1
|
Liang Q, Feng X, Hu D, Jin Y, Wang X, Ma X, Liang R, Zhu QH, He S, Zhu H, Liu F, Zhang X, Sun J, Xue F. Genetic, metabolomic and transcriptomic analyses of the cotton yellow anther trait. Int J Biol Macromol 2025; 300:140193. [PMID: 39848383 DOI: 10.1016/j.ijbiomac.2025.140193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
In the fiber industry, cotton (Gossypium hirsutum L.) is an important crop. One of the most important morphology traits of plants is the color of the anthers, is closely related to pollen fertility and stress resistance. Upland cotton anthers appear white, while island cotton and many wild cotton species have yellow anthers. Carotenoids are natural pigments in plants which involved in many metabolic processes, including photosynthesis, photoprotection, photomorphogenesis, growth and development. Here, we characterized the yellow anther trait of G. hirsutum. Carotenoid and flavonoid profiles in the yellow anthers were greatly altered compared to that in the white anthers, indicating that both carotenoids and flavonoids contribute to the yellow anther phenotype. Map-based cloning identified GhYA (GH_A05G4013) encoding a phytoene synthase to be the candidate gene responsible for anther coloration. GhYA is predominantly expressed in anthers, with its expression level gradually decreasing with the development of anthers. Haplotype analysis revealed that white anthers are associated with two haplotypes, with X74 belonging to HAP1. Through evolutionary analysis, it was found that although there are many white anther Germplasm in upland cotton, the two types of white anther haplotypes were mutated from yellow anthers respectively. Comparative transcriptome analysis between the yellow anther and white anther accessions revealed differentially expressed genes related to both the carotenoid and flavonoid biosynthesis pathways, in line with the changed profiles of the two types of metabolites in yellow anthers; meanwhile, it also indicates potential cross-talk between the flavonoid and carotenoid pathways. According to the results, the PSY gene is critical for the regulation of carotenoids accumulation in cotton anthers.
Collapse
Affiliation(s)
- Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xiaokang Feng
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Daowu Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - YanLong Jin
- College of Life Sciences, Fudan University, Shanghai, China.
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - XiaoHu Ma
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Rui Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia.
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei, China.
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi, 832000 Xinjiang, China.
| |
Collapse
|
2
|
Ripley JA, Deadman-Wylie GA, Traylor AL, Austen EJ. Pollinators do not avoid or prefer a locally rare pollen colour morph in Erythronium americanum (Liliaceae). MICROPUBLICATION BIOLOGY 2025; 2025. [PMID: 40110473 PMCID: PMC11920826 DOI: 10.17912/micropub.biology.001286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/04/2024] [Accepted: 02/27/2025] [Indexed: 03/22/2025]
Abstract
The red-yellow pollen colour polymorphism that occurs in populations of Erythronium americanum provides an excellent opportunity to investigate the conditions leading to maintenance of phenotypic variation. Using arrays of cut E. americanum flowers with red- or yellow-pollen set in a naturally monomorphic red-pollen population, we tested whether pollinators exhibit frequency-dependent behaviours . As was previously observed when pollinator preference was tested in a pollen-colour polymorphic population, pollinators accustomed to the monomorphic red-pollen population in this study exhibited no pollen colour preference among flowers cut from a polymorphic population. The lack of pollinator colour preference against either a polymorphic or red-monomorphic background suggests that pollinators do not impose frequency-dependent selection. It is possible, however, that results would differ against a monomorphic yellow-pollen background.
