1
|
Cicirma M, Dumitru M, Georgescu SE, Neagoe A. Phytotoxicity Assessment of Solanum lycopersicum L. Seedlings Moderately Irrigated with Non-Thermal Plasma Treated Water Containing Sulfamethoxazole. PLANTS (BASEL, SWITZERLAND) 2025; 14:1277. [PMID: 40364306 PMCID: PMC12073382 DOI: 10.3390/plants14091277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Contamination of agricultural ecosystems with antibiotics including sulfamethoxazole (SMX) can create favorable conditions to increase bacterial abundance in soil with antibiotic-resistant genes and can also affect plants. The aim of this research was to assess the phytotoxicity of tomato after irrigation with SMX degraded in 20 min using the non-thermal plasma-ozonation technique (T20). To achieve this, two experiments were performed at the scales of Petri dishes and pots using Solanum lycopersicum L. species, cultivar Zaraza, subjected to irrigation treatments that were compared to a distilled water control. In plates, T20 solution improved root length and also seedling vigor indexes, but the germination index, germination speed, and biomass were slightly decreased. In soil, although T20 reduced the seedling root length, their growth was not inhibited (15.3%), while in plates they exhibited a growth promotion effect with 90% more than the control. The physical-chemical and geochemical variables measured in the soil were suitable for crop characteristics and plant growth and showed statistically significant variations after harvesting. In T20-treated shoots, compared to SMX, better results were obtained for their length, assimilatory pigments, and biomass, thus selectively reducing the tomato seedling phytotoxicity depending on the endpoints, type of control, and growth methods tested.
Collapse
Affiliation(s)
- Marius Cicirma
- Faculty of Biology, University of Bucharest, Splaiul Independenței, No. 91-95, 050095 Bucharest, Romania; (M.C.); (A.N.)
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125 Magurele, Romania;
| | - Marius Dumitru
- National Institute for Lasers, Plasma and Radiation Physics, Atomistilor Str., No. 409, 077125 Magurele, Romania;
| | - Sergiu Emil Georgescu
- Faculty of Biology, University of Bucharest, Splaiul Independenței, No. 91-95, 050095 Bucharest, Romania; (M.C.); (A.N.)
| | - Aurora Neagoe
- Faculty of Biology, University of Bucharest, Splaiul Independenței, No. 91-95, 050095 Bucharest, Romania; (M.C.); (A.N.)
- “Dan Manoleli” Research Centre for Ecological Services—CESEC and “Dimitrie Brândză” Botanical Garden, University of Bucharest, Aleea Portocalelor No. 1-3, Sector 6, 060101 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, Panduri Road, No. 90-92, 050663 Bucharest, Romania
| |
Collapse
|
2
|
Yan C, Shi P, Yao W, Yu K, Niinemets Ü. A Nonlinear Fitting Method Provides Strong Support for Geometric Series of Stomatal Area in 12 Magnoliaceae Species. PLANTS (BASEL, SWITZERLAND) 2025; 14:893. [PMID: 40265783 PMCID: PMC11945771 DOI: 10.3390/plants14060893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Stomatal pore area and density determine the capacity for gas exchange between the leaf interior and the atmosphere. Stomatal area is given by the profile formed by two guard cells, and the cumulative stomatal area characterizes the area of leaf surface occupied by stomata. The areas of all stomata captured in a micrograph are sorted in ascending order to form a sequence, which is referred to as a sequence of stomatal area here. In total, 360 leaves of 12 Magnoliaceae species with 30 leaves for each species were sampled. For each leaf, two 662 μm × 444 μm fields of view (micrographs) of stomata were captured on the right leaf width axis. In each micrograph, the length and width of each stoma were measured, and the area of the stoma was determined using the product of stomatal length and width multiplied by a proportionality coefficient. Stomatal area sequences of Magnoliaceae in the constant field of view were found to follow a geometric series (GS). Prior studies estimated the common ratio of the GS as the mean of the quotients of any two adjacent terms, and estimated the first term as the mean of the first terms (i.e., the smallest stomatal area) represented by the quotient of each term and the estimated common ratio to a power of the order of the term minus 1, which is referred to as Method-1. However, it produced large prediction errors for some stomatal area sequences. In the present study, the nonlinear regression was used to fit the stomatal area sequences using the common ratio and the first term as two model parameters (Method-2). We compared the two methods using the mean absolute percent error (MAPE, ≤5% considered as a good fit) values of the 720 stomatal micrographs from the 12 Magnoliaceae species. The goodness of fit of Method-2 was better than that of Method-1 (52.4% MAPE values were ≤5% for Method-1 and 99.6% for Method-2). There were significant variations in the estimated common ratios, as well as the estimated first terms and the MAPE values across the 12 Magnoliaceae species, but overall, the interspecific differences in the MAPE values were small. We conclude that the GS hypothesis for the stomatal area sequences of the 12 Magnoliaceae species was further strengthened by the new method. This method further provides a valuable approach for the calculation of total stomatal area per unit leaf area.
Collapse
Affiliation(s)
- Chunxiu Yan
- National Key Laboratory of Smart Farm Technologies and Systems, College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Peijian Shi
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Weihao Yao
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Kexin Yu
- Southern Modern Forestry Collaborative Innovation Center, College of Ecology and Environment, Nanjing Forestry University, #159 Longpan Road, Nanjing 210037, China; (W.Y.); (K.Y.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia
| |
Collapse
|
3
|
Nicholes V, Khan M, Lemon N, Vila P, Campany C. Acclimation of functional traits leads to biomass increases in leafy green species grown in aquaponics. AOB PLANTS 2025; 17:plaf005. [PMID: 40007953 PMCID: PMC11851069 DOI: 10.1093/aobpla/plaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
As human population size continues to increase and climate change effects worsen, future food security has become a primary concern for agricultural industries worldwide. Yields of traditional agricultural methods are commonly limited by water and nutrient availability and many crop yields are predicted to decline. Alternative farming practices like aquaponics, which can alleviate these negative yield pressures, may become critical to reaching food production targets. Aquaponics approaches involve the cyclic joint production of fish and hydroponic plants where the fish efflux provides nutrients to plants that then purify the water to be recycled to the fish tanks. In this study, we investigated the acclimation of physiology and functional traits of plants grown in aquaponics versus soil for three leafy green species. We compared gas exchange, stomatal anatomy, water-use efficiency, and foliar chemistry on newly formed leaves across weekly measurements. Increased photosynthetic rate, driven by higher stomatal conductance and increases in tissue nitrogen, led to higher biomass production in aquaponics for all species. Aquaponics plants adjusted stomatal behavior and to a lesser degree stomatal anatomy to become less water-use efficient than plants grown in soil. Collectively, our findings demonstrate the ability of plants to acclimate quickly to aquaponics growing systems that largely remove water and nutrient limitations to plant growth. The increased biomass production of broccoli, pak choi, and salanova by 185%, 116%, and 362% in aquaponics compared to soil-grown plants demonstrates the potential of small-scale aquaponics systems as an efficient and sustainable alternative farming practice.
Collapse
Affiliation(s)
- Victoria Nicholes
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
- Department of Biology, West Virginia University, Life Sciences Bldg, PO Box 6057, Morgantown, WV, 26506, USA
| | - Malik Khan
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Nicholas Lemon
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Peter Vila
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Courtney Campany
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| |
Collapse
|
4
|
Rehman M, Salam A, Ali B, Ahmad I, Javaid MH, Haider Z, Munir R, Yasin MU, Ali I, Yang C, Muhammad S, Gan Y. Titanium dioxide nanoparticles seed priming as a remedy for nickel-induced stress in maize through antioxidant enhancement and ultrastructural optimization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123487. [PMID: 39616783 DOI: 10.1016/j.jenvman.2024.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 01/15/2025]
Abstract
Heavy metals (HMs) have emerged as a critical global concern, not only limiting crop productivity but also posing risks to public health. Among them, nickel (Ni) is an essential micronutrient for plant growth; however, it becomes toxic at higher concentrations. Nano-enabled approaches, on the other hand, have emerged as promising eco-friendly alternatives for mitigating the negative impact associated with HMs. Here, we investigated the potential of titanium dioxide nanoparticles (TiO2 NPs) against Ni-induced stress in maize. Our results showed that Ni stress caused negative changes in maize by the excessive production of reactive oxygen species (ROS), inhibiting photosynthetic attributes, and damaging cellular ultrastructure. In contrast, TiO2 NPs priming significantly enhanced the antioxidant mechanism, photosynthetic efficacy, and nutrient uptake while reducing ultrastructural damage caused by Ni stress. Furthermore, TiO2 NPs efficiently reduced Ni accumulation, MDA (28%/32%), H2O2 (23%/26%), and O2•‒ (31%/34%) levels in shoot/root tissues, respectively, compared to Ni treatment. Moreover, TiO2 NPs priming has modulated the expression of antioxidant and defense-related genes, thereby restoring cellular redox homeostasis. Collectively, this is the first piece of evidence demonstrating the potential of TiO2 NPs as an efficient and sustainable alternative for enhancing crop tolerance in Ni-contaminated areas.
Collapse
Affiliation(s)
- Muhammad Rehman
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Abdul Salam
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Bahar Ali
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Irshan Ahmad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haseeb Javaid
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zulqarnain Haider
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Imran Ali
- Department of Botany, Kohat University Science and Technology, Kohat, 26000, Pakistan
| | - Chunyan Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Liu C, Huang K, Zhao Y, Li Y, He N. A continental-scale analysis reveals the latitudinal gradient of stomatal density across amphistomatous species: evolutionary history vs. present-day environment. ANNALS OF BOTANY 2024; 134:877-886. [PMID: 39136155 PMCID: PMC11639198 DOI: 10.1093/aob/mcae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIMS Amphistomy is a potential method for increasing photosynthetic rate; however, the latitudinal gradients of stomatal density across amphistomatous species and their drivers remain unknown. METHODS Here, the adaxial stomatal density (SDad) and abaxial stomatal density (SDab) of 486 amphistomatous species-site combinations, belonging to 32 plant families, were collected from China, and their total stomatal density (SDtotal) and stomatal ratio (SR) were calculated. KEY RESULTS Overall, these four stomatal traits did not show significant phylogenetic signals. There were no significant differences in SDab and SDtotal between woody and herbaceous species, but SDad and SR were higher in woody species than in herbaceous species. Besides, a significantly positive relationship between SDab and SDad was observed. We also found that stomatal density (including SDab, SDad and SDtotal) decreased with latitude, whereas SR increased with latitude, and temperature seasonality was the most important environmental factor driving it. Besides, evolutionary history (represented by both phylogeny and species) explained ~10- to 22-fold more of the variation in stomatal traits than the present-day environment (65.2-71.1 vs. 2.9-6.8 %). CONCLUSIONS Our study extended our knowledge of trait-environment relationships and highlighted the importance of evolutionary history in driving stomatal trait variability.
