1
|
Sanchez-Escudero JP, Aguillon D, Valencia S, Garcia-Barrera MA, Aguirre-Acevedo DC, Trujillo N. Digital Ergonomics of NavegApp, a Novel Serious Game for Spatial Cognition Assessment: Content Validity and Usability Study. JMIR Serious Games 2025; 13:e66167. [PMID: 40173437 PMCID: PMC12004023 DOI: 10.2196/66167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Alzheimer disease (AD) is the leading cause of dementia worldwide. With aging populations and limited access to effective treatments, there is an urgent need for innovative markers to support timely preventive interventions. Emerging evidence highlights spatial cognition (SC) as a valuable source of cognitive markers for AD. This study presents NavegApp, a serious game (SG) designed to assess 3 key components of SC, which show potential as cognitive markers for the early detection of AD. OBJECTIVE This study aimed to determine the content validity and usability perception of NavegApp across multiple groups of interest. METHODS A multistep process integrating methodologies from software engineering, psychometrics, and health measurement was implemented to validate the software. Our approach was structured into 3 stages, guided by the software life cycle for health and the Consensus-Based Standards for the Selection of Health Status Measurement Instruments (COSMIN) recommendations for evaluating the psychometric quality of health instruments. To assess content validity, a panel of 8 experts evaluated the relevance and representativeness of tasks included in the app. In addition, 212 participants, categorized into 5 groups based on their clinical status and risk level for AD, were recruited to evaluate the app's digital ergonomics and usability at various stages of development. Complementary analyses were performed to identify group differences and to explore the association between task difficulty and user agreeableness. RESULTS NavegApp was validated as a highly usable tool by both experts and users. The expert panel confirmed that the tasks included in the game were representative (Aiken V=0.96-1.00) and relevant (Aiken V=0.96-1.00) for measuring SC components. Both experts and nonexperts rated NavegApp's digital ergonomics positively, with minimal differences between groups (rrb 0.08-0.29). Differences in usability perceptions were observed among participants with sporadic mild cognitive impairment compared to cognitively healthy individuals (rrb 0.26-0.29). A moderate association was also identified between task difficulty and user agreeableness (Cramér V=0.37, 95% CI 0.28-0.54). CONCLUSIONS NavegApp is a valid and user-friendly SG designed for SC assessment, developed by integrating software engineering and psychometric evaluation methodologies. While the results are promising, further studies are warranted to evaluate its diagnostic accuracy and construct validity. This work outlines a comprehensive framework for SG development in cognitive assessment, emphasizing the importance of incorporating psychometric validity measures from the outset of the design process.
Collapse
Affiliation(s)
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | - Stella Valencia
- Mental Health Research Group, Universidad de Antioquia, Medellín, Colombia
| | - Mauricio A Garcia-Barrera
- Department of Psychology & Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | | | - Natalia Trujillo
- Mental Health Research Group, Universidad de Antioquia, Medellín, Colombia
- Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- Global Brain Health Institute, University of California, San Francisco, CA, United States
| |
Collapse
|
2
|
Sánchez-Escudero JP, Galvis-Herrera AM, Sánchez-Trujillo D, Torres-López LC, Kennedy CJ, Aguirre-Acevedo DC, Garcia-Barrera MA, Trujillo N. Virtual Reality and Serious Videogame-Based Instruments for Assessing Spatial Navigation in Alzheimer's Disease: A Systematic Review of Psychometric Properties. Neuropsychol Rev 2025; 35:77-101. [PMID: 38403731 PMCID: PMC11965194 DOI: 10.1007/s11065-024-09633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
Over the past decade, research using virtual reality and serious game-based instruments for assessing spatial navigation and spatial memory in at-risk and AD populations has risen. We systematically reviewed the literature since 2012 to identify and evaluate the methodological quality and risk of bias in the analyses of the psychometric properties of VRSG-based instruments. The search was conducted primarily in July-December 2022 and updated in November 2023 in eight major databases. The quality of instrument development and study design were analyzed in all studies. Measurement properties were defined and analyzed according to COSMIN guidelines. A total of 1078 unique records were screened, and following selection criteria, thirty-seven studies were analyzed. From these studies, 30 instruments were identified. Construct and criterion validity were the most reported measurement properties, while structural validity and internal consistency evidence were the least reported. Nineteen studies were deemed very good in construct validity, whereas 11 studies reporting diagnostic accuracy were deemed very good in quality. Limitations regarding theoretical framework and research design requirements were found in most of the studies. VRSG-based instruments are valuable additions to the current diagnostic toolkit for AD. Further research is required to establish the psychometric performance and clinical utility of VRSG-based instruments, particularly the instrument development, content validity, and diagnostic accuracy for preclinical AD screening scenarios. This review provides a straightforward synthesis of the state of the art of VRSG-based instruments and suggests future directions for research.