Collapse
Affiliation(s)
- Jada A Ripley
- Biology Department, Mount Allison University, Sackville, NB, Canada
| | | | - Amanda L Traylor
- Biology Department, Mount Allison University, Sackville, NB, Canada
| | - Emily J Austen
- Biology Department, Mount Allison University, Sackville, NB, Canada
| |
Collapse
|
3
|
Hempel de Ibarra N, Holtze S, Bäucker C, Sprau P, Vorobyev M. The role of colour patterns for the recognition of flowers by bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210284. [PMID: 36058248 PMCID: PMC9441241 DOI: 10.1098/rstb.2021.0284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Bees discriminate between many different colours of flower petals, but it is not well understood how they perceive and learn patterns frequently found in flowers with colourful structures. We used multi-spectral imaging to explore chromatic cues in concentric flower patterns as they are seen through the low-resolution eyes of the honeybee. We find a diversity of colour combinations, which suggests that plants might exploit the sensory capabilities of pollinators, like bees, that learn colours easily. A consistent feature is that the surround of the pattern has a stronger chromatic contrast to the foliage background than the centre. This can potentially facilitate the fast identification of floral objects within colourful scenes when a foraging bee moves through a flower patch. In behavioural experiments we trained and tested bees with three types of concentric patterns. They recognized and discriminated patterns accurately in most tests, relying flexibly on both chromatic and spatial cues. Only rarely, depending on the training stimulus, chromatic cues determined their choices whilst pattern cues were ignored. The variability of floral designs and the bees' flexibility in recalling colour and spatial information suggest a role for colour vision in pattern processing. Implications for the signalling strategies of flowers are discussed. This article is part of the theme issue 'Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods'.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Department of Psychology, University of Exeter, Exeter, UK
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Susanne Holtze
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Bäucker
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Philipp Sprau
- Neurobiology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Misha Vorobyev
- Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Finnell LM, Koski MH. A test of Sensory Drive in plant-pollinator interactions: heterogeneity in the signalling environment shapes pollinator preference for a floral visual signal. THE NEW PHYTOLOGIST 2021; 232:1436-1448. [PMID: 34287921 DOI: 10.1111/nph.17631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Sensory Drive predicts that habitat-dependent signal transmission and perception explain the diversification of communication signals. Whether Sensory Drive shapes floral evolution remains untested in nature. Pollinators of Argentina anserina prefer small ultraviolet (UV)-absorbing floral guides at low elevation but larger guides at high. However, mechanisms underlying differential preference are unclear. High elevation populations experience elevated UV irradiance and frequently flower against bare substrates rather than foliage, potentially impacting signal transmission and perception. At high and low elevation extremes, we experimentally tested the effects of UV light (ambient vs reduced) and floral backgrounds (foliage vs bare) on pollinator choice for UV guide size. We examined how different signalling environments shaped pollinator-perceived flower colour using visual system models. At high elevation, pollinators preferred locally common large UV guides under ambient UV, but lacked preference under reduced UV. Flies preferred large guides only against bare substrate, the common high elevation background. Ambient UV amplified contrast of large UV guides with floral backgrounds, and flowers contrasted more with bare ground than foliage. Results support that local signalling conditions contribute to pollinator preference for a floral visual signal, a key tenet of Sensory Drive. Components of Sensory Drive could shape floral signal evolution in other plants spanning heterogeneous signalling environments.
Collapse
Affiliation(s)
- Lindsay M Finnell
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
5
|
Koski MH. The role of sensory drive in floral evolution. THE NEW PHYTOLOGIST 2020; 227:1012-1024. [PMID: 32112572 DOI: 10.1111/nph.16510] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 05/25/2023]
Abstract
Sensory drive theory posits that the evolution of communication signals is shaped by the sensory systems of receivers and the habitat conditions under which signals are received. It has inspired an enormous body of research, advancing our understanding of signal evolution and speciation in animals. In plants, the extreme diversification of floral signals has fascinated biologists for over a century. While processes involved in sensory drive probably play out in plant-pollinator communication, the theory has not been formally synthesized in this context. However, it has untapped potential to explain mechanisms underlying variation in pollinator preferences across populations, and how environmental conditions impact floral signal transmission and perception. Here I develop a framework of sensory drive for plant-pollinator interactions, identifying similarities and differences from its original conception. I then summarize studies that shed light on how the primary processes of sensory drive - habitat transmission, perceptual tuning, and signal matching - apply to the evolution of floral color and scent. Throughout, I propose research avenues and approaches to assess how sensory drive shapes floral diversity. This framework will be important for explaining patterns of extant floral diversity and examining how altered signaling conditions under global change will impact the evolutionary trajectory of floral traits.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, 29631, USA