Collapse
Affiliation(s)
- Congcong Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Kexiang Huang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yifei Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Earth Critical Zone and Flux Research Station of Xing’an Mountains, Chinese Academy of Sciences, Daxing’anling 165200, China
| |
Collapse
|
6
|
Liu Z, Zhao M, Tennakoon K, Liu C. Climate factors determine large-scale spatial patterns of stomatal index in Chinese herbaceous and woody dicotyledonous plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175112. [PMID: 39084391 DOI: 10.1016/j.scitotenv.2024.175112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The stomatal index (SI, %) and its response to climate factors (temperature and precipitation) can help our understanding of terrestrial carbon and water cycling and plant adaptation in the ecosystem, however, consensus has not yet been reached in this regard. In this study, we compiled an extensive dataset from the Chinese flora to investigate the response of SI to environmental change, including 891 herbaceous and woody species from 188 published papers. The results showed that mean values of the adaxial SI and abaxial SI for all species were 14.06 and 19.22, respectively, and the ratio of adaxial to abaxial SI was 0.84. For the adaxial SI, abaxial SI, and the ratio of adaxial to abaxial SI, the range of these values varied between 0.05-43.67, 0.01-48.17, and 0.03-4.31, respectively. Compared with woody plants, herbaceous plants showed higher values in both adaxial and abaxial SI. In terms of the impact of climate factors, the abaxial SI of herbaceous plants changed slower than the adaxial SI, while woody plants showed the opposite trend. Threshold effects of increased temperature and precipitation on SI were observed, indicating that SI responded differently to changes in climate factors at different levels. Climate factors play a crucial role in driving the adaxial SI than abaxial SI. Our findings highlight the significant challenges posed by divergent responses of SI in forecasting future water and carbon cycles associated with climatic and environmental change.
Collapse
Affiliation(s)
- Zhaogang Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Kushan Tennakoon
- Institute of Innovation, Science and Sustainability, Federation University Australia Berwick Campus, No.100 Clyde Road, Berwick, VIC 3806, Australia
| | - Congcong Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
7
|
Petrík P, Petek-Petrík A, Lamarque LJ, Link RM, Waite PA, Ruehr NK, Schuldt B, Maire V. Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14619. [PMID: 39528910 DOI: 10.1111/ppl.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however, only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor negative influence on iWUE and leaf δ13C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ13C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.
Collapse
Affiliation(s)
- Peter Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Roman M Link
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Pierre-André Waite
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- French Agricultural Research Centre for International Development (CIRAD), UPR AIDA, Montpellier, France
- Agroecology and Sustainable Intensification of Annual Crops (AIDA), CIRAD, Université de Montpellier, Montpellier, France
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
8
|
Wang L, Zhang Y, Luo D, Hu X, Feng P, Mo Y, Li H, Gong S. Integrated Effects of Soil Moisture on Wheat Hydraulic Properties and Stomatal Regulation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2263. [PMID: 39204699 PMCID: PMC11359431 DOI: 10.3390/plants13162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
The development of water-saving management relies on understanding the physiological response of crops to soil drought. The coordinated regulation of hydraulics and stomatal conductance in plant water relations has steadily received attention. However, research focusing on grain crops, such as winter wheat, remains limited. In this study, three soil water supply treatments, including high (H), moderate (M), and low (L) soil water contents, were conducted with potted winter wheat. Leaf water potential (Ψleaf), leaf hydraulic conductance (Kleaf), and stomatal conductance (gs), as well as leaf biochemical parameters and stomatal traits were measured. Results showed that, compared to H, predawn leaf water potential (ΨPD) significantly reduced by 48.10% and 47.91%, midday leaf water potential (ΨMD) reduced by 40.71% and 43.20%, Kleaf reduced by 64.80% and 65.61%, and gs reduced by 21.20% and 43.41%, respectively, under M and L conditions. Although gs showed a significant difference between M and L, Ψleaf and Kleaf did not show significant differences between these treatments. The maximum carboxylation rate (Vcmax) and maximum electron transfer rate (Jmax) under L significantly decreased by 23.11% and 28.10%, stomatal density (SD) and stomatal pore area index (SPI) under L on the abaxial side increased by 59.80% and 52.30%, respectively, compared to H. The leaf water potential at 50% hydraulic conduction loss (P50) under L was not significantly reduced. The gs was positively correlated with ΨMD and Kleaf, but it was negatively correlated with abscisic acid (ABA) and SD. A threshold relationship between gs and Kleaf was observed, with rapid and linear reduction in gs occurring only when Kleaf fell below 8.70 mmol m-2 s-1 MPa-1. Our findings demonstrate that wheat leaves adapt stomatal regulation strategies from anisohydric to isohydric in response to reduced soil water content. These results enrich the theory of trade-offs between the carbon assimilation and hydraulic safety in crops and also provide a theoretical basis for water management practices based on stomatal regulation strategies under varying soil water conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yanqun Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dandan Luo
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- School of Geography and Planning, Jining Normal University, Jining 012000, China
| | - Xinlong Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Pancen Feng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yan Mo
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Hao Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Shihong Gong
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
9
|
Hu W, Loka DA, Yang Y, Wu Z, Wang J, Liu L, Wang S, Zhou Z. Partial root-zone drying irrigation improves intrinsic water-use efficiency and maintains high photosynthesis by uncoupling stomatal and mesophyll conductance in cotton leaves. PLANT, CELL & ENVIRONMENT 2024; 47:3147-3165. [PMID: 38693776 DOI: 10.1111/pce.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Partial root-zone drying irrigation (PRD) can improve water-use efficiency (WUE) without reductions in photosynthesis; however, the mechanism by which this is attained is unclear. To amend that, PRD conditions were simulated by polyethylene glycol 6000 in a root-splitting system and the effects of PRD on cotton growth were studied. Results showed that PRD decreased stomatal conductance (gs) but increased mesophyll conductance (gm). Due to the contrasting effects on gs and gm, net photosynthetic rate (AN) remained unaffected, while the enhanced gm/gs ratio facilitated a larger intrinsic WUE. Further analyses indicated that PRD-induced reduction of gs was related to decreased stomatal size and stomatal pore area in adaxial and abaxial surface which was ascribed to lower pore length and width. PRD-induced variation of gm was ascribed to the reduced liquid-phase resistance, due to increases in chloroplast area facing to intercellular airspaces and the ratio of chloroplast surface area to total mesophyll cell area exposed to intercellular airspaces, as well as to decreases in the distance between cell wall and chloroplast, and between adjacent chloroplasts. The above results demonstrate that PRD, through alterations to stomatal and mesophyll structures, decoupled gs and gm responses, which ultimately increased intrinsic WUE and maintained AN.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larisa, Greece
| | - Yuanli Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ziqing Wu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jun Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Lin Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Hu W, Zhao P. Soil warming affects sap flow and stomatal gas exchange through altering functional traits in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170581. [PMID: 38309334 DOI: 10.1016/j.scitotenv.2024.170581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Climate warming influences the structure and function of ecosystems. However, the mechanisms of plant water use and gas exchange responses to climate warming have been less studied, especially from the perspective of different functional traits. We conducted a field experiment to investigate how soil warming (+2 °C) affects sap flow and stomatal gas exchange through plant functional traits and nutrient characteristics in a subtropical forest. We measured stomatal gas exchange of trees (Acacia auriculiformis and Schima superba) and shrubs (Castanea henryi and Psychotria asiatica), and monitored long-term sap flow of both tree species. Besides, plant leaf nutrient contents, functional traits, and soil nutrients were also studied. It is demonstrated that soil warming significantly increased maximum sap flow density (Js_max, 35.1 %) and whole-tree transpiration (EL, 46.0 %) of A. auriculiformis, but decreased those of S. superba (15.6 % and 14.9 %, respectively). Warming increased the photosynthetic rate of P. asiatica (18.0 %) and water use efficiency of S. superba (47.2 %). Leaf nutrients and stomatal anatomical characteristics of shrubs were less affected by soil warming. Soil warming increased (+42.7 %) leaf K content of A. auriculiformis in dry season. Decomposition of soil total carbon, total nitrogen, and available nitrogen was accelerated under soil warming, and soil exchangeable Ca2+ and Mg2+ were decreased. Trees changed stomatal and anatomic traits to adapt to soil warming, while shrubs altered leaf water content and specific leaf area under soil warming. Warming had a greater effect on sap flow of trees, as well as on their leaf gas exchange (total effect: -0.27) than on that of shrubs (total effect: 0.06). In summary, our results suggest that the combination of functional and nutrient traits can help to better understand plant water use and gas exchange responses under climate warming.
Collapse
Affiliation(s)
- Weiting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
11
|
He K, Niklas KJ, Niinemets Ü, Wang J, Jiao Y, Shi P. Significant correlation between leaf vein length per unit area and stomatal density: evidence from Red Tip and Chinese photinias. FRONTIERS IN PLANT SCIENCE 2024; 15:1365449. [PMID: 38571707 PMCID: PMC10987709 DOI: 10.3389/fpls.2024.1365449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The vascular veins in photosynthetic leaves play an important role in transporting water and sugars throughout the plant body, and their venation pattern and vein density determine the hydraulic efficiency of the leaf. Likewise, stomatal density (SD) can influence photosynthetic gas exchange. However, the correlation between leaf vein density and SD is seldom reported. Herein, we examined 16 leaves from the hybrid Photinia × fraseri and 16 leaves from one of its parents, P. serratifolia, to explore the correlation between leaf vein density and SD. For each leaf, equidistant lamina quadrats were excised along two longitudinal transects (one along the midrib and another along the leaf margin). For each quadrat, micrographs of 1.2 mm × 0.9 mm stomatal imprints, and 2.51 mm × 1.88 mm micrographs of leaf veins were used to measure total vein area per leaf unit area (VAA) and total vein length per unit area (VLA), as indicators of leaf vein density, to determine the correlation between SD and leaf vein density. For each taxon, there was no significant correlation between SD and VAA, but there was a significant correlation between SD and VLA. The data indicate that SD is not positively correlated with VAA but positively correlated with VLA for both the hybrid and the parent species. This study indicates that future work should focus on the relationships between SD and total vein length per unit area rather than on total leaf vein area per unit area within and across species.
Collapse
Affiliation(s)
- Ke He
- Architectural Design and Research Institute, Shenzhen University, Shenzhen, China
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Karl J. Niklas
- School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Jinfeng Wang
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Yabing Jiao
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Peijian Shi
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Zukswert JM, Vadeboncoeur MA, Yanai RD. Responses of stomatal density and carbon isotope composition of sugar maple and yellow birch foliage to N, P and CaSiO3 fertilization. TREE PHYSIOLOGY 2024; 44:tpad142. [PMID: 38070183 DOI: 10.1093/treephys/tpad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Stomatal density, stomatal length and carbon isotope composition can all provide insights into environmental controls on photosynthesis and transpiration. Stomatal measurements can be time-consuming; it is therefore wise to consider efficient sampling schemes. Knowing the variance partitioning at different measurement levels (i.e., among stands, plots, trees, leaves and within leaves) can aid in making informed decisions around where to focus sampling effort. In this study, we explored the effects of nitrogen (N), phosphorus (P) and calcium silicate (CaSiO3) addition on stomatal density, length and carbon isotope composition (δ13C) of sugar maple (Acer saccharum Marsh.) and yellow birch (Betula alleghaniensis Britton). We observed a positive but small (8%) increase in stomatal density with P addition and an increase in δ13C with N and CaSiO3 addition in sugar maple, but we did not observe effects of nutrient addition on these characteristics in yellow birch. Variability was highest within leaves and among trees for stomatal density and highest among stomata for stomatal length. To reduce variability and increase chances of detecting treatment differences in stomatal density and length, future protocols should consider pretreatment and repeated measurements of trees over time or measure more trees per plot, increase the number of leaf impressions or standardize their locations, measure more stomata per image and ensure consistent light availability.