Collapse
Affiliation(s)
| | | | | | | | - Cole J Kennedy
- Department of Psychology & Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | | | - Mauricio A Garcia-Barrera
- Department of Psychology & Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Natalia Trujillo
- National College of Public Health, University of Antioquia, Antioquia, Colombia
- Atlantic Fellowship in Equity in Brain Health, Global Brain Health Institute, University of California, San Francisco, CA, USA
- Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Chatterjee R, Moussavi Z. Evaluation of a cognition-sensitive spatial virtual reality game for Alzheimer's disease. Med Biol Eng Comput 2024:10.1007/s11517-024-03270-1. [PMID: 39725762 DOI: 10.1007/s11517-024-03270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Spatial impairment characterizes Alzheimer's disease (AD) from its earliest stages. We present the design and preliminary evaluation of "Barn Ruins," a serious virtual reality (VR) wayfinding game for early-stage AD. Barn Ruins is tailored to the cognitive abilities of this population, featuring simple controls and error-based scoring system. Ten younger adults, ten cognitively healthy older adults, and ten age-matched individuals with AD participated in this study. They underwent cognitive assessments using the Montreal Cognitive Assessment (MoCA) and the Montgomery-Åsberg Depression Rating Scale (MADRS) before gameplay. The game involves navigating a virtual environment to find a target room, with increasing levels of difficulty. This study aimed to confirm the cognitive sensitivity of the Barn Ruins' spatial learning score by studying its relationship with Montreal Cognitive Assessment (MoCA) scores. MoCA scores and spatial learning scores had a correlation coefficient of 0.755 (p < 0.001). Logistic regression further revealed that higher spatial learning scores significantly predicted lower odds of cognitive impairment (OR = 0.495, 95% CI [0.274, 0.746], p < 0.005). The initial results suggest that the game is effective in differentiating performance among participant groups. This research demonstrates the potential of the Barn Ruins game as an innovative tool for assessing spatial navigation in AD, highlighting areas for future validation and investigation as a training tool.
Collapse
Affiliation(s)
- Rashmita Chatterjee
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, 75 Chancellors Cir, Winnipeg, MB, R3T 5V6, Canada.