| |
Collapse
|
6
|
Koski MH, Galloway LF. Geographic Variation in Floral Color and Reflectance Correlates With Temperature and Colonization History. FRONTIERS IN PLANT SCIENCE 2020; 11:991. [PMID: 32714360 PMCID: PMC7340105 DOI: 10.3389/fpls.2020.00991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 05/12/2023]
Abstract
Petal color variation within species is common and may be molded by abiotic or biotic selection pressures, or neutral population structure. For example, darker flowers may be favored in cooler environments because they absorb more solar radiation, elevating the temperature of reproductive structures. Additionally, flower color may evolve to attract the dominant or most efficient pollinator type in a given population. Here, we evaluate geographic variation in petal coloration across the range of Campanula americana in Eastern North America and test whether color covaries with abiotic factors, the pollination community, and genetic structure established through post-glacial expansion. Consistent with other studies, flowers from cooler, higher latitude populations were less reflective across the UV-NIR spectrum than those from warmer populations. Local temperature explained variation in petal reflectance better than the pollinator community or colonization history. Petal color perceived by trichromatic bee pollinators displayed a strong longitudinal pattern but was unassociated with climatic factors and the pollinator community. Instead, pollinator-perceived color was tightly correlated with the geographic distance from C. americana's glacial refugium. In total, abiotic conditions appear to shape large-scale geographic variation in the intensity of petal reflectance while genetic structure is the strongest driver of pollinator-perceived petal coloration. This study highlights the importance of abiotic factors and historical processes associated with range expansion as major evolutionary forces shaping diversity of flower coloration on large geographic scales.
Collapse
Affiliation(s)
- Matthew H. Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Laura F. Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
7
|
Koski MH, Berardi AE, Galloway LF. Pollen colour morphs take different paths to fitness. J Evol Biol 2020; 33:388-400. [PMID: 32012387 DOI: 10.1111/jeb.13599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/04/2019] [Accepted: 01/24/2020] [Indexed: 01/23/2023]
Abstract
Colour phenotypes are often involved in communication and are thus under selection by species interactions. However, selection may also act on colour through correlated traits or alternative functions of biochemical pigments. Such forms of selection are instrumental in maintaining petal colour diversity in plants. Pollen colour also varies markedly, but the maintenance of this variation is little understood. In Campanula americana, pollen ranges from white to dark purple, with darker morphs garnering more pollinator visits and exhibiting elevated pollen performance under heat stress. Here, we generate an F2 population segregating for pollen colour and measure correlations with floral traits, pollen attributes and plant-level traits related to fitness. We determine the pigment biochemistry of colour variants and evaluate maternal and paternal fitness of light and dark morphs by crossing within and between morphs. Pollen colour was largely uncorrelated with floral traits (petal colour, size, nectar traits) suggesting it can evolve independently. Darker pollen grains were larger and had higher anthocyanin content (cyanidin and peonidin) which may explain why they outperform light pollen under heat stress. Overall, pollen-related fitness metrics were greater for dark pollen, and dark pollen sires generated seeds with higher germination potential. Conversely, light pollen plants produce 61% more flowers than dark, and 18% more seeds per fruit, suggesting a seed production advantage. Results indicate that light and dark morphs may achieve fitness through different means-dark morphs appear to have a pollen advantage whereas light morphs have an ovule advantage-helping to explain the maintenance of pollen colour variation.
Collapse
Affiliation(s)
- Matthew H Koski
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Andrea E Berardi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Hempel de Ibarra N, Somanathan H. How are pollinators guided by colourful floral structures? A commentary on: 'The role of pollinator preference in the maintenance of pollen colour variation'. ANNALS OF BOTANY 2019; 123:iv-vi. [PMID: 31231756 PMCID: PMC6589504 DOI: 10.1093/aob/mcz080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article comments on: Jennifer L. Ison, Elizabeth S. L. Tuan, Matthew H. Koski, Jack S. Whalen and Laura F. Galloway. 2019. The role of pollinator preference in the maintenance of pollen colour variation. Annals of Botany 123(6): 951–960.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- Centre for Research in Animal Behaviour, Department of Psychology, University of Exeter, UK
- Corresponding author details: Natalie Hempel de Ibarra,
| | - Hema Somanathan
- IISER TVM Centre for Research and Education in Ecology and Evolution, School of Biology, Indian Institute for Science Education and Research Thiruvananthapuram, India
| |
Collapse
|