Collapse
Affiliation(s)
- Jenna M Zukswert
- Department of Sustainable Resources Management, SUNY College of Environmental Science and Policy, Syracuse, NY 13210, USA
| | | | - Ruth D Yanai
- Department of Sustainable Resources Management, SUNY College of Environmental Science and Policy, Syracuse, NY 13210, USA
| |
Collapse
|
13
|
Munir R, Yasin MU, Afzal M, Jan M, Muhammad S, Jan N, Nana C, Munir F, Iqbal H, Tawab F, Gan Y. Melatonin alleviated cadmium accumulation and toxicity by modulating phytohormonal balance and antioxidant metabolism in rice. CHEMOSPHERE 2024; 346:140590. [PMID: 37914045 DOI: 10.1016/j.chemosphere.2023.140590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Cadmium (Cd) contamination is an eminent dilemma that jeopardizes global food safety and security, especially through its phytotoxicity in rice; one of the most edible crops. Melatonin (MET) has emerged as a protective phytohormone in stress conditions, but the defensive role and underlying mechanisms of MET against Cd toxicity in rice still remain unclear. To fulfill this knowledge gap, the present study is to uncover the key mechanisms for MET-mediated Cd-stress tolerance in rice. Cd toxicity significantly reduced growth by hindering the process of photosynthesis, cellular redox homeostasis, phytohormonal imbalance, and ultrastructural damages. Contrarily, MET supplementation considerably improved growth attributes, photosynthetic efficiency, and cellular ultrastructure as measured by gas exchange elements, chlorophyll content, reduced Cd accumulation, and ultrastructural analysis via transmission electron microscopy (TEM). MET treatment significantly reduced Cd accumulation (39.25%/31.58%), MDA (25.87%/19.45%), H2O2 (17.93%/9.56%), and O2 (29.11%/27.14%) levels in shoot/root tissues, respectively, when compared with Cd treatment. More importantly, MET manifested association with stress responsive phytohormones (ABA and IAA) and boosted the defense mechanisms of plant by enhancing the activities of ROS-scavenging antioxidant enzymes (SOD; superoxide dismutase, POD; peroxidase, CAT; catalase, APX; ascorbate peroxidase) and as well as regulating the key stress-responsive genes (OsSOD1, OsPOD1, OsCAT2, OsAPX1), thereby reinstate cellular membrane integrity and confer tolerance to ultrastructural damages under Cd-induced phytotoxicity. Overall, our findings emphasized the potential of MET as a long-term and cost-effective approach to Cd remediation in paddy soils, which can pave the way for a healthier and more environmentally conscious agricultural sector.
Collapse
Affiliation(s)
- Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Afzal
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mehmood Jan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nazia Jan
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chen Nana
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Faisal Munir
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Hamza Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Faiza Tawab
- Department of Botany, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Pakistan
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Gao X, Kundu A, Persson DP, Szameitat A, Minutello F, Husted S, Ghoshal S. Application of ZnO Nanoparticles Encapsulated in Mesoporous Silica on the Abaxial Side of a Solanum lycopersicum Leaf Enhances Zn Uptake and Translocation via the Phloem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21704-21714. [PMID: 38079531 PMCID: PMC10753877 DOI: 10.1021/acs.est.3c06424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
Foliar application of nutrient nanoparticles (NPs) is a promising strategy for improving fertilization efficiency in agriculture. Phloem translocation of NPs from leaves is required for efficient fertilization but is currently considered to be feasible only for NPs smaller than a cell wall pore size exclusion limit of <20 nm. Using mass spectrometry imaging, we provide here the first direct evidence for phloem localization and translocation of a larger (∼70 nm) fertilizer NP comprised of ZnO encapsulated in mesoporous SiO2 (ZnO@MSN) following foliar deposition. The Si content in the phloem tissue of the petiole connected to the dosed leaf was ∼10 times higher than in the xylem tissue, and ∼100 times higher than the phloem tissue of an untreated tomato plant petiole. Direct evidence of NPs in individual phloem cells has only previously been shown for smaller NPs introduced invasively in the plant. Furthermore, we show that uptake and translocation of the NPs can be enhanced by their application on the abaxial (lower) side of the leaf. Applying ZnO@MSN to the abaxial side of a single leaf resulted in a 56% higher uptake of Zn as well as higher translocation to the younger (upper) leaves and to the roots, than dosing the adaxial (top) side of a leaf. The higher abaxial uptake of NPs is in alignment with the higher stomatal density and lower density of mesophyll tissues on that side and has not been demonstrated before.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Anirban Kundu
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Daniel Pergament Persson
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Augusta Szameitat
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Francesco Minutello
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Søren Husted
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Frederiksberg 1871, Denmark
| | - Subhasis Ghoshal
- Department
of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| |
Collapse
|
15
|
Rumyantseva NI, Valieva AI, Kostyukova YA, Ageeva MV. The Effect of Leaf Plasticity on the Isolation of Apoplastic Fluid from Leaves of Tartary Buckwheat Plants Grown In Vivo and In Vitro. PLANTS (BASEL, SWITZERLAND) 2023; 12:4048. [PMID: 38068682 PMCID: PMC10707844 DOI: 10.3390/plants12234048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/19/2024]
Abstract
Vacuum infiltration-centrifugation (VIC) is the most reproducible technique for the isolation of apoplast washing fluid (AWF) from leaves, but its effectiveness depends on the infiltration-centrifugation conditions and the anatomical and physiological peculiarities of leaves. This study aimed to elaborate an optimal procedure for AWF isolation from the leaves of Tartary buckwheat grown in in vivo and in vitro conditions and reveal the leaf anatomical and physiological traits that could contribute to the effectiveness of AWF isolation. Here, it was demonstrated that leaves of buckwheat plants grown in vitro could be easier infiltrated, were less sensitive to higher forces of centrifugation (900× g and 1500× g), and produced more AWF yield and apoplastic protein content than in vivo leaves at the same forces of centrifugation (600× g and 900× g). The extensive study of the morphological, anatomical, and ultrastructural characteristics of buckwheat leaves grown in different conditions revealed that in vitro leaves exhibited significant plasticity in a number of interconnected morphological, anatomical, and physiological features, generally driven by high RH and low lighting; some of them, such as the reduced thickness and increased permeability of the cuticle of the epidermal cells, large intercellular spaces, increase in the size of stomata and in the area of stomatal pores, higher stomata index, drop in density, and area of calcium oxalate druses, are beneficial to the effectiveness of VIC. The size of stomata pores, which were almost twice as large in in vitro leaves as those in in vivo ones, was the main factor contributing to the isolation of AWF free of chlorophyll contamination. The opening of stomata pores by artificially created humid conditions reduced damage to the in vivo leaves and improved the VIC of them. For Fagopyrum species, this is the first study to develop a VIC technique for AWF isolation from leaves.
Collapse
Affiliation(s)
- Natalya I. Rumyantseva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
- Department of Botany and Plant Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlyovskaya 18, Kazan 420008, Russia
| | - Alfia I. Valieva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Yulia A. Kostyukova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| | - Marina V. Ageeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, Kazan 420111, Russia; (A.I.V.); (Y.A.K.); (M.V.A.)
| |
Collapse
|
16
|
Sun M, Niinemets Ü, Li Q, Jiao Y, Yao W, Shi P. An Inverse Scaling Relationship between Stomatal Density and Mean Nearest Neighbor Distance: Evidence from a Photinia Hybrid and One of Its Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:3701. [PMID: 37960057 PMCID: PMC10650524 DOI: 10.3390/plants12213701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Stomata are involved in transpiration and CO2 uptake by mediating gas exchange between internal plant tissues and the atmosphere. The capacity for gas exchange depends on stomatal density (SD), stomatal size, and pore dimensions. Most published work on stomatal quantification has assumed that stomatal distribution and stomatal density are spatially homogeneous across the leaf, but this assumption has been seldom tested. We selected 32 leaves from a Photinia hybrid, Photinia × fraseri 'Red Robin', and one of its parents, P. serratifolia. For each leaf, the leaf surface was divided into three or four equidistant layers along the apical-basal axis, and, in each layer, two positions, one closer to the midrib and the other closer to the leaf margin, were further selected. We calculated SD and mean nearest neighbor distance (MNND) for each lamina section and tested the scaling relationship between SD and MNND of the sampled stomatal centers using reduced major axis protocols. In addition, we calculated the stomatal aggregation index (SAI) for each lamina section to examine the spatial arrangement of stomata at the given size of field of view of 1.2 mm × 0.9 mm. We observed that SD decreased from the lamina apex towards the base for central lamina areas but varied little at leaf margins. An inverse scaling relationship between SD and MNND was observed for both species. This relationship could be used for SD estimation using the rapidly estimated trait, MNND. SAI did not vary significantly throughout leaf lamina, and the numerical values of SAI for all fields of view were greater than one, which indicates significant spatial repulsion between stomata. The study suggests that SD varies across leaf lamina to fine-tune plant water use and maximize carbon gain. However, spatial structures of stomata from different lamina sections exhibit similar patterns (i.e., spatial inhibition between stomata at small scales), probably due to hierarchical leaf vein patterns.
Collapse
Affiliation(s)
- Manli Sun
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
- Estonian Academy of Sciences, 10130 Tallinn, Estonia
| | - Qiying Li
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Yabing Jiao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Weihao Yao
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| | - Peijian Shi
- Archives, Bamboo Research Institute, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; (M.S.); (Q.L.); (Y.J.); (W.Y.)
| |
Collapse
|
17
|
Zhang F, Wang B, Lu F, Zhang X. Rotating Stomata Measurement Based on Anchor-Free Object Detection and Stomata Conductance Calculation. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0106. [PMID: 37817885 PMCID: PMC10561978 DOI: 10.34133/plantphenomics.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Stomata play an essential role in regulating water and carbon dioxide levels in plant leaves, which is important for photosynthesis. Previous deep learning-based plant stomata detection methods are based on horizontal detection. The detection anchor boxes of deep learning model are horizontal, while the angle of stomata is randomized, so it is not possible to calculate stomata traits directly from the detection anchor boxes. Additional processing of image (e.g., rotating image) is required before detecting stomata and calculating stomata traits. This paper proposes a novel approach, named DeepRSD (deep learning-based rotating stomata detection), for detecting rotating stomata and calculating stomata basic traits at the same time. Simultaneously, the stomata conductance loss function is introduced in the DeepRSD model training, which improves the efficiency of stomata detection and conductance calculation. The experimental results demonstrate that the DeepRSD model reaches 94.3% recognition accuracy for stomata of maize leaf. The proposed method can help researchers conduct large-scale studies on stomata morphology, structure, and stomata conductance models.
Collapse
Affiliation(s)
- Fan Zhang
- Huaihe Hospital of Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Big Data Analysis and Processing,
Henan University, Kaifeng 475004, China
| | - Bo Wang
- Henan Key Laboratory of Big Data Analysis and Processing,
Henan University, Kaifeng 475004, China
| | - Fuhao Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement,
Henan University, Kaifeng 475004, China
| | - Xinhong Zhang
- School of Software,
Henan University, Kaifeng 475004, China
| |
Collapse
|
18
|
Jensen NB, Ottosen CO, Zhou R. Exogenous Melatonin Alters Stomatal Regulation in Tomato Seedlings Subjected to Combined Heat and Drought Stress through Mechanisms Distinct from ABA Signaling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1156. [PMID: 36904016 PMCID: PMC10005520 DOI: 10.3390/plants12051156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The understanding of stomatal regulation in climate stress is essential for ensuring resilient crops. The investigation of the stomatal regulation in combined heat and drought stress aimed to link effects of exogenous melatonin on stomatal conductance (gs) and its mechanistic interactions with ABA or ROS signaling. Melatonin-treated and non-treated tomato seedlings were subjected to moderate and severe levels of heat (38°C for one or three days) and drought stress (soil relative water content of 50% or 20%) applied individually and in combination. We measured gs, stomatal anatomy, ABA metabolites and enzymatic ROS scavengers. The stomata in combined stress responded predominantly to heat at soil relative water content (SRWC) = 50% and to drought stress at SRWC = 20%. Drought stress increased ABA levels at severe stress, whereas heat stress caused an accumulation of the conjugated form, ABA glucose ester, at both moderate and severe stress. The melatonin treatment affected gs and the activity of ROS scavenging enzymes but had no effect on ABA levels. The ABA metabolism and conjugation of ABA might play a role in stomatal opening toward high temperatures. We provide evidence that melatonin increases gs in combined heat and drought stress, but the effect is not mediated through ABA signaling.