| | - Zahra Moussavi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, 75 Chancellors Cir, Winnipeg, MB, R3T 5V6, Canada
- Department of Electrical and Computer Engineering, Price Faculty of Engineering, University of Manitoba, 75 Chancellors Cir, Winnipeg, MB, R3T 5V6, Canada
| |
Collapse
|
4
|
Voss MW, Oehler C, Daniels W, Sodoma M, Madero B, Kent J, Jain S, Jung M, Nuckols VR, DuBose LE, Davis KG, O'Deen A, Hamilton C, Baller K, Springer J, Rivera-Dompenciel A, Pipoly M, Muellerleile M, Nagarajan N, Bjarnason T, Harb N, Lin LC, Magnotta V, Hazeltine E, Long JD, Pierce GL. Exercise effects on brain health and learning from minutes to months: The brain EXTEND trial. Contemp Clin Trials 2024; 145:107647. [PMID: 39095013 PMCID: PMC11438497 DOI: 10.1016/j.cct.2024.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/09/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Despite evidence that aerobic exercise benefits the aging brain, in particular the hippocampus and memory, controlled clinical trials have not comprehensively evaluated effects of aerobic exercise training on human memory in older adults. The central goal of this study was to determine chronic effects of moderate-to-vigorous intensity aerobic exercise on the hippocampus and memory in non-demented, inactive adults ages 55-80 years. We determine effects of aerobic exercise training with a 6-month randomized controlled trial (RCT) comparing 150 min/week of home-based, light intensity exercise with progressive moderate-to-vigorous intensity aerobic exercise. For the first time in a large trial, we examined temporal mechanisms by determining if individual differences in the rapid, immediate effects of moderate intensity exercise on hippocampal-cortical connectivity predict chronic training-related changes over months in connectivity and memory. We examined physiological mechanisms by testing the extent to which chronic training-related changes in cardiorespiratory fitness are a critical factor to memory benefits. The Exercise Effects on Brain Connectivity and Learning from Minutes to Months (Brain-EXTEND) trial is conceptually innovative with advanced measures of hippocampal-dependent learning and memory processes combined with novel capture of the physiological changes, genetic components, and molecular changes induced by aerobic exercise that change hippocampal-cortical connectivity. Given that hippocampal connectivity deteriorates with Alzheimer's and aerobic exercise may contribute to reduced risk of Alzheimer's, our results could lead to an understanding of the physiological mechanisms and moderators by which aerobic exercise reduces risk of this devastating and costly disease.
Collapse
Affiliation(s)
- Michelle W Voss
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA; Iowa Neuroscience Institute, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Chris Oehler
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Will Daniels
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Matthew Sodoma
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Bryan Madero
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - James Kent
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Shivangi Jain
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Myungjin Jung
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Virginia R Nuckols
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Lyndsey E DuBose
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Kristen G Davis
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Abby O'Deen
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Chase Hamilton
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Kelsey Baller
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Jenna Springer
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA; Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, USA
| | - Adriana Rivera-Dompenciel
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA; Iowa Neuroscience Institute, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marco Pipoly
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA; Iowa Neuroscience Institute, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael Muellerleile
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nagalakshmi Nagarajan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Thorarinn Bjarnason
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nidal Harb
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Li-Chun Lin
- Iowa Neuroscience Institute, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vincent Magnotta
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, USA; Iowa Neuroscience Institute, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Neuroscience Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eliot Hazeltine
- Department of Psychological and Brain Sciences, College of Liberal Arts and Sciences, The University of Iowa, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey D Long
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, USA; Department of Biostatistics, College of Public Health, The University of Iowa, USA
| | - Gary L Pierce
