1
|
Li Y, Chen H, Kong X, Yin Y, Li J, Wu K, Zeng S, Fang L. Excessive accumulation of auxin inhibits protocorm development during germination of Paphiopedilum spicerianum. PLANT CELL REPORTS 2025; 44:23. [PMID: 39762613 DOI: 10.1007/s00299-024-03419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
KEY MESSAGE Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment. Our study found that the key difference between normally developing protocorm (NDP) and arrested developmental protocorm (ADP) is their capability for continuous cell differentiation. In ADP, cells divide without differentiating, with indole-3-acetic acid (IAA) levels being 20 times higher than that in NDP. This suggests that auxin level plays a role in protocorm cell fate determination. Exogenous application of NAA demonstrated that elevated auxin level can delay the formation of the shoot apical meristem (SAM) inside the protocorm. Gene expression analysis revealed that elevated auxin can inhibit or even halt the SAM formation through down-regulation of SAM-related genes such as CLV3, CUC1 and CUC2. High auxin levels also led to reduced cell wall rigidity by up-regulation of cell wall expanding protein (EXPB15), thereby creating ideal conditions for fungi entry. Inoculation with a compatible orchid mycorrhizal fungus (OMF) resulted in successful cell differentiation of ADP and eventually triggered the conversion of ADP to NDP. Since the protocorm is a distinct structure that facilitates the establishment of symbiotic associations with compatible OMF, we propose that the excessive auxin accumulation inside Paphiopedilum protocorm can pause the further development of protocorm and soften the cell wall. This strategy likely serves to enhance the attraction and colonization by OMFs in the native habitat of Paphiopedilum, facilitating essential symbiotic relationships necessary for their survival and growth.
Collapse
Affiliation(s)
- Yefei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Chen
- Guangzhou Collaborative Innovation Center on Science-Tech of Ecology and Landscape, Guangzhou Landscape Plant Germplasm Resource Nursery, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510540, China
| | - Xinping Kong
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuying Yin
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Songjun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
2
|
Guo B, Zeng S, Yin Y, Li L, Ma G, Wu K, Fang L. Characterization of phytohormone and transcriptome profiles during protocorm-like bodies development of Paphiopedilum. BMC Genomics 2021; 22:806. [PMID: 34749655 PMCID: PMC8576892 DOI: 10.1186/s12864-021-08087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paphiopedilum, commonly known as slipper orchid, is an important genus of orchid family with prominent horticultural value. Compared with conventional methods such as tillers and in vitro shoots multiplication, induction and regeneration of protocorm-like bodies (PLBs) is an effective micropropagation method in Paphiopedilum. The PLB initiation efficiency varies among species, hybrids and varieties, which leads to only a few Paphiopedilum species can be large-scale propagated through PLBs. So far, little is known about the mechanisms behind the initiation and maintenance of PLB in Paphiopedilum. RESULTS A protocol to induce PLB development from seed-derived protocorms of Paphiopedilum SCBG Huihuang90 (P. SCBG Prince × P. SCBG Miracle) was established. The morphological characterization of four key PLB developmental stages showed that significant polarity and cell size gradients were observed within each PLB. The endogenous hormone level was evaluated. The increase in the levels of indoleacetic acid (IAA) and jasmonic acid (JA) accompanying the PLBs differentiation, suggesting auxin and JA levels were correlated with PLB development. Gibberellic acid (GA) decreased to a very low level, indicated that GA inactivation may be necessary for shoot apical meristem (SAM) development. Comparative transcriptomic profiles of four different developmental stages of P. SCBG Huihuang90 PLBs explore key genes involved in PLB development. The numbers of differentially expressed genes (DEGs) in three pairwise comparisons (A vs B, B vs C, C vs D) were 1455, 349, and 3529, respectively. KEGG enrichment analysis revealed that DEGs were implicated in secondary metabolite metabolism and photosynthesis. DEGs related to hormone metabolism and signaling, somatic embryogenesis, shoot development and photosynthesis were discussed in detail. CONCLUSION This study is the first report on PLB development in Paphiopedilum using transcriptome sequencing, which provides useful information to understand the mechanisms of PLB development.