Collapse
Affiliation(s)
- Nikolaj Bjerring Jensen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Rong Zhou
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Serrano-Mejía C, Bello-Bedoy R, Arteaga MC, Castillo GR. Does Domestication Affect Structural and Functional Leaf Epidermal Traits? A Comparison between Wild and Cultivated Mexican Chili Peppers ( Capsicum annuum). PLANTS (BASEL, SWITZERLAND) 2022; 11:3062. [PMID: 36432791 PMCID: PMC9692241 DOI: 10.3390/plants11223062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
During domestication, lineages diverge phenotypically and genetically from wild relatives, particularly in preferred traits. In addition to evolutionary divergence in selected traits, other fitness-related traits that are unselected may change in concert. For instance, the selection of chili pepper fruits was not intended to change the structure and function of the leaf epidermis. Leaf stomata and trichome densities play a prominent role in regulating stomatal conductance and resistance to herbivores. Here, we assessed whether domestication affected leaf epidermis structure and function in Capsicum annuum. To do this, we compared leaf stomata and trichome densities in six cultivated varieties of Mexican Capsicum annuum and their wild relative. We measured stomatal conductance and resistance to herbivores. Resistance to (defense against) herbivores was measured as variation in the herbivory rate and larvae mortality of Spodoptera frugiperda fed with leaves of wild and cultivated plants. As expected, the different varieties displayed low divergence in stomatal density and conductance. Leaf trichome density was higher in the wild relative, but variation was not correlated with the herbivory rate. In contrast, a higher mortality rate of S. frugiperda larvae was recorded when fed with the wild relative and two varieties than larvae fed with four other varieties. Overall, although domestication did not aim at resistance to herbivores, this evolutionary process produced concerted changes in defensive traits.
Collapse
Affiliation(s)
- Carlos Serrano-Mejía
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - María Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Guillermo R. Castillo
- Facultad de Negocios Sostenibles, Universidad del Medio Ambiente, San Mateo Acatitlán, Valle de Bravo 51200, Estado de Mexico, Mexico
| |
Collapse
|
20
|
Walczyk AM, Hersch-Green EI. Do water and soil nutrient scarcities differentially impact the performance of diploid and tetraploid Solidago gigantea (Giant Goldenrod, Asteraceae)? PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1031-1042. [PMID: 35727918 DOI: 10.1111/plb.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype-specific trait responses differ based on water and/or nutrient availability. Diploid and autotetraploid Solidago gigantea (Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above- and belowground biomass, R/S), and physiological (Anet , E, WUE) responses were measured. Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high-water and nutrient treatments were larger, plants grown in low-water or high-nutrient treatments had higher WUE but lower E, and Anet and E rates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and larger Anet than diploids. Nutrient and water availability could influence intra- and interspecific competitive outcomes. Although S. gigantea cytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploid S. gigantea might render them more competitive for resources and niche space than diploids.
Collapse
Affiliation(s)
- A M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - E I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
21
|
Disjoining pressure driven transpiration of water in a simulated tree. J Colloid Interface Sci 2022; 616:895-902. [DOI: 10.1016/j.jcis.2022.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
|
22
|
Ma Y, Hu L, Wu Y, Tang Z, Xiao X, Lyu J, Xie J, Yu J. Green Light Partial Replacement of Red and Blue Light Improved Drought Tolerance by Regulating Water Use Efficiency in Cucumber Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:878932. [PMID: 35712603 PMCID: PMC9194611 DOI: 10.3389/fpls.2022.878932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Light is one of the most important environmental signals in plant growth, development, and stress response. Green light has been proved to enhance plant defense against biotic and/or abiotic stress. To illustrate the effects of green light partially replaced red light and blue light on the plant under drought condition, cucumber (Cucumis sativus L. cv. Xinchun No. 4) seedlings were treated with short-term drought stress and were concomitantly exposed to four treatments, which were set up by adjusting the relative amount of green light as 0 (RB), 25 (RBG25), 50 (RBG50), and 75 (RBG75) μmol m-2 s-1, respectively, with a total photosynthetic photon flux density of 250 μmol m-2 s-1 and a fixed red-to-blue ratio of 4:1. The results showed that compared with RB, RBG50 significantly increased shoot fresh weight (FW) and dry weight (DW), root DW, plant height, stem diameter, leaf area, and leaf dry mass per unit area (LMA) by 10.61, 7.69, 66.13, 6.22, 10.02, 4.10, and 12.41%, respectively. Also, the addition of green light significantly increased the root volume and root tip number. Moreover, green light partial replacement of red light and blue light increased total water content, especially free water content, improved leaf water status, and alleviated water loss in plants caused by drought stress. Also, the addition of green light increased net photosynthetic rate (Pn), reduced both stomata conductance (gs) and transpiration rate (E), enhanced the intrinsic water-use efficiency (WUE) and instantaneous water-use efficiency (iWUE) of leaves, and increased the content of chlorophylls a and b. Green light substituting a proportion of blue and red light regulated stomatal aperture by significantly increasing abscisic acid (ABA) and γ-aminobutyric acid (GABA) content. In addition, the increase of GABA was resulted from the upregulation of Glutamate Decarboxylase 2 (CsGAD2). However, the relative electrolytic leakage and contents of malondialdehyde (MDA), superoxide anion ( O 2 - ), and hydrogen peroxide (H2O2) vigorously decreased as the intensity of green light was added to the spectrum under drought. Conclusively, green light partially replaced red light and blue light and improved drought tolerance of cucumber seedlings by upregulating the expression of CsGAD2 gene and promoting the synthesis of GABA. The increase in GABA content further downregulated the expression of aluminum-activated malate transporter 9 (CsALMT9) gene, induced stomata to close, improved water utilization, and alleviated damage caused by drought. This study highlights a role of green light in plant physiological processes. Moreover, analyzing the function of green light on improving drought tolerance of plants could open alternative avenues for improving plant stress resilience.
Collapse
Affiliation(s)
- Yuting Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Basic Experiment Teaching Center, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Xiao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Zhang N, Berman SR, Joubert D, Vialet-Chabrand S, Marcelis LFM, Kaiser E. Variation of Photosynthetic Induction in Major Horticultural Crops Is Mostly Driven by Differences in Stomatal Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:860229. [PMID: 35574072 PMCID: PMC9094112 DOI: 10.3389/fpls.2022.860229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Under natural conditions, irradiance frequently fluctuates, causing net photosynthesis rate (A) to respond slowly and reducing the yields. We quantified the genotypic variation of photosynthetic induction in 19 genotypes among the following six horticultural crops: basil, chrysanthemum, cucumber, lettuce, tomato, and rose. Kinetics of photosynthetic induction and the stomatal opening were measured by exposing shade-adapted leaves (50 μmol m-2 s-1) to a high irradiance (1000 μmol m-2 s-1) until A reached a steady state. Rubisco activation rate was estimated by the kinetics of carboxylation capacity, which was quantified using dynamic A vs. [CO2] curves. Generally, variations in photosynthetic induction kinetics were larger between crops and smaller between cultivars of the same crop. Time until reaching 20-90% of full A induction varied by 40-60% across genotypes, and this was driven by a variation in the stomatal opening rather than Rubisco activation kinetics. Stomatal conductance kinetics were partly determined by differences in the stomatal size and density; species with densely packed, smaller stomata (e.g., cucumber) tended to open their stomata faster, adapting stomatal conductance more rapidly and efficiently than species with larger but fewer stomata (e.g., chrysanthemum). We conclude that manipulating stomatal traits may speed up photosynthetic induction and growth of horticultural crops under natural irradiance fluctuations.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Sarah R. Berman
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Dominique Joubert
- Biometris, Department of Mathematical and Statistical Methods, Wageningen University & Research, Wageningen, Netherlands
| | - Silvere Vialet-Chabrand
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
24
|
Trojak M, Skowron E, Sobala T, Kocurek M, Pałyga J. Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants. PHOTOSYNTHESIS RESEARCH 2022; 151:295-312. [PMID: 34580802 PMCID: PMC8940809 DOI: 10.1007/s11120-021-00879-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The artificial light used in growth chambers is usually devoid of green (G) light, which is considered to be less photosynthetically efficient than blue (B) or red (R) light. To verify the role of G light supplementation in the spectrum, we modified the RB spectrum by progressively replacing R light with an equal amount of G light. The tomato plants were cultivated under 100 µmol m-2 s-1 of five different combinations of R (35-75%) and G light (0-40%) in the presence of a fixed proportion of B light (25%) provided by light-emitting diodes (LEDs). Substituting G light for R altered the plant's morphology and partitioning of biomass. We observed a decrease in the dry biomass of leaves, which was associated with increased biomass accumulation and the length of the roots. Moreover, plants previously grown under the RGB spectrum more efficiently utilized the B light that was applied to assess the effective quantum yield of photosystem II, as well as the G light when estimated with CO2 fixation using RB + G light-response curves. At the same time, the inclusion of G light in the growth spectrum reduced stomatal conductance (gs), transpiration (E) and altered stomatal traits, thus improving water-use efficiency. Besides this, the increasing contribution of G light in place of R light in the growth spectrum resulted in the progressive accumulation of phytochrome interacting factor 5, along with a lowered level of chalcone synthase and anthocyanins. However, the plants grown at 40% G light exhibited a decreased net photosynthetic rate (Pn), and consequently, a reduced dry biomass accumulation, accompanied by morphological and molecular traits related to shade-avoidance syndrome.
Collapse
Affiliation(s)
- Magdalena Trojak
- Department of Medical Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland.
| | - Ernest Skowron
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Tomasz Sobala
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Maciej Kocurek
- Department of Environmental Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| | - Jan Pałyga
- Department of Medical Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406, Kielce, Poland
| |
Collapse
|
25
|
The Impact of Treated Wastewater Irrigation on the Metabolism of Barley Grown in Arid and Semi-Arid Regions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042345. [PMID: 35206534 PMCID: PMC8871893 DOI: 10.3390/ijerph19042345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022]
Abstract
The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.
Collapse
|
26
|
Su Y, Cui B, Luo Y, Wang J, Wang X, Ouyang Z, Wang X. Leaf Functional Traits Vary in Urban Environments: Influences of Leaf Age, Land-Use Type, and Urban–Rural Gradient. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An increasing number of studies have focused on the response and adaptation of plants to urbanization by comparing differences in leaf functional traits between urban and rural sites. However, considerable uncertainties remain because differences in land-use type have not frequently been taken into account when assessing the effect of urbanization on leaf traits. In this study, we sampled the needles of Chinese pine (Pinus tabuliformis Carr.) in areas with three land-use types (roadsides, parks, and neighborhoods) along an urban–rural gradient in Beijing, China to determine the effect of urbanization on leaf functional traits. There were significant differences in the values of leaf functional traits between the needles of the current and previous year and across land-use types. Pines growing on roadsides had leaves with smaller length, width, and area, as well as lower stomatal density, compared with those growing in parks and neighborhoods. This implies that on roadsides, plant capacity to acquire resources (e.g., light and carbon dioxide) was degraded. Stomatal density, leaf width, and leaf P concentration increased with increasing distance from the city center, while leaf K concentration decreased with increasing distance from the city center. Importantly, there were significant differences in the urban–rural gradient of leaf functional traits between leaves of different ages, and across land-use types. Leaf age was the most important factor influencing leaf nutrient traits, while land-use type was the most important factor influencing leaf morphological traits in urban environments. Thus, considering the effects of the plant characteristic and land-use type on traits is important for assessing the urban–rural gradients of plant functional traits.