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, The University of Iowa, USA; Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Gerb J, Brandt T, Dieterich M. Unreliable association between self-reported sense of direction and peripheral vestibular function. Brain Behav 2024; 14:e70000. [PMID: 39245964 PMCID: PMC11381552 DOI: 10.1002/brb3.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Uni- or bilateral peripheralvestibular impairment causes objective spatial orientation deficits, which can be measured using pen-and-paper-tests or sensorimotor tasks (navigation or pointing). For patients' subjective orientation abilities, questionnaires are commonly used (e.g., Santa Barbara sense of direction scale [SBSODS]). However, the relationship between subjective assessment of spatial skills and objective vestibular function has only been scarcely investigated. METHODS A total of 177 patients (mean age 57.86 ± 17.53 years, 90 females) who presented in our tertiary Center for Vertigo and Balance Disorders underwent neuro-otological examinations, including bithermal water calorics, video head impulse test (vHIT), and testing of the subjective visual vertical (SVV), and filled out the SBSODS (German version). Correlation analyses and linear multiple regression model analyses were performed between vestibular test results and self-assessment scores. Additionally, groupwise vestibular function for patients with low, average, and high self-report scores was analyzed. RESULTS Forty-two patients fulfilled the diagnostic criteria for bilateral vestibulopathy, 93 for chronic unilateral vestibulopathy (68 unilateral caloric hypofunction and 25 isolated horizontal vestibulo-ocular reflex deficits), and 42 patients had normal vestibular test results. SBSODS scores showed clear sex differences with higher subjective skill levels in males (mean score males: 4.94 ± 0.99, females 4.40 ± 0.94; Student's t-test: t-3.78, p < .001***). No stable correlation between objective vestibular function and subjective sense of spatial orientation was found. A multiple linear regression model could not reliably explain the self-reported variance. The three patient groups with low, average, and high self-assessment-scores showed no significant differences of vestibular function. CONCLUSION Self-reported assessment of spatial orientation does not robustly correlate with objective peripheral vestibular function. Therefore, other methods of measuring spatial skills in real-world and virtual environments are required to disclose orientation deficits due to vestibular hypofunction.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
6
|
Laczó M, Svatkova R, Lerch O, Martinkovic L, Zuntychova T, Nedelska Z, Horakova H, Vyhnalek M, Hort J, Laczó J. Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease. iScience 2024; 27:109832. [PMID: 38779476 PMCID: PMC11108981 DOI: 10.1016/j.isci.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/14/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Impaired spatial navigation is early marker of Alzheimer's disease (AD). We examined ability of self- and informant-reported navigation questionnaires to discriminate between clinically and biomarker-defined participants, and associations of questionnaires with navigation performance, regional brain atrophy, AD biomarkers, and biomarker status. 262 participants (cognitively normal, with subjective cognitive decline, amnestic mild cognitive impairment [aMCI], and mild dementia) and their informants completed three navigation questionnaires. Navigation performance, magnetic resonance imaging volume/thickness of AD-related brain regions, and AD biomarkers were measured. Informant-reported questionnaires distinguished between cognitively normal and impaired participants, and amyloid-β positive and negative aMCI. Lower scores were associated with worse navigation performance, greater atrophy in AD-related brain regions, and amyloid-β status. Self-reported questionnaire scores did not distinguish between the groups and were weakly associated with navigation performance. Other associations were not significant. Informant-reported navigation questionnaires may be a screening tool for early AD reflecting atrophy of AD-related brain regions and AD pathology.
Collapse
Affiliation(s)
- Martina Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Radka Svatkova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Lukas Martinkovic
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Terezie Zuntychova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Hana Horakova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
7
|
Altieri M, Maggi G, Giacobbe C, Santangelo G. Psychometric properties and normative data of the Italian version of the Cognitive Function at Work Questionnaire: a screening tool for detecting subjective cognitive complaints at work. Neurol Sci 2024; 45:2593-2603. [PMID: 38155286 DOI: 10.1007/s10072-023-07265-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Considering the extension of working life due to socioeconomic and political factors, many people may experience cognitive complaints (CC) at their workplace, with severe consequences on their quality of life. The identification of workers reporting significative SCC is crucial to eventually address them to an objective neuropsychological evaluation and implement cognitive interventions to guarantee workers' well-being. Since no Italian questionnaires for detecting CC were designed for occupational settings, the aim of the study was to validate the Italian version of the Cognitive Function at Work Questionnaire (CFWQ) and to provide its normative data. MATERIALS AND METHODS Internal consistency, convergent and divergent validity, and factorial structure of the CFWQ were evaluated. A regression-based procedure served to compute percentiles of CFWQ and its subscales. RESULTS Four hundred twenty-one participants without psychiatric and/or neurological disorders completed the survey. We found that the Italian CFWQ included 26 items, with a good internal consistency (Cronbach's alpha = 0.897) and a six-factor structure (memory, language, processing speed, abstract thinking/behavioral control, behavioral inertia, planning ability). CFWQ score did not correlate with empathy but correlated strongly with memory scores and moderately with anxiety and depression scores. CONCLUSIONS The Italian CFWQ showed good psychometric properties, in analogy with the original English scale. Therefore, it can be successfully employed in organizational contexts to possibly identify workers with CC and therefore with possible co-occurrent psychological, behavioral, and cognitive consequences.