Collapse
Affiliation(s)
- Beiyi Guo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Yuying Yin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
3
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2020; 43:675-691. [PMID: 31889328 DOI: 10.1111/pce.13694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 05/18/2023]
Abstract
Leaf trichomes protect against various biotic and abiotic stresses in plants. However, there is little knowledge about this trait in oilseed rape (Brassica napus). Here, we demonstrated that hairy leaves were less attractive to Plutella xylostella larvae than glabrous leaves. We established a core germplasm collection with 290 accessions for a genome-wide association study (GWAS) of the leaf trichome trait in oilseed rape. We compared the transcriptomes of the shoot apical meristem (SAM) between hairy- and glabrous-leaf genotypes to narrow down the candidate genes identified by GWAS. The single nucleotide polymorphisms and the different transcript levels of BnaA.GL1.a, BnaC.SWEET4.a, BnaC.WAT1.a and BnaC.WAT1.b corresponded to the divergence of the hairy- and glabrous-leaf phenotypes, indicating the role of sugar and/or auxin signalling in leaf trichome initiation. The hairy-leaf SAMs had lower glucose and sucrose contents but higher expression of putative auxin responsive factors than the glabrous-leaf SAMs. Spraying of exogenous auxin (8 μm) increased leaf trichome number in certain genotypes, whereas spraying of sucrose (1%) plus glucose (6%) slightly repressed leaf trichome initiation. These data contribute to the existing knowledge about the genetic control of leaf trichomes and would assist breeding towards the desired leaf surface type in oilseed rape.
Collapse
Affiliation(s)
- Lijie Xuan
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Tao Yan
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Lingzhi Lu
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Xinze Zhao
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lixi Jiang
- Provincial Key Laboratory of Crop Gene Resources, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Falcioni R, Moriwaki T, Perez-Llorca M, Munné-Bosch S, Gibin MS, Sato F, Pelozo A, Pattaro MC, Giacomelli ME, Rüggeberg M, Antunes WC. Cell wall structure and composition is affected by light quality in tomato seedlings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 203:111745. [PMID: 31931381 DOI: 10.1016/j.jphotobiol.2019.111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 12/27/2022]
Abstract
Light affects many aspects of cell development. Tomato seedlings growing at different light qualities (white, blue, green, red, far-red) and in the dark displayed alterations in cell wall structure and composition. A strong and negative correlation was found between cell wall thickness and hypocotyl growth. Cell walls was thicker under blue and white lights and thinner under far-red light and in the dark, while intermediate values was observed for red or green lights. Additionally, the inside layer surface of cell wall presented random deposited microfibrillae angles under far-red light and in the dark. However, longitudinal transmission electron microscopy indicates a high frequency of microfibrils close to parallels related to the elongation axis in the outer layer. This was confirmed by ultra-high resolution small angle X-ray scattering. These data suggest that cellulose microfibrils would be passively reoriented in the longitudinal direction. As the cell expands, the most recently deposited layers (inside) behave differentially oriented compared to older (outer) layers in the dark or under FR lights, agreeing with the multinet growth hypothesis. High Ca and pectin levels were found in the cell wall of seedlings growing under blue and white light, also contributing to the low extensibility of the cell wall. Low Ca and pectin contents were found in the dark and under far-red light. Auxins marginally stimulated growth in thin cell wall circumstances. Hypocotyl growth was stimulated by gibberellins under blue light.
Collapse
Affiliation(s)
- Renan Falcioni
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Biochemistry Laboratory, Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Thaise Moriwaki
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Perez-Llorca
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Sergi Munné-Bosch
- Antiox Research Group, Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 645, 08028 Barcelona, Spain
| | - Mariana Sversut Gibin
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Francielle Sato
- Optical Spectroscopy and Thermophysical Properties Research Group, Department of Physics, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Andressa Pelozo
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil; Plant Anatomy Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Mariana Carmona Pattaro
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Marina Ellen Giacomelli
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil
| | - Markus Rüggeberg
- Wood Material Science, Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Schafmattstrasse 6, CH-8093 Zurich, Switzerland
| | - Werner Camargos Antunes
- Plant Ecophysiology Laboratory, Department of Biology, State University of Maringá, Av. Colombo, 5790, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
6
|
Novak S, Kalbakji N, Upthegrove K, Neher W, Jones J, de León J. Evidence for Brassinosteroid-Mediated PAT During Germination of Spathoglottis plicata (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:1215. [PMID: 30174682 PMCID: PMC6107755 DOI: 10.3389/fpls.2018.01215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/30/2018] [Indexed: 05/31/2023]