Collapse
|
27
|
Hernandez JO, An JY, Combalicer MS, Chun JP, Oh SK, Park BB. Morpho-Anatomical Traits and Soluble Sugar Concentration Largely Explain the Responses of Three Deciduous Tree Species to Progressive Water Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:738301. [PMID: 34950160 PMCID: PMC8688917 DOI: 10.3389/fpls.2021.738301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A better understanding of plant drought responses is essential to improve plant water use efficiency, productivity, and resilience to ever-changing climatic conditions. Here, we investigated the growth, morpho-anatomical, physiological, and biochemical responses of Quercus acutissima Carruth., Quercus serrata Murray, and Betula schmidtii Regel to progressive water-stress. Seedlings were subjected to well-watered (WW) and water-stressed (WS) conditions while regularly monitoring the soil volumetric water content, stem diameter (SD), height, biomass, stomatal conductance (gs), intercellular CO2 concentration (Ci), and leaf relative water content (RWC). We also investigated the variation in stomatal pore (SP) area, specific leaf area (SLA), root xylem vessel diameter (VD), and total soluble sugar (TSS) concentration between treatments. After 2 months, WS significantly suppressed SD growth of Q. acutissima and B. schmidtii but had no impact on Q. serrata. Total biomass significantly declined at WS-treated seedlings in all species. WS resulted in a smaller SLA than WW in all species. The SP of WS-treated seedlings of Q. acutissima and B. schmidtii significantly decreased, whereas it increased significantly with time in Q. serrata. Larger vessels (i.e., >100 to ≤ 130) were more frequent at WS for Q. acutissima and B. schmidtii, whereas smaller vessels (i.e., >40 to ≤ 90) were more frequent at WS than at WW for Q. serrata after 8 weeks. Tylosis was more frequent at WS than WW for Q. serrata and B. schmidtii at eighth week. WS seedlings showed lower gs, Ci, and RWC compared with WW-treated ones in Q. acutissima and B. schmidtii. TSS concentration was also higher at WS-treated seedlings in two Quercus species. Overall, principal component analysis (PCA) showed that SLA and SP are associated with WS seedlings of Q. serrata and B. schmidtii and the tylosis frequency, TSS, and VD are associated with WS seedlings of Q. acutissima. Therefore, water-stressed plants from all species responded positively to water stress with increasing experimental duration and stress intensity, and that is largely explained by morpho-anatomical traits and soluble sugar concentration. The present study should enhance our understanding of drought-induced tree growth and short-term tree-seedling responses to drought.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Ji Young An
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
- Institute of Agricultural Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Marilyn S. Combalicer
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Los Baños, Philippines
| | - Jong-Pil Chun
- Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Byung Bae Park
- Department of Environment and Forest Resources, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
28
|
Xie J, Fernandes SB, Mayfield-Jones D, Erice G, Choi M, E Lipka A, Leakey ADB. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping. PLANT PHYSIOLOGY 2021; 187:1462-1480. [PMID: 34618057 PMCID: PMC8566313 DOI: 10.1093/plphys/kiab299] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 05/26/2021] [Indexed: 05/03/2023]
Abstract
Stomata are adjustable pores on leaf surfaces that regulate the tradeoff of CO2 uptake with water vapor loss, thus having critical roles in controlling photosynthetic carbon gain and plant water use. The lack of easy, rapid methods for phenotyping epidermal cell traits have limited discoveries about the genetic basis of stomatal patterning. A high-throughput epidermal cell phenotyping pipeline is presented here and used for quantitative trait loci (QTL) mapping in field-grown maize (Zea mays). The locations and sizes of stomatal complexes and pavement cells on images acquired by an optical topometer from mature leaves were automatically determined. Computer estimated stomatal complex density (SCD; R2 = 0.97) and stomatal complex area (SCA; R2 = 0.71) were strongly correlated with human measurements. Leaf gas exchange traits were genetically correlated with the dimensions and proportions of stomatal complexes (rg = 0.39-0.71) but did not correlate with SCD. Heritability of epidermal traits was moderate to high (h2 = 0.42-0.82) across two field seasons. Thirty-six QTL were consistently identified for a given trait in both years. Twenty-four clusters of overlapping QTL for multiple traits were identified, with univariate versus multivariate single marker analysis providing evidence consistent with pleiotropy in multiple cases. Putative orthologs of genes known to regulate stomatal patterning in Arabidopsis (Arabidopsis thaliana) were located within some, but not all, of these regions. This study demonstrates how discovery of the genetic basis for stomatal patterning can be accelerated in maize, a C4 model species where these processes are poorly understood.
Collapse
Affiliation(s)
- Jiayang Xie
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Dustin Mayfield-Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gorka Erice
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Min Choi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Andrew D B Leakey
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Digital Agriculture, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication: , cor2">Present address: Agrotecnologías Naturales S.L., 43762 Tarragona, Spain
| |
Collapse
|
29
|
Mateus NS, Florentino AL, Oliveira JB, Santos EF, Gaziola SA, Rossi ML, Linhares FS, Bendassolli JA, Azevedo RA, Lavres J. Leaf 13C and 15N composition shedding light on easing drought stress through partial K substitution by Na in eucalyptus species. Sci Rep 2021; 11:20158. [PMID: 34635753 PMCID: PMC8505639 DOI: 10.1038/s41598-021-99710-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to investigate the partial K-replacement by Na supply to alleviate drought-induced stress in Eucalyptus species. Plant growth, leaf gas exchange parameters, water relations, oxidative stress (H2O2 and MDA content), chlorophyll concentration, carbon (C) and nitrogen (N) isotopic leaf composition (δ13C and δ15N) were analyzed. Drought tolerant E. urophylla and E. camaldulensis showed positive responses to the partial K substitution by Na, with similar dry mass yields, stomatal density and total stomatal pore area relative to the well K-supplied plants under both water conditions, suggesting that 50% of the K requirements is pressing for physiological functions that is poorly substituted by Na. Furthermore, E. urophylla and E. camaldulensis up-regulated leaf gas exchanges, leading to enhanced long-term water use efficiency (WUEL). Moreover, the partial K substitution by Na had no effects on plants H2O2, MDA, δ13C and δ15N, confirming that Na, to a certain extent, can effectively replace K in plants metabolism. Otherwise, the drought-sensitive E. saligna species was negatively affected by partial K replacement by Na, decreasing plants dry mass, even with up-regulated leaf gas exchange parameters. The exclusive Na-supplied plants showed K-deficient symptoms and lower growth, WUEL, and δ13C, besides higher Na accumulation, δ15N, H2O2 and MDA content.
Collapse
Affiliation(s)
- Nikolas Souza Mateus
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| | | | - Jessica Bezerra Oliveira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Elcio Ferreira Santos
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | | | - Monica Lanzoni Rossi
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Francisco Scaglia Linhares
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - José Albertino Bendassolli
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil
| | - Ricardo Antunes Azevedo
- College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenario, 303. CP 96, Piracicaba, CEP, 13416-000, Brazil.
| |
Collapse
|
30
|
Bheemanahalli R, Wang C, Bashir E, Chiluwal A, Pokharel M, Perumal R, Moghimi N, Ostmeyer T, Caragea D, Jagadish SK. Classical phenotyping and deep learning concur on genetic control of stomatal density and area in sorghum. PLANT PHYSIOLOGY 2021; 186:1562-1579. [PMID: 33856488 PMCID: PMC8260133 DOI: 10.1093/plphys/kiab174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/28/2021] [Indexed: 05/18/2023]
Abstract
Stomatal density (SD) and stomatal complex area (SCA) are important traits that regulate gas exchange and abiotic stress response in plants. Despite sorghum (Sorghum bicolor) adaptation to arid conditions, the genetic potential of stomata-related traits remains unexplored due to challenges in available phenotyping methods. Hence, identifying loci that control stomatal traits is fundamental to designing strategies to breed sorghum with optimized stomatal regulation. We implemented both classical and deep learning methods to characterize genetic diversity in 311 grain sorghum accessions for stomatal traits at two different field environments. Nearly 12,000 images collected from abaxial (Ab) and adaxial (Ad) leaf surfaces revealed substantial variation in stomatal traits. Our study demonstrated significant accuracy between manual and deep learning methods in predicting SD and SCA. In sorghum, SD was 32%-39% greater on the Ab versus the Ad surface, while SCA on the Ab surface was 2%-5% smaller than on the Ad surface. Genome-Wide Association Study identified 71 genetic loci (38 were environment-specific) with significant genotype to phenotype associations for stomatal traits. Putative causal genes underlying the phenotypic variation were identified. Accessions with similar SCA but carrying contrasting haplotypes for SD were tested for stomatal conductance and carbon assimilation under field conditions. Our findings provide a foundation for further studies on the genetic and molecular mechanisms controlling stomata patterning and regulation in sorghum. An integrated physiological, deep learning, and genomic approach allowed us to unravel the genetic control of natural variation in stomata traits in sorghum, which can be applied to other plants.
Collapse
Affiliation(s)
- Raju Bheemanahalli
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhattan, Kansas 66506, USA
| | - Elfadil Bashir
- Agricultural Research Center, Kansas State University, Hays, Kansas 67601, USA
| | - Anuj Chiluwal
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | - Meghnath Pokharel
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | - Ramasamy Perumal
- Agricultural Research Center, Kansas State University, Hays, Kansas 67601, USA
| | - Naghmeh Moghimi
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | - Troy Ostmeyer
- Department of Agronomy, Kansas State University, Manhattan, Kansas 66506, USA
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, Kansas 66506, USA
| | | |
Collapse
|
31
|
Munjonji L, Ayisi KK. Leaf gas exchange and δ 13C in cowpea and triticale under water stress and well-watered conditions. Heliyon 2021; 7:e07060. [PMID: 34095570 PMCID: PMC8165416 DOI: 10.1016/j.heliyon.2021.e07060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/04/2021] [Accepted: 05/10/2021] [Indexed: 11/29/2022] Open
Abstract
Leaf gas exchanges play a critical role in determining crop productivity as they control both CO2 gain and water loss. CO2 gain and water loss influence water use efficiency (WUE) and carbon isotope composition (δ13C). Responses in leaf gas exchanges to water stress are species-specific. However, the extent of this variation in C3 crops is less studied. A field study was carried out to investigate the influence of water stress on leaf gas exchanges of triticale and cowpea. Crops were grown under water stress and well-watered conditions and leaf gas exchanges were determined at flowering. The results showed that triticale maintained a higher stomatal conductance (gs), transpiration rate(E) and intercellular CO2 concentration (ci) compared to cowpea but did not differ in photosynthetic rate(A). As a result, triticale discriminated against 13C more than cowpea. These results suggest a higher influence of ci on δ13C than A. Despite triticale maintaining higher rates of ci, A and gs, it had lower WUE compared to cowpea. Consequently, triticale grain yield was more sensitive to water stress than cowpea. The findings of this study showed significant variation in leaf gas exchanges and δ13C between two drought-tolerant C3 crops suggesting differences in their response mechanism to water stress.