Collapse
Affiliation(s)
- Manuela Altieri
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianpaolo Maggi
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Chiara Giacobbe
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
8
|
Korte JA, Weakley A, Fernandez KD, Joiner WM, Fan AP. Neural Underpinnings of Learning in Dementia Populations: A Review of Motor Learning Studies Combined with Neuroimaging. J Cogn Neurosci 2024; 36:734-755. [PMID: 38285732 PMCID: PMC11934338 DOI: 10.1162/jocn_a_02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The intent of this review article is to serve as an overview of current research regarding the neural characteristics of motor learning in Alzheimer disease (AD) as well as prodromal phases of AD: at-risk populations, and mild cognitive impairment. This review seeks to provide a cognitive framework to compare various motor tasks. We will highlight the neural characteristics related to cognitive domains that, through imaging, display functional or structural changes because of AD progression. In turn, this motivates the use of motor learning paradigms as possible screening techniques for AD and will build upon our current understanding of learning abilities in AD populations.
Collapse
Affiliation(s)
- Jessica A. Korte
- Department of Biomedical Engineering, University of California, Davis
| | - Alyssa Weakley
- Department of Neurology, University of California, Davis
| | | | - Wilsaan M. Joiner
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
- Department of Neurobiology, Physiology and Behavior, University of California, Davis
| | - Audrey P. Fan
- Department of Biomedical Engineering, University of California, Davis
- Department of Neurology, University of California, Davis
| |
Collapse
|
9
|
Levine TF, Dessenberger SJ, Allison SL, Head D. Alzheimer disease biomarkers are associated with decline in subjective memory, attention, and spatial navigation ability in clinically normal adults. J Int Neuropsychol Soc 2024; 30:313-327. [PMID: 38014546 DOI: 10.1017/s135561772300070x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Subtle changes in memory, attention, and spatial navigation abilities have been associated with preclinical Alzheimer disease (AD). The current study examined whether baseline AD biomarkers are associated with self- and informant-reported decline in memory, attention, and spatial navigation. METHOD Clinically normal (Clinical Dementia Rating Scale (CDR®) = 0) adults aged 56-93 (N = 320) and their informants completed the memory, divided attention, and visuospatial abilities (which assesses spatial navigation) subsections of the Everyday Cognition Scale (ECog) annually for an average of 4 years. Biomarker data was collected within (±) 2 years of baseline (i.e., cerebrospinal fluid (CSF) p-tau181/Aβ42 ratio and hippocampal volume). Clinical progression was defined as CDR > 0 at time of final available ECog. RESULTS Self- and informant-reported memory, attention, and spatial navigation significantly declined over time (ps < .001). Baseline AD biomarkers were significantly associated with self- and informant-reported decline in cognitive ability (ps < .030), with the exception of p-tau181/Aβ42 ratio and self-reported attention (p = .364). Clinical progression did not significantly moderate the relationship between AD biomarkers and decline in self- or informant-reported cognitive ability (ps > .062). Post-hoc analyses indicated that biomarker burden was also associated with self- and informant-reported decline in total ECog (ps < .002), and again clinical progression did not significantly moderate these relationships (ps > .299). CONCLUSIONS AD biomarkers at baseline may indicate risk of decline in self- and informant-reported change in memory, attention, and spatial navigation ability. As such, subjectively reported decline in these domains may have clinical utility in tracking the subtle cognitive changes associated with the earliest stages of AD.
Collapse
Affiliation(s)
- Taylor F Levine
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Steven J Dessenberger
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Samantha L Allison
- Neurosciences Institute at Intermountain Medical Center, Murray, UT, USA
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
- Charles F. and Joanna Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Čepukaitytė G, Newton C, Chan D. Early detection of diseases causing dementia using digital navigation and gait measures: A systematic review of evidence. Alzheimers Dement 2024; 20:3054-3073. [PMID: 38425234 PMCID: PMC11032572 DOI: 10.1002/alz.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Wearable digital technologies capable of measuring everyday behaviors could improve the early detection of dementia-causing diseases. We conducted two systematic reviews following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to establish the evidence base for measuring navigation and gait, two everyday behaviors affected early in AD and non-AD disorders and not adequately measured in current practice. PubMed and Web of Science databases were searched for studies on asymptomatic and early-stage symptomatic individuals at risk of dementia, with the Newcastle-Ottawa Scale used to assess bias and evaluate methodological quality. Of 316 navigation and 2086 gait records identified, 27 and 83, respectively, were included in the final sample. We highlight several measures that may identify at-risk individuals, whose quantifiability with different devices mitigates the risk of future technological obsolescence. Beyond navigation and gait, this review also provides the framework for evaluating the evidence base for future digital measures of behaviors considered for early disease detection.
