic of Korea
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Davy Van de Walle
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Laboratory of Food Technology and Engineering, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Ersamus MC, Rotterdam, the Netherlands
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center of Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
7
|
Ferradás Y, Rey L, Martínez Ó, Rey M, González MV. Identification and validation of reference genes for accurate normalization of real-time quantitative PCR data in kiwifruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 102:27-36. [PMID: 26897117 DOI: 10.1016/j.plaphy.2016.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 05/01/2023]
Abstract
Identification and validation of reference genes are required for the normalization of qPCR data. We studied the expression stability produced by eight primer pairs amplifying four common genes used as references for normalization. Samples representing different tissues, organs and developmental stages in kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev.) were used. A total of 117 kiwifruit samples were divided into five sample sets (mature leaves, axillary buds, stigmatic arms, fruit flesh and seeds). All samples were also analysed as a single set. The expression stability of the candidate primer pairs was tested using three algorithms (geNorm, NormFinder and BestKeeper). The minimum number of reference genes necessary for normalization was also determined. A unique primer pair was selected for amplifying the 18S rRNA gene. The primer pair selected for amplifying the ACTIN gene was different depending on the sample set. 18S 2 and ACT 2 were the candidate primer pairs selected for normalization in the three sample sets (mature leaves, fruit flesh and stigmatic arms). 18S 2 and ACT 3 were the primer pairs selected for normalization in axillary buds. No primer pair could be selected for use as the reference for the seed sample set. The analysis of all samples in a single set did not produce the selection of any stably expressing primer pair. Considering data previously reported in the literature, we validated the selected primer pairs amplifying the FLOWERING LOCUS T gene for use in the normalization of gene expression in kiwifruit.
Collapse
Affiliation(s)
- Yolanda Ferradás
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872, Santiago de Compostela, Spain
| | - Laura Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Óscar Martínez
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Manuel Rey
- Departamento de Biología Vegetal y Ciencia del Suelo, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Ma Victoria González
- Departamento de Fisiología Vegetal, Facultad de Farmacia, Universidad de Santiago, Campus Sur, 15872, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Lora J, Hormaza JI, Herrero M. The Diversity of the Pollen Tube Pathway in Plants: Toward an Increasing Control by the Sporophyte. FRONTIERS IN PLANT SCIENCE 2016; 7:107. [PMID: 26904071 PMCID: PMC4746263 DOI: 10.3389/fpls.2016.00107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/20/2016] [Indexed: 05/06/2023]
Abstract
Plants, unlike animals, alternate multicellular diploid, and haploid generations in their life cycle. While this is widespread all along the plant kingdom, the size and autonomy of the diploid sporophyte and the haploid gametophyte generations vary along evolution. Vascular plants show an evolutionary trend toward a reduction of the gametophyte, reflected both in size and lifespan, together with an increasing dependence from the sporophyte. This has resulted in an overlooking of the importance of the gametophytic phase in the evolution of higher plants. This reliance on the sporophyte is most notorious along the pollen tube journey, where the male gametophytes have to travel a long way inside the sporophyte to reach the female gametophyte. Along evolution, there is a change in the scenery of the pollen tube pathway that favors pollen competition and selection. This trend, toward apparently making complicated what could be simple, appears to be related to an increasing control of the sporophyte over the gametophyte with implications for understanding plant evolution.
Collapse
Affiliation(s)
- Jorge Lora
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José I. Hormaza
- Department of Subtropical Fruit Crops, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora – University of Málaga – Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - María Herrero
- Department of Pomology, Estación Experimental Aula Dei, Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| |
Collapse
|
9
|
Van Durme M, Nowack MK. Mechanisms of developmentally controlled cell death in plants. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:29-37. [PMID: 26658336 DOI: 10.1016/j.pbi.2015.10.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 05/22/2023]
Abstract
During plant development various forms of programmed cell death (PCD) are implemented by a number of cell types as inherent part of their differentiation programmes. Differentiation-induced developmental PCD is gradually prepared in concert with the other cell differentiation processes. As precocious or delayed PCD can have detrimental consequences for plant development, the actual execution of PCD has to be tightly controlled. Once triggered, PCD is irrevocably and rapidly executed accompanied by the breakdown of cellular compartments. In most developmental PCD forms, cell death is followed by cell corpse clearance. Devoid of phagocytic mechanisms, dying plant cells have to prepare their own demise in a cell-autonomous fashion before their deaths, ensuring the completion of cell clearance post mortem. Depending on the cell type, cell clearance can be complete or rather selective, and persistent corpses of particular cells accomplish vital functions in the plant body. The present review attempts to give an update on the molecular mechanisms that coordinate differentiation-induced PCD as vital part of plant development.
Collapse
Affiliation(s)
- Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
10
|
Esperanza M, Cid Á, Herrero C, Rioboo C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:210-221. [PMID: 26117094 DOI: 10.1016/j.aquatox.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis in C. reinhardtii cells. This is supported by the observation of typical hallmarks of apoptosis, such as mitochondrial membrane depolarization, alterations in nuclear morphology and subG1 nuclei in cells exposed to the highest assayed concentrations. To our knowledge, this is the first study that provides a comprehensive analysis of oxidative DNA base damage in unicellular algal cells exposed to a prooxidant pollutant, as well as of its possible relation with other physiological effects. These results reinforce the need for additional studies on the genotoxicity of environmental pollutants on ecologically relevant organisms such as microalgae that can provide a promising basis for the characterization of potential pollutant hazards in the aquatic environment.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|