Collapse
Affiliation(s)
- Lawrence Munjonji
- University of Limpopo, Risk and Vulnerability Center, P Bag X1106, Sovenga, 0727, South Africa
| | - Kingsley Kwabena Ayisi
- University of Limpopo, Risk and Vulnerability Center, P Bag X1106, Sovenga, 0727, South Africa
| |
Collapse
|
32
|
Egan L, Hofmann R, Nichols S, Hadipurnomo J, Hoyos-Villegas V. Transpiration Rate of White Clover ( Trifolium repens L.) Cultivars in Drying Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:595030. [PMID: 33815432 PMCID: PMC8010265 DOI: 10.3389/fpls.2021.595030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Determining the performance of white clover cultivars under drought conditions is critical in dry climates. However, comparing the differences in cultivar performance requires equivalent soil water content for all plants, to reduce the water deficit threshold eliciting stomatal closure. In this study, the objective was to compare the rate of stomatal closure in eighty white clover cultivars in response to soil drying. Two glasshouse experiments were conducted, and the daily transpiration rate was measured by weighing each pot. The transpiration rate of the drought-stressed plants were normalized against the control plants to minimize effects from transpiration fluctuations and was recorded as the normalized transpiration rate (NTR). The daily soil water content was expressed as the fraction of transpirable soil water (FTSW). The FTSW threshold (FTSWc) was estimated after which the NTR decreases linearly. The FTSWc marks the critical point where the stomata start to close, and transpiration decreases linearly. The significant difference (p < 0.05) between the 10 cultivars with the highest and lowest FTSWc demonstrates the cultivars would perform better in short- or long-term droughts.
Collapse
Affiliation(s)
- Lucy Egan
- AgResearch Lincoln Research Centre, Christchurch, New Zealand
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Rainer Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | | | - Jonathan Hadipurnomo
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Valerio Hoyos-Villegas
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Van Eeckhout A, Garcia-Caurel E, Garnatje T, Escalera JC, Durfort M, Vidal J, Gil JJ, Campos J, Lizana A. Polarimetric imaging microscopy for advanced inspection of vegetal tissues. Sci Rep 2021; 11:3913. [PMID: 33594126 PMCID: PMC7887219 DOI: 10.1038/s41598-021-83421-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/03/2021] [Indexed: 01/30/2023] Open
Abstract
Optical microscopy techniques for plant inspection benefit from the fact that at least one of the multiple properties of light (intensity, phase, wavelength, polarization) may be modified by vegetal tissues. Paradoxically, polarimetric microscopy although being a mature technique in biophotonics, is not so commonly used in botany. Importantly, only specific polarimetric observables, as birefringence or dichroism, have some presence in botany studies, and other relevant metrics, as those based on depolarization, are underused. We present a versatile method, based on a representative selection of polarimetric observables, to obtain and to analyse images of plants which bring significant information about their structure and/or the spatial organization of their constituents (cells, organelles, among other structures). We provide a thorough analysis of polarimetric microscopy images of sections of plant leaves which are compared with those obtained by other commonly used microscopy techniques in plant biology. Our results show the interest of polarimetric microscopy for plant inspection, as it is non-destructive technique, highly competitive in economical and time consumption, and providing advantages compared to standard non-polarizing techniques.
Collapse
Affiliation(s)
- Albert Van Eeckhout
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - Enrique Garcia-Caurel
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Teresa Garnatje
- Botanical Institute of Barcelona (IBB, CSIC-ICUB), 08038, Barcelona, Spain
| | - Juan Carlos Escalera
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mercè Durfort
- Departament de Biologia Cellular, Fisiologia & Immunologia. Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Josep Vidal
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - José J Gil
- Department of Applied Physics, University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Juan Campos
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angel Lizana
- Grup D'Òptica, Physics Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
34
|
Li L, Tong YX, Lu JL, Li YM, Liu X, Cheng RF. Morphology, Photosynthetic Traits, and Nutritional Quality of Lettuce Plants as Affected by Green Light Substituting Proportion of Blue and Red Light. FRONTIERS IN PLANT SCIENCE 2021; 12:627311. [PMID: 34305958 PMCID: PMC8294060 DOI: 10.3389/fpls.2021.627311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/07/2021] [Indexed: 05/15/2023]
Abstract
Green light, as part of the photosynthetically active radiation, has been proven to have high photosynthetic efficiency once absorbed by plant leaves and can regulate plant physiological activities. However, few studies have investigated the appropriate and efficient way of using the green light for plant production. Thus, the objective of this study was to investigate a moderate amount of green light, partially replacing red and blue light, for plant growth and development. In this experiment, four treatments were set up by adjusting the relative amount of green light as 0 (RB), 30 (G30), 60 (G60), and 90 (G90) μmol m-2 s-1, respectively, with a total photosynthetic photon flux density of 200 μmol m-2 s-1 and a fixed red-to-blue ratio of 4:1. Lettuce (Lactuca sativa cv. 'Tiberius') plant growth and morphology, stomatal characteristics, light absorptance and transmittance, photosynthetic characteristics, and nutritional quality were investigated. The results showed that: (1) shoot dry weight increased by 16.3 and 24.5% and leaf area increased by 11.9 and 16.2% under G30 and G60, respectively, compared with those under RB. Plant stem length increased linearly with increasing green-to-blue light ratio; (2) light transmittance of lettuce leaf under treatments employing green light was higher than that under RB, especially in the green region; (3) stomatal density increased, whereas stomatal aperture area decreased with the increase in the relative amount of green light; and (4) carbohydrate accumulation increased under G60 and G90. Soluble sugar contents under G60 and G90 increased by 39.4 and 19.4%, respectively. Nitrate contents under G30, G60, and G90 decreased by 26.2, 40.3, and 43.4%, respectively. The above results indicated that 15-30% green light replacing red and blue light effectively increased the yield and nutritional quality of lettuce plants.
Collapse
Affiliation(s)
- Lie Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Yu-xin Tong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
- *Correspondence: Yu-xin Tong
| | - Jun-ling Lu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Yang-mei Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Xin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| | - Rui-feng Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, Beijing, China
| |
Collapse
|
35
|
Xiong Z, Dun Z, Wang Y, Yang D, Xiong D, Cui K, Peng S, Huang J. Effect of Stomatal Morphology on Leaf Photosynthetic Induction Under Fluctuating Light in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:754790. [PMID: 35185944 PMCID: PMC8851391 DOI: 10.3389/fpls.2021.754790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/20/2021] [Indexed: 05/06/2023]
Abstract
Plants are often confronted with light fluctuations from seconds to minutes due to altering sun angles, mutual shading, and clouds under natural conditions, which causes a massive carbon loss and water waste. The effect of stomatal morphology on the response of leaf gas exchange to fluctuating light remains disputable. In this study, we investigated the differences in leaf stomatal morphology and photosynthetic induction across twelve rice genotypes after a stepwise increase in light intensity. A negative correlation was observed between stomatal size and density across rice genotypes. Smaller and denser stomata contributed to a faster stomatal response under fluctuating light. Plants with faster stomatal opening also showed faster photosynthetic induction and higher biomass accumulation but lower intrinsic water use efficiency ( i WUE) under fluctuating light. Moreover, stomatal morphology seemed to have less effect on the initial and final stomatal conductance, and there was a minimal correlation between steady-state and non-steady-state stomatal conductance among different rice genotypes. These results highlight the important role of stomatal morphology in regulating photosynthetic efficiency and plant growth under fluctuating light conditions. To simultaneously enhance leaf i WUE when improving the photosynthetic efficiency under fluctuating light, it may be necessary to take biochemical processes into account in the future.
Collapse
|
36
|
Rios JJ, Yepes-Molina L, Martinez-Alonso A, Carvajal M. Nanobiofertilization as a novel technology for highly efficient foliar application of Fe and B in almond trees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200905. [PMID: 33391790 PMCID: PMC7735344 DOI: 10.1098/rsos.200905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/29/2020] [Indexed: 05/24/2023]
Abstract
Nanofertilization is postulated as a new technology to deal with the environmental problems caused by the intensive use of traditional fertilizers. One of the aims of this new technology is to improve foliar fertilization, which has many environmental advantages, but currently there are numerous factors that limit its efficiency. In this research, the objective was to study the potential of membrane vesicles derived from plant material as nanofertilizers of iron (Fe) and boron (B) for foliar application in almond trees (Prunus dulcis L.). The results show that the application of vesicles caused invaginations in the plasma membrane of the leaf cells. Also, the increase in leaf B and Fe was greater when these elements were applied in an encapsulated form rather than in a non-encapsulated form. The distribution of these elements in leaf tissues indicated the existence of an intracellular element transport pathway and accumulation areas, enabling greater element entry and mobility.
Collapse
Affiliation(s)
| | | | | | - M. Carvajal
- Author for correspondence: M. Carvajal e-mail:
| |
Collapse
|
37
|
An Automatic Method for Stomatal Pore Detection and Measurement in Microscope Images of Plant Leaf Based on a Convolutional Neural Network Model. FORESTS 2020. [DOI: 10.3390/f11090954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stomata are microscopic pores on the plant epidermis that regulate the water content and CO2 levels in leaves. Thus, they play an important role in plant growth and development. Currently, most of the common methods for the measurement of pore anatomy parameters involve manual measurement or semi-automatic analysis technology, which makes it difficult to achieve high-throughput and automated processing. This paper presents a method for the automatic segmentation and parameter calculation of stomatal pores in microscope images of plant leaves based on deep convolutional neural networks. The proposed method uses a type of convolutional neural network model (Mask R-CNN (region-based convolutional neural network)) to obtain the contour coordinates of the pore regions in microscope images of leaves. The anatomy parameters of pores are then obtained by ellipse fitting technology, and the quantitative analysis of pore parameters is implemented. Stomatal microscope image datasets for black poplar leaves were obtained using a large depth-of-field microscope observation system, the VHX-2000, from Keyence Corporation. The images used in the training, validation, and test sets were taken randomly from the datasets (562, 188, and 188 images, respectively). After 10-fold cross validation, the 188 test images were found to contain an average of 2278 pores (pore widths smaller than 0.34 μm (1.65 pixels) were considered to be closed stomata), and an average of 2201 pores were detected by our network with a detection accuracy of 96.6%, and the intersection of union (IoU) of the pores was 0.82. The segmentation results of 2201 stomatal pores of black poplar leaves showed that the average measurement accuracies of the (a) pore length, (b) pore width, (c) area, (d) eccentricity, and (e) degree of stomatal opening, with a ratio of width-to-maximum length of a stomatal pore, were (a) 94.66%, (b) 93.54%, (c) 90.73%, (d) 99.09%, and (e) 92.95%, respectively. The proposed stomatal pore detection and measurement method based on the Mask R-CNN can automatically measure the anatomy parameters of pores in plants, thus helping researchers to obtain accurate stomatal pore information for leaves in an efficient and simple way.
