1
|
Monteiro TR, Gonçalves RVS, Telles FJ, Barônio GJ, Nogueira A, Brito VLG. A modified petal and stamen dimorphism interact to enhance pollen placement by a buzz-pollinated flower. ANNALS OF BOTANY 2025; 135:669-680. [PMID: 39657108 PMCID: PMC11904892 DOI: 10.1093/aob/mcae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Floral adaptations supposedly help pollen grains to cross the numerous barriers faced during their journey to stigmas. Stamen dimorphism and specialized petals, like the cucculus in the Cassieae tribe (Fabaceae), are commonly observed in flowers that offer only pollen as a resource for bee pollinators. Here, we experimentally investigated whether stamen dimorphism and the cucculus enhance pollen placement on the bee's body. METHODS We used 3-D-printed bee models to apply artificial vibrations to the flowers of Chamaechrista latistipula with their cucculus deflected or maintained in its original position and their anther pores manipulated. After each simulated flower visit, we captured photographs of the artificial bee from four distinct angles. Employing digital imaging techniques, we documented the presence and location of pollen and stigma on the bee's body. KEY RESULTS Our findings reveal that the cucculus redistributes pollen grains on the bee's body. There is a remarkable increase in pollen density (~10-fold) on the lateral side adjacent to the cucculus, precisely where the stigma contacts the bee when the cucculus is unmanipulated. Furthermore, the cucculus also enhances pollen placement on the ventral region of the bee, indicating its additional function. The cucculus also increases the accuracy of pollen grains on the adjacent lateral region of the bee's body, irrespective of the pollen grains released by small or large anthers. CONCLUSIONS Floral specialized traits, such as modified petals and stamen dimorphism, can modify the fate of pollen grains and ultimately contribute to male reproductive performance in pollen flowers with poricidal anthers. The cucculus exhibits a dual role by promoting pollen placement in optimal regions for pollination and probably supporting pollen grains for bee feeding. These findings provide valuable insights into the adaptive significance of floral traits and their impact on the reproductive success of pollen flowers.
Collapse
Affiliation(s)
- Thainã R Monteiro
- Programa de pós-graduação em Ecologia, Conservação e Biodiversidade, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, 38405-315, Brazil
| | - Rogério V S Gonçalves
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2522, Australia
| | - Francismeire J Telles
- Programa de pós-graduação em Ecologia, Conservação e Biodiversidade, Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, 38405-315, Brazil
| | - Gudryan J Barônio
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo (IB-USP), São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, 09606-045, Brazil
| | - Vinícius L G Brito
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, 38405-315, Brazil
| |
Collapse
|
2
|
Souza C, Valadão-Mendes LB, Schulze-Albuquerque I, Bergamo PJ, Souza DD, Nogueira A. Nitrogen-fixing bacteria boost floral attractiveness in a tropical legume species during nutrient limitation. AMERICAN JOURNAL OF BOTANY 2024; 111:e16363. [PMID: 38956859 DOI: 10.1002/ajb2.16363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/04/2024]
Abstract
PREMISE Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.
Collapse
Affiliation(s)
- Caroline Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Lorena B Valadão-Mendes
- Programa de Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Isadora Schulze-Albuquerque
- Departamento de Botânica, Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Pedro J Bergamo
- Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, Av 24 1515, São Paulo, Brasil
| | - Douglas D Souza
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
3
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
4
|
Basso-Alves JP, da Silva RF, Coimbra G, Leitão SG, de Rezende CM, Bizzo HR, Freitas L, Paulino JV, Mansano VDF. Heteromorphic stamens are differentially attractive in Swartzia (Fabaceae). AOB PLANTS 2022; 14:plac041. [PMID: 36267642 PMCID: PMC9575666 DOI: 10.1093/aobpla/plac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The division of labour hypothesis between stamens has explained the evolution of divergent functions between dimorphic stamens in the same flower. However, little is known about whether the distinct type of stamens differs in attractiveness to pollinators. Therefore, we investigate whether the two types of stamens commonly found in Swartzia have different visual and olfactory attractants. We performed observations of anthesis dynamics, registration and collection of floral visitors, measurements of reflectance of floral parts and chemical analysis of the volatile organic compounds of the floral parts of two species, S. flaemingii and S. simplex. Both species have two distinct sets of stamens: one with smaller and abundant stamens in the centre of the flower and the other with fewer but larger abaxial stamens. The sets differ in UV reflectance (only S. simplex) and exhibit a distinct chromatic contrast. Concerning olfactory attractiveness, aliphatic compounds make up most of the odour of the two species, both whole flowers and most of their floral organs. On the other hand, only S. simplex presented apocarotenoids (as ionones) and benzenoids. Furthermore, there are differences in the proportion of volatiles emitted by the stamen in both cases, as the high proportion of sesquiterpenes among the smaller stamens compared to the larger ones. In conclusion, the two types of stamens found in S. flaemingii and S. simplex show a distinct attractiveness. In addition, our data have demonstrated diverse ways of differential attractiveness both between distinct stamens set per flower and between the two species from the same pollen flowers genus.