Abstract
Polar auxin transport (PAT) is facilitated by polar localization of PIN-FORMED (PIN) efflux carriers, which direct auxin flow and regulate developmental events. Brassinosteroids (BRs) and auxin work synergistically to promote growth, and in root geotropisms this cross-talk involves BR-directed polarization of PIN through the mobilization of F-actin. However, the role of BR in PAT during shoot growth, hair formation, and embryogenesis has not been well studied. Orchid seed are mature at a point in development that is analogous to the globular-stage of embryogenesis in typical angiosperms. Thus, this system provided a unique opportunity to study the effects of BR on PAT during embryogenesis-like events, including meristem/first leaf formation and protocorm/stem development, which is followed by protocorm hair formation. In this work, the degree to which BRs rescued embryo-like protocorms from the impact of PAT-disrupting agents, such as PAT inhibitors or high auxin levels, was determined based on growth responses. This study first established that auxin and BRs work together synergistically to promote seedling elongation in Spathoglottis. Repressed seedling growth caused by the PAT-disrupting agents was alleviated with eBL, suggesting that BRs enhance PAT in embryogenesis-like stages of young protocorms. However, similar responses were not evident in seed embryos. Results from this study also suggested that BRs may enhance orchid protocorm elongation by regulating auxin transport through an F-actin-mediated mechanism. With regard to protocorm hairs, increased eBL levels inhibited formation, whereas reduced BR biosynthesis altered hair patterning, and prevented outgrowth of auxin-stimulated hairs. Moreover, PAT inhibitors and repression of BR biosynthesis caused hair bud formation without hair outgrowth, suggesting a role for BR in PAT during protocorm hair development.
Collapse
Affiliation(s)
- Stacey Novak
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Nataly Kalbakji
- Department of Biology, University of La Verne, La Verne, CA, United States
- Southern California College of Optometry at Marshall B. Ketchum, Fullerton, CA, United States
| | - Kylie Upthegrove
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Wesley Neher
- Department of Biology, University of La Verne, La Verne, CA, United States
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jay Jones
- Department of Biology, University of La Verne, La Verne, CA, United States
| | - Jazmin de León
- Department of Biology, University of La Verne, La Verne, CA, United States
- Ross University School of Veterinary Medicine, Saint Kitts, West Indies
| |
Collapse
|
7
|
Lin HY, Chen JC, Fang SC. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids. FRONTIERS IN PLANT SCIENCE 2018; 9:843. [PMID: 29988409 PMCID: PMC6024019 DOI: 10.3389/fpls.2018.00843] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/30/2018] [Indexed: 05/24/2023]
Abstract
The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein-protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.
Collapse
Affiliation(s)
- Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
8
|
Shi X, Gu Y, Dai T, Wu Y, Wu P, Xu Y, Chen F. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L. Gene 2018; 658:47-53. [PMID: 29518550 DOI: 10.1016/j.gene.2018.02.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/11/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022]
Abstract
Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants.
Collapse
Affiliation(s)
- Xiaodong Shi
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; Molecular Genetics Key Laboratory of China Tobacco (Guizhou Academy of Tobacco Science), Guiyang 550081, China
| | - Yuxi Gu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tingwei Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Peng Wu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ying Xu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Fang Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Sivakumar G, Alba K, Phillips GC. Biorhizome: A Biosynthetic Platform for Colchicine Biomanufacturing. FRONTIERS IN PLANT SCIENCE 2017; 8:1137. [PMID: 28713407 PMCID: PMC5491623 DOI: 10.3389/fpls.2017.01137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Colchicine is one of the oldest plant-based medicines used to treat gout and one of the most important alkaloid-based antimitotic drugs with anticancer potential, which is commercially extracted from Gloriosa superba. Clinical trials suggest that colchicine medication could prevent atrial fibrillation recurrence after cardiac surgery. In addition, therapeutic colchicine is undergoing clinical trials to treat non-diabetic metabolic syndrome and diabetic nephropathy. However, the industrial-scale biomanufacturing of colchicine have not yet been established. Clearly, further studies on detailed biorhizome-specific transcriptome analysis, gene expression, and candidate gene validation are required before uncover the mechanism of colchicine biosynthesis and biorhizome-based colchicine biomanufacturing. Annotation of 32312 assembled multiple-tissues transcripts of G. superba represented 15088 unigenes in known plant specific gene ontology. This could help understanding colchicine biosynthesis in G. superba. This review highlights the biorhizomes, rhizome specific genes or gene what expressed with high level in rhizomes, and deep fluid dynamics in a bioreactor specifically for the biomanufacture of colchicine.