Collapse
|
38
|
Chatterjee J, Thakur V, Nepomuceno R, Coe RA, Dionora J, Elmido-Mabilangan A, Llave AD, Reyes AMD, Monroy AN, Canicosa I, Bandyopadhyay A, Jena KK, Brar DS, Quick WP. Natural Diversity in Stomatal Features of Cultivated and Wild Oryza Species. RICE (NEW YORK, N.Y.) 2020; 13:58. [PMID: 32816163 PMCID: PMC7441136 DOI: 10.1186/s12284-020-00417-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 08/06/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Stomata in rice control a number of physiological processes by regulating gas and water exchange between the atmosphere and plant tissues. The impact of the structural diversity of these micropores on its conductance level is an important area to explore before introducing stomatal traits into any breeding program in order to increase photosynthesis and crop yield. Therefore, an intensive measurement of structural components of stomatal complex (SC) of twenty three Oryza species spanning the primary, secondary and tertiary gene pools of rice has been conducted. RESULTS Extensive diversity was found in stomatal number and size in different Oryza species and Oryza complexes. Interestingly, the dynamics of stomatal traits in Oryza family varies differently within different Oryza genetic complexes. Example, the Sativa complex exhibits the greatest diversity in stomatal number, while the Officinalis complex is more diverse for its stomatal size. Combining the structural information with the Oryza phylogeny revealed that speciation has tended towards increasing stomatal density rather than stomatal size in rice family. Thus, the most recent species (i.e. the domesticated rice) eventually has developed smaller yet numerous stomata. Along with this, speciation has also resulted in a steady increase in stomatal conductance (anatomical, gmax) in different Oryza species. These two results unambiguously prove that increasing stomatal number (which results in stomatal size reduction) has increased the stomatal conductance in rice. Correlations of structural traits with the anatomical conductance, leaf carbon isotope discrimination (∆13C) and major leaf morphological and anatomical traits provide strong supports to untangle the ever mysterious dependencies of these traits in rice. The result displayed an expected negative correlation in the number and size of stomata; and positive correlations among the stomatal length, width and area with guard cell length, width on both abaxial and adaxial leaf surfaces. In addition, gmax is found to be positively correlated with stomatal number and guard cell length. The ∆13C values of rice species showed a positive correlation with stomatal number, which suggest an increased water loss with increased stomatal number. Interestingly, in contrast, the ∆13C consistently shows a negative relationship with stomatal and guard cell size, which suggests that the water loss is less when the stomata are larger. Therefore, we hypothesize that increasing stomatal size, instead of numbers, is a better approach for breeding programs in order to minimize the water loss through stomata in rice. CONCLUSION Current paper generates useful data on stomatal profile of wild rice that is hitherto unknown for the rice science community. It has been proved here that the speciation has resulted in an increased stomatal number accompanied by size reduction during Oryza's evolutionary course; this has resulted in an increased gmax but reduced water use efficiency. Although may not be the sole driver of water use efficiency in rice, our data suggests that stomata are a potential target for modifying the currently low water use efficiency in domesticated rice. It is proposed that Oryza barthii can be used in traditional breeding programs in enhancing the stomatal size of elite rice cultivars.
Collapse
Affiliation(s)
- Jolly Chatterjee
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Vivek Thakur
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Department of Systems & Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Robert Nepomuceno
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- National Institute of Molecular Biology and Biotechnology - University of the Philippines Los Banos, Los Banos, Laguna, Philippines
| | - Robert A Coe
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- CSIRO Agriculture Flagship, High Resolution Plant Phenomics, GPO Box 1500, Canberra, ACT, 2601, Australia
| | - Jacqueline Dionora
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abigail Elmido-Mabilangan
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Abraham Darius Llave
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anna Mae Delos Reyes
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Apollo Neil Monroy
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Irma Canicosa
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Anindya Bandyopadhyay
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Plant Breeding Division, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
| | - Darshan S Brar
- Plant Breeding Division, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines
- Present Address: School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - William Paul Quick
- C4 Rice Center, International Rice Research Institute (IRRI), Los Baños, DAPO BOX 7777, Metro Manila, Philippines.
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
39
|
Fanourakis D, Aliniaeifard S, Sellin A, Giday H, Körner O, Rezaei Nejad A, Delis C, Bouranis D, Koubouris G, Kambourakis E, Nikoloudakis N, Tsaniklidis G. Stomatal behavior following mid- or long-term exposure to high relative air humidity: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 153:92-105. [PMID: 32485617 DOI: 10.1016/j.plaphy.2020.05.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/21/2020] [Indexed: 05/07/2023]
Abstract
High relative air humidity (RH ≥ 85%) is frequent in controlled environments, and not uncommon in nature. In this review, we examine the high RH effects on plants with a special focus on stomatal characters. All aspects of stomatal physiology are attenuated by elevated RH during leaf expansion (long-term) in C3 species. These include impaired opening and closing response, as well as weak diel oscillations. Consequently, the high RH-grown plants are not only vulnerable to biotic and abiotic stress, but also undergo a deregulation between CO2 uptake and water loss. Stomatal behavior of a single leaf is determined by the local microclimate during expansion, and may be different than the remaining leaves of the same plant. No effect of high RH is apparent in C4 and CAM species, while the same is expected for species with hydropassive stomatal closure. Formation of bigger stomata with larger pores is a universal response to high RH during leaf expansion, whereas the effect on stomatal density appears to be species- and leaf side-specific. Compelling evidence suggests that ABA mediates the high RH-induced stomatal malfunction, as well as the stomatal size increase. Although high RH stimulates leaf ethylene evolution, it remains elusive whether or not this contributes to stomatal malfunction. Most species lose stomatal function following mid-term (4-7 d) exposure to high RH following leaf expansion. Consequently, the regulatory role of ambient humidity on stomatal functionality is not limited to the period of leaf expansion, but holds throughout the leaf life span.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71500, Heraklion, Greece; Giannakakis SA, Export Fruits and Vegetables, Tympaki, Greece.
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Pakdasht, Tehran, Iran
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia
| | - Habtamu Giday
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | - Oliver Körner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
| | - Abdolhossein Rezaei Nejad
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, GR-24100, Kalamata, Greece
| | - Dimitris Bouranis
- Plant Physiology and Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Athens, Greece
| | - Georgios Koubouris
- Laboratory of Olive Cultivation, Institute of Olive Tree, Subtropical Crops and Viticulture, Hellenic Agricultural Organization Demeter, Crete, Greece
| | - Emmanouil Kambourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, GR-71500, Heraklion, Greece
| | - Nikolaos Nikoloudakis
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus
| | - Georgios Tsaniklidis
- Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization 'Demeter' (NAGREF), P.O. Box 2228, 71003, Heraklio, Greece
| |
Collapse
|
40
|
Lana-Costa J, de Oliveira Silva FM, Batista-Silva W, Carolino DC, Senra RL, Medeiros DB, Martins SCV, Gago J, Araújo WL, Nunes-Nesi A. High Photosynthetic Rates in a Solanum pennellii Chromosome 2 QTL Is Explained by Biochemical and Photochemical Changes. FRONTIERS IN PLANT SCIENCE 2020; 11:794. [PMID: 32595679 PMCID: PMC7303335 DOI: 10.3389/fpls.2020.00794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/19/2020] [Indexed: 05/09/2023]
Abstract
Enhanced photosynthesis is strictly associated with to productivity and it can be accomplished by genetic approaches through identification of genetic variation. By using a Solanum pennellii introgression lines (ILs) population, it was previously verified that, under normal (CO2), IL 2-5 and 2-6 display increased photosynthetic rates by up to 20% in comparison with their parental background (M82). However, the physiological mechanisms involved in the enhanced CO2 assimilation exhibited by these lines remained unknown, precluding their use for further biotechnological applications. Thereby, here we attempted to uncover the physiological factors involved in the upregulation of photosynthesis in ILs 2-5 and 2-6 under normal (CO2) as well as under elevated (CO2). The results provide evidence for increased biochemical capacity (higher maximum carboxylation velocity and maximum electron transport rate) in plants from IL 2-5 and 2-6, whereas the diffusive components (stomatal and mesophyll conductances) were unaltered in these ILs in comparison to M82. Our analyses revealed that the higher photosynthetic rate observed in these ILs was associated with higher levels of starch as well as total protein levels, specially increased RuBisCO content. Further analyses performed in plants under high (CO2) confirmed that biochemical properties are involved in genetic variation on chromosome 2 related to enhanced photosynthesis.
Collapse
Affiliation(s)
- Jaciara Lana-Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Diego Costa Carolino
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Renato Lima Senra
- Departamento de Bioquímica Aplicada, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Jorge Gago
- Departament de Biologia, Institute of Agro-Environmental Research and Water Economy – INAGEA, Universitat de les Illes Balears, Palma, Spain
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
41
|
Du Q, Jiao X, Song X, Zhang J, Bai P, Ding J, Li J. The Response of Water Dynamics to Long-Term High Vapor Pressure Deficit Is Mediated by Anatomical Adaptations in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:758. [PMID: 32582267 PMCID: PMC7289962 DOI: 10.3389/fpls.2020.00758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Vapor pressure deficit (VPD) is the driver of water movement in plants. However, little is known about how anatomical adaptations determine the acclimation of plant water dynamics to elevated VPD, especially at the whole plant level. Here, we examined the responses of transpiration, stomatal conductance (gs), hydraulic partitioning, and anatomical traits in two tomato cultivars (Jinpeng and Zhongza) to long-term high (2.2-2.6 kPa) and low (1.1-1.5 kPa) VPD. Compared to plants growing under low VPD, no variation in gs was found for Jinpeng under high VPD conditions; however, high VPD induced an increase in whole plant hydraulic conductance (Kplant), which was responsible for the maintenance of high transpiration. In contrast, transpiration was not influenced by high VPD in Zhongza, which was primarily attributed to a coordinated decline in gs and Kplant. The changes in gs were closely related to stomatal density and size. Furthermore, high VPD altered hydraulic partitioning among the leaf, stem, and root for both cultivars via adjustments in anatomy. The increase in lumen area of vessels in veins and large roots in Jinpeng under high VPD conditions improved water transport efficiency in the leaf and root, thus resulting in a high Kplant. However, the decreased Kplant for Zhongza under high VPD was the result of a decline of water transport efficiency in the leaf that was caused by a reduction in vein density. Overall, we concluded that the tradeoff in anatomical acclimations among plant tissues results in different water relations in plants under high VPD conditions.
Collapse
Affiliation(s)
- Qingjie Du
- College of Horticulture, Northwest A&F University, Yangling, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaocong Jiao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaoming Song
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiayu Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ping Bai
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Juping Ding
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
42
|
Abstract
In this work, molecular dynamics simulations show that liquid in a nanopore can be at thermodynamically stable high pressure even when connected to conventional bulk liquid. Such high pressure is associated with strong surface-liquid interaction. Evaporation of liquid in the pore creates a flow from the low pressure (bulk) region to the high pressure (nanopore) region. Such a counterintuitive flow occurs due to pressure being reduced in the pore from its thermodynamically stable state. The transition from high pressures to negative pressures in thin liquid films is also studied. This work provides insight into a possible mechanism of passive liquid transport in tall trees such as redwoods.