Collapse
Affiliation(s)
| | - Rafael Ferreira da Silva
- Departamento de Química Orgânica/GQO, Instituto de Química, Universidade Federal Fluminense (UFF), Niterói, RJ 24020141, Brazil
| | - Gabriel Coimbra
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, DIPEQ-JBRJ, Rio de Janeiro, RJ 22460-030, Brazil
| | - Suzana Guimarães Leitão
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Claudia Moraes de Rezende
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 22945970, Brazil
| | | | - Leandro Freitas
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, DIPEQ-JBRJ, Rio de Janeiro, RJ 22460-030, Brazil
| | - Juliana Villela Paulino
- Programa de Pós-Graduação em Botânica, Escola Nacional de Botânica Tropical, Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ 22460-036, Brazil
- Departamento de Produtos Naturais e Alimentos, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | | |
Collapse
|
5
|
Basso-Alves JP, Goldenberg R, Teixeira SP. Connective modifications and origin of stamen diversity in Melastomataceae. JOURNAL OF PLANT RESEARCH 2022; 135:659-680. [PMID: 35802292 DOI: 10.1007/s10265-022-01405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The androecium of Melastomataceae presents notable modifications in its merosity, morphology between whorls and in prolonged connectives and appendages. We carried out a comparative study of six Melastomataceae species to shed light on the developmental processes that originate such stamen diversity. The development of stamens was studied using scanning electron microscopy and histological observations. The stamens of all species studied have a curved shape because they emerge on a plane displaced by the perigynous hypanthium. They are the last flower organs to initiate and therefore their growth is inwards and towards the floral center. Despite the temporal inversion between carpels and stamens in Melastomataceae, the androecium maintains the centripetal pattern of development, the antepetalous stamens emerging after antesepalous stamens. The isomerous androecium can be the result of abortion of the antepetalous stamens, whereas heterostemony seems to be caused by differences in position and the stamen development time. Pedoconnectives and ventral appendages originate from the basal expansion of the anther late in floral development. The delay in stamen development may be a consequence of their dependence on the formation of a previous space so that they can grow. Most of the stamen diversity is explained by the formation of the connectives and their appendages. The formation of a basal-ventral anther prolongation, which culminates in the development of the pedoconnective, does not differ from other types of sectorial growth of the connective, which form shorter structures.
Collapse
Affiliation(s)
- João Paulo Basso-Alves
- Instituto de Biologia, Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas (UNICAMP), R. Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil
- Diretoria de Pesquisa Científica, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ), Rio de Janeiro, RJ, 22460-030, Brazil
| | - Renato Goldenberg
- Departamento de Botânica, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Caixa Postal 19031, Curitiba, PR, 81531-970, Brazil
| | - Simone Pádua Teixeira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Ciências Farmacêuticas, Universidade de São Paulo (USP), Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
6
|
Vallejo‐Marín M, Pereira Nunes CE, Russell AL. Anther cones increase pollen release in buzz-pollinated Solanum flowers. Evolution 2022; 76:931-945. [PMID: 35324004 PMCID: PMC9313847 DOI: 10.1111/evo.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/22/2023]
Abstract
The widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bioadhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with ("joined") and without ("free") experimentally created joined anther cones, and characterized vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause nonfocal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, whereas in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.
Collapse
Affiliation(s)
- Mario Vallejo‐Marín
- Biological and Environmental SciencesUniversity of StirlingStirlingFK9 4LAUnited Kingdom
- Department of BiologyMissouri State UniversitySpringfieldMissouri65897
| | | | | |
Collapse
|
7
|
Agostini K, Wolowski M, Bergamo PJ, Brito VLGD, Nunes CEP, Pansarin LM, Sazima M. The contribution of the BIOTA/FAPESP Program to the knowledge on pollination and plant reproduction. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Abstract Interactions between plant and pollinators are associated with the origin and maintenance of species diversity, as well as ecosystem functioning. The potential of pollination as an ecosystem service is evidenced by its association with food production. Understanding pollination at the landscape scale is essential for characterizing the pollination service for several crops that depend on pollinators for fruit and seed set that make up the human diet. Our aim was to carry out a literature review of studies and projects funded by BIOTA/FAPESP to illustrate the main research approaches developed in the field of Pollination Biology, especially related to plant-pollinator interactions. Plant-pollinator interactions in the Atlantic forest were leveraged as a result of this long-term research program, during which several papers were published in international journals. Pollination by bees (melittophily) was the most representative pollination system studied. In addition to melittophily, other interactions were studied such as pollination by hawkmoths (sphingophily), by hummingbirds (ornithophily) and by bats (chiropterophily). The specific mutualistic relationships between fig trees and fig wasps were also subject of studies within the Program. At the beginning of the BIOTA/FAPESP Program, there were many gaps in basic information about pollination and breeding systems of Brazilian native plant species. Thus, the Program was fundamental to fuel research on the natural history of plants and pollinators from the Atlantic forest. Overall, the Program funded studies that investigated themes such as functional pollination ecology, pollinator effectiveness, plant population genetics, structure and dynamics of plant-pollinator interaction networks, as well as geographic distribution and macroevolution of pollination systems, as well as genetic and molecular studies of native plant populations focusing on pollen flow and genetic structure of populations. Additionally, studies on pollination in the context of landscape ecology had the aim of assessing the effects of forest fragmentation on the functioning of plant populations and their interactions with pollinators and the relationships between landscape structure and ecological processes, biodiversity, and ecosystem service. Therefore, the Program had a prominent role in producing basic data with great implications for understanding the ecology and promoting the conservation of plant-pollinator interactions.
Collapse
|