Collapse
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, HoustonTX, United States
| | - Kamran Alba
- Department of Engineering Technology, College of Technology, University of Houston, HoustonTX, United States
| | - Gregory C. Phillips
- College of Agriculture and Technology, Arkansas State University, JonesboroAR, United States
| |
Collapse
|
10
|
Yang C, Gao Y, Gao S, Yu G, Xiong C, Chang J, Li H, Ye Z. Transcriptome profile analysis of cell proliferation molecular processes during multicellular trichome formation induced by tomato Wov gene in tobacco. BMC Genomics 2015; 16:868. [PMID: 26503424 PMCID: PMC4623907 DOI: 10.1186/s12864-015-2099-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trichomes, developing from the epidermis of nearly all terrestrial plants, provide good structural resistance against insect herbivores and an excellent model for studying the molecular mechanisms underlying cell fate determination. Regulation of trichomes in Rosids has been well characterized. However, little is known about the cell proliferation molecular processes during multicellular trichome formation in Asterids. RESULTS In this study, we identified two point mutations in a novel allele (Wov) at Wo locus. Ectopic expression of Wov in tobacco and potato induces much more trichome formation than wild type. To gain new insights into the underlying mechanisms during the processes of these trichomes formation, we compared the gene expression profiles between Wov transgenic and wild-type tobacco by RNA-seq analysis. A total of 544 co-DEGs were detected between transgenic and wild-type tobacco. Functional assignments of the co-DEGs indicated that 33 reliable pathways are altered in transgenic tobacco plants. The most noticeable pathways are fatty acid metabolism, amino acid biosynthesis and metabolism, and plant hormone signal transduction. Results suggest that these enhanced processes are critical for the cell proliferation during multicellular trichome formation in transgenic plants. In addition, the transcriptional levels of homologues of trichome regulators in Rosids were not significantly changed, whereas homologues of genes (Wo and SlCycB2) in Asterids were significantly upregulated in Wov transgenic tobacco plants. CONCLUSIONS This study presents a global picture of the gene expression changes induced by Wov-gene in tobacco. And the results provided us new insight into the molecular processes controlling multicellular formation in tobacco. Furthermore, we inferred that trichomes in solanaceous species might share a common network.
Collapse
Affiliation(s)
- Changxian Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Yanna Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shenghua Gao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Gang Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Cheng Xiong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Jiang Chang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
11
|
Novak SD, Luna LJ, Gamage RN. Role of auxin in orchid development. PLANT SIGNALING & BEHAVIOR 2014; 9:e972277. [PMID: 25482818 PMCID: PMC4622584 DOI: 10.4161/psb.32169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 05/07/2023]
Abstract
Auxin's capacity to regulate aspects of plant development has been well characterized in model plant systems. In contrast, orchids have received considerably less attention, but the realization that many orchid species are endangered has led to culture-based propagation studies which have unveiled some functions for auxin in this system. This mini-review summarizes the many auxin-mediated developmental responses in orchids that are consistent with model systems; however, it also brings to the forefront auxin responses that are unique to orchid development, namely protocorm formation and ovary/ovule maturation. With regard to shoot establishment, we also assess auxin's involvement in orchid germination, PLB formation, and somatic embryogenesis. Further, it makes evident that auxin flow during germination of the undifferentiated, but mature, orchid embryo mirrors late embryogenesis of typical angiosperms. Also discussed is the use of orchid protocorms in future phytohormone studies to better understand the mechanisms behind meristem formation and organogenesis.
Collapse
Key Words
- 2,4-D, 2,4-dichlorophenoxyacetic acid
- BA, benzyladenine
- BAP, 6-Benzylaminopurine
- CW, coconut water
- GA, gibberellic acid
- IAA, indolacetic acid
- IBA, indolbutyric acid
- JA, jasomonic acid
- KN, kinetin
- NAA, 1-naphthalenacetic acid
- NPA, 1-n-naphthylphthalamic acid
- PAT
- PAT, polar auxin transport
- PLB, protocorm-like body
- TIBA, 2,3,5-triiodobenzoic acid
- TZD, thidiazuron
- auxin
- floral senescence
- germination
- meristem
- orchids
- protocorm
- rhizogenesis
- trichomes
Collapse
Affiliation(s)
- Stacey D. Novak
- Department of Biology; University of La Verne; La Verne, CA USA
| | - Lila J. Luna
- Department of Biology; University of La Verne; La Verne, CA USA
| | - Roshan N. Gamage
- Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago, IL USA
| |
Collapse
|