Collapse
Affiliation(s)
- An Zou
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Manish Gupta
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shalabh C Maroo
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
43
|
Fanourakis D, Nikoloudakis N, Pappi P, Markakis E, Doupis G, Charova SN, Delis C, Tsaniklidis G. The Role of Proteases in Determining Stomatal Development and Tuning Pore Aperture: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E340. [PMID: 32182645 PMCID: PMC7154916 DOI: 10.3390/plants9030340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Plant proteases, the proteolytic enzymes that catalyze protein breakdown and recycling, play an essential role in a variety of biological processes including stomatal development and distribution, as well as, systemic stress responses. In this review, we summarize what is known about the participation of proteases in both stomatal organogenesis and on the stomatal pore aperture tuning, with particular emphasis on their involvement in numerous signaling pathways triggered by abiotic and biotic stressors. There is a compelling body of evidence demonstrating that several proteases are directly or indirectly implicated in the process of stomatal development, affecting stomatal index, density, spacing, as well as, size. In addition, proteases are reported to be involved in a transient adjustment of stomatal aperture, thus orchestrating gas exchange. Consequently, the proteases-mediated regulation of stomatal movements considerably affects plants' ability to cope not only with abiotic stressors, but also to perceive and respond to biotic stimuli. Even though the determining role of proteases on stomatal development and functioning is just beginning to unfold, our understanding of the underlying processes and cellular mechanisms still remains far from being completed.
Collapse
Affiliation(s)
- Dimitrios Fanourakis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, Heraklion, 71500 Crete, Greece;
- Giannakakis SA, Export Fruits and Vegetables, Tympaki, 70200 Crete, Greece
| | - Nikolaos Nikoloudakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus;
| | - Polyxeni Pappi
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Emmanouil Markakis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Georgios Doupis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| | - Spyridoula N. Charova
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Development, Heraklion, 70013 Crete, Greece;
- Department of Biology, University of Crete, Heraklion, 70013 Crete, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece;
| | - Georgios Tsaniklidis
- Hellenic Agricultural Organization—‘Demeter’, Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, 71307 Crete, Greece; (P.P.); (E.M.); (G.D.)
| |
Collapse
|
44
|
Pérez-Romero JA, Barcia-Piedras JM, Redondo-Gómez S, Mateos-Naranjo E. Sarcocornia fruticosa photosynthetic response to short-term extreme temperature events in combination with optimal and sub-optimal salinity concentrations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:45-52. [PMID: 31931392 DOI: 10.1016/j.plaphy.2019.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Climate change would increase frequency and intensity of extreme events as heat and cold waves. There is a lack of studies that consider the co-occurrence of these waves with other abiotic factors relevant on a climate change scenario as salinity. Therefore, it could be interesting to improve our knowledge about the effects that this co-occurrence could have in different species due to the species specific effect of the photosynthesis tolerance to extreme temperatures. A controlled condition experiment was performed using the salt marsh species Sarcocornia perrnis with eight experimental blocks combining temperature ranges (40-28/22-15/13-5 °C) and salinity concentration on the growth solution (171/1050 mM NaCl). After 3 days of treatment, gas exchange, chlorophyll a fluorescence, pigment profile and water state measurement were applied. Photosynthetic machinery function of this perennial species decreased on for both high and low temperature range. Nevertheless, at 13-5 °C the effect of the salinity was mainly due to diffusion limitations more than to damage on the photosystems. At 40-28 °C, in presence of optimal salinity S. fruticosa was not altered overall. However, high temperatures in combination with high salinity reduced the photosynthetic capacity mainly by reducing the efficiency of the electron transport chain.
Collapse
Affiliation(s)
- Jesús Alberto Pérez-Romero
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain.
| | - Jose María Barcia-Piedras
- Department of Ecological Production and Natural Resources Center IFAPA Las Torres-Tomejil Road Sevilla - Cazalla Km 12'2, 41200, Alcalá Del Río, Seville, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41080, Sevilla, Spain
| |
Collapse
|
45
|
Czékus Z, Poór P, Tari I, Ördög A. Effects of Light and Daytime on the Regulation of Chitosan-Induced Stomatal Responses and Defence in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E59. [PMID: 31906471 PMCID: PMC7020449 DOI: 10.3390/plants9010059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/25/2022]
Abstract
Closure of stomata upon pathogenesis is among the earliest plant immune responses. However, our knowledge is very limited about the dependency of plant defence responses to chitosan (CHT) on external factors (e.g., time of the day, presence, or absence of light) in intact plants. CHT induced stomatal closure before dark/light transition in leaves treated at 17:00 hrs and stomata were closed at 09:00 hrs in plants treated at dawn and in the morning. CHT was able to induce generation of reactive oxygen species (ROS) in guard cells in the first part of the light phase, but significant nitric oxide production was observable only at 15:00 hrs. The actual quantum yield of PSII electron transport (ΦPSII) decreased upon CHT treatments at 09:00 hrs in guard cells but it declined only at dawn in mesophyll cells after the treatment at 17:00 hrs. Expression of Pathogenesis-related 1 (PR1) and Ethylene Response Factor 1 were already increased at dawn in the CHT-treated leaves but PR1 expression was inhibited in the dark. CHT-induced systemic response was also observed in the distal leaves of CHT-treated ones. Our results suggest a delayed and daytime-dependent defence response of tomato plants after CHT treatment at night and under darkness.
Collapse
Affiliation(s)
- Zalán Czékus
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
- Doctoral School of Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Irma Tari
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52., Hungary; (Z.C.); (I.T.); (A.Ö.)
| |
Collapse
|
46
|
Foliar and Wood Traits Covary along a Vertical Gradient within the Crown of Long-Lived Light-Demanding Species of the Congo Basin Semi-Deciduous Forest. FORESTS 2019. [DOI: 10.3390/f11010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant functional traits have shown to be relevant predictors of forest functional responses to climate change. However, the trait-based approach to study plant performances and ecological strategies has mostly been focused on trait comparisons at the interspecific and intraspecific levels. In this study, we analyzed traits variation and association at the individual level. We measured wood and leaf traits at different height locations within the crown of five individuals of Pericopsis elata (Harms) Meeuwen (Fabaceae) from the northern tropical forest of the Democratic Republic of the Congo. All traits varied between and within individuals. The between-individual variation was more important for leaf traits (23%–48%) than for wood traits (~10%) where the within-individual variation showed to be more important (33%–39%). The sample location height within the crown was found to be the driving factor of this within-individual variation. In a gradient from the base to the top of the crown, theoretical specific hydraulic conductivity and specific leaf area decreased while the stomatal density increased. We found significant relationships among traits and between wood and leaf traits. However, these relationships varied with the position within the crown. The relationship between vessel size and vessel density was negative at the bottom part of the crown but positive upward. Also, the negative relationship between stomatal density and stomatal size became stronger with increasing height within the crown. Finally, the positive relationship between specific leaf area and theoretical specific hydraulic conductivity became stronger in higher parts of the crown, suggesting that P. elata constantly adapts its water use with respect to its water supply, more strongly at the top of the crown where the environment is more extreme and less buffered against environmental fluctuations.
Collapse
|
47
|
Wang MH, Wang JR, Zhang XW, Zhang AP, Sun S, Zhao CM. Phenotypic plasticity of stomatal and photosynthetic features of four Picea species in two contrasting common gardens. AOB PLANTS 2019; 11:plz034. [PMID: 31308925 PMCID: PMC6621916 DOI: 10.1093/aobpla/plz034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 05/15/2023]
Abstract
Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species' original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.
Collapse
Affiliation(s)
- Ming Hao Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Jing Ru Wang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Wei Zhang
- Forestry College, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ai Ping Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Shan Sun
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
| | - Chang Ming Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, China
- Yuzhong Mountain Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou, Gansu, China
- Corresponding author’s e-mail address:
| |
Collapse
|
48
|
Supplementary Light Source Affects Growth, Metabolism, and Physiology of Adenophora triphylla (Thunb.) A.DC. Seedlings. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6283989. [PMID: 31205942 PMCID: PMC6530224 DOI: 10.1155/2019/6283989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 12/31/2022]
Abstract
Adenophora triphylla (Thunb.) A.DC., a well-known herbaceous medicinal species, has been reported to protect against human obesity, cancer, and inflammation. Supplementary lighting is a practical strategy to improve crop quality, especially at a propagation stage. However, there has been no study available on the optimal supplementary light source for the commercial production of A. triphylla seedlings. In this study, plug seedlings were cultivated in a greenhouse for four weeks under an average daily light intensity of 490 μmol·m−2·s−1 PPFD coming from the sun and a supplemental lighting (16 h per day) at 120 μmol·m−2·s−1 PPFD provided by high pressure sodium (HPS), metal halide (MH), far-red (FR) light, white LED (red: green: blue = 2:4:3, LED-w), or mixed (red: green: blue = 4:1:4) LED (LED-mix). The results showed that LED-mix, with a higher percentage of red and blue light, substantially promoted seedling growth compared to other treatments by increasing stem diameter, biomass, specific leaf weight, and root to shoot ratio. The LED-mix also promoted accumulation of soluble sugar, starch, and chlorophyll in the tissue and increased contents of total phenols and flavonoids. Moreover, stomata density and pore area per leaf area under the LED-mix were remarkably greater than those under other treatments. Furthermore, the Western blot analysis revealed that the expression of photosynthetic protein, D1, was notably enhanced by the LED-mix as compared with other light sources. In addition, the LED-mix alleviated the oxidative damage of seedlings by improving enzymatic and nonenzymatic antioxidant systems. Collectively, these results suggest that the LED-mix was the optimal supplementary light source for the production of highest quality A. triphylla seedlings.
Collapse
|
49
|
Nunes-Nesi A, Alseekh S, de Oliveira Silva FM, Omranian N, Lichtenstein G, Mirnezhad M, González RRR, Sabio Y Garcia J, Conte M, Leiss KA, Klinkhamer PGL, Nikoloski Z, Carrari F, Fernie AR. Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds. Metabolomics 2019; 15:46. [PMID: 30874962 PMCID: PMC6420416 DOI: 10.1007/s11306-019-1503-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
Abstract
INTRODUCTION To date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism. OBJECTIVE This study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues. METHODS The analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses. RESULTS Changes in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism. CONCLUSIONS Overall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany.
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | | | - Nooshin Omranian
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mohammad Mirnezhad
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Roman R Romero González
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Julia Sabio Y Garcia
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Kirsten A Leiss
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Business Unit Horticulture, Wageningen University & Research, Postbus 20, 2665 ZG, Bleiswijk, The Netherlands
| | - Peter G L Klinkhamer
- Plant Ecology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, OT, Germany
- Center of Plant System Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
50
|
Bertolino LT, Caine RS, Gray JE. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. FRONTIERS IN PLANT SCIENCE 2019; 10:225. [PMID: 30894867 PMCID: PMC6414756 DOI: 10.3389/fpls.2019.00225] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Global warming and associated precipitation changes will negatively impact on many agricultural ecosystems. Major food production areas are expected to experience reduced water availability and increased frequency of drought over the coming decades. In affected areas, this is expected to reduce the production of important food crops including wheat, rice, and maize. The development of crop varieties able to sustain or improve yields with less water input is, therefore, a priority for crop research. Almost all water used for plant growth is lost to the atmosphere by transpiration through stomatal pores on the leaf epidermis. By altering stomatal pore apertures, plants are able to optimize their CO2 uptake for photosynthesis while minimizing water loss. Over longer periods, stomatal development may also be adjusted, with stomatal size and density being adapted to suit the prevailing conditions. Several approaches to improve drought tolerance and water-use efficiency through the modification of stomatal traits have been tested in the model plant Arabidopsis thaliana. However, there is surprisingly little known about the stomata of crop species. Here, we review the current understanding of how stomatal number and morphology are involved in regulating water-use efficiency. Moreover, we discuss the potential and limitations of manipulating stomatal development to increase drought tolerance and to reduce water loss in crops as the climate changes.
Collapse
Affiliation(s)
- Lígia T. Bertolino
- Grantham Centre for Sustainable Futures, University of Sheffield, Sheffield, United Kingdom
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Robert S. Caine
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Julie E. Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|