Collapse
|
11
|
Levine TF, Allison SL, Dessenberger SJ, Head D. Clinical utility of self- and informant-reported memory, attention, and spatial navigation in detecting biomarkers associated with Alzheimer disease in clinically normal adults. J Int Neuropsychol Soc 2024; 30:232-243. [PMID: 37642015 DOI: 10.1017/s1355617723000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
OBJECTIVE Preclinical Alzheimer disease (AD) has been associated with subtle changes in memory, attention, and spatial navigation abilities. The current study examined whether self- and informant-reported domain-specific cognitive changes are sensitive to AD-associated biomarkers. METHOD Clinically normal adults aged 56-93 and their informants completed the memory, divided attention, and visuospatial abilities (which assesses spatial navigation) subsections of the Everyday Cognition Scale (ECog). Reliability and validity of these subsections were examined using Cronbach's alpha and confirmatory factor analysis. Logistic regression was used to examine the ability of ECog subsections to predict AD-related biomarkers (cerebrospinal fluid (CSF) ptau181/Aβ42 ratio (N = 371) or hippocampal volume (N = 313)). Hierarchical logistic regression was used to examine whether the self-reported subsections continued to predict biomarkers when controlling for depressive symptomatology if available (N = 197). Additionally, logistic regression was used to examine the ability of neuropsychological composites assessing the same or similar cognitive domains as the subsections (memory, executive function, and visuospatial abilities) to predict biomarkers to allow for comparison of the predictive ability of subjective and objective measures. RESULTS All subsections demonstrated appropriate reliability and validity. Self-reported memory (with outliers removed) was the only significant predictor of AD biomarker positivity (i.e., CSF ptau181/Aβ42 ratio; p = .018) but was not significant when examined in the subsample with depressive symptomatology available (p = .517). Self-reported memory (with outliers removed) was a significant predictor of CSF ptau181/Aβ42 ratio biomarker positivity when the objective memory composite was included in the model. CONCLUSIONS ECog subsections were not robust predictors of AD biomarker positivity.
Collapse
Affiliation(s)
- Taylor F Levine
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Samantha L Allison
- Neurosciences Institute at Intermountain Medical Center, Murray, UT, USA
| | - Steven J Dessenberger
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO, USA
- Charles F. and Joanna Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Gerb J, Brandt T, Dieterich M. A clinical 3D pointing test differentiates spatial memory deficits in dementia and bilateral vestibular failure. BMC Neurol 2024; 24:75. [PMID: 38395847 PMCID: PMC10885646 DOI: 10.1186/s12883-024-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Deficits in spatial memory, orientation, and navigation are often neglected early signs of cognitive impairment or loss of vestibular function. Real-world navigation tests require complex setups. In contrast, simple pointing at targets in a three-dimensional environment is a basic sensorimotor ability which provides an alternative measure of spatial orientation and memory at bedside. The aim of this study was to test the reliability of a previously established 3D-Real-World Pointing Test (3D-RWPT) in patients with cognitive impairment due to different neurodegenerative disorders, bilateral vestibulopathy, or a combination of both compared to healthy participants. METHODS The 3D-RWPT was performed using a static array of targets in front of the seated participant before and, as a transformation task, after a 90-degree body rotation around the yaw-axis. Three groups of patients were enrolled: (1) chronic bilateral vestibulopathy (BVP) with normal cognition (n = 32), (2) cognitive impairment with normal vestibular function (n = 28), and (3) combined BVP and cognitive impairment (n = 9). The control group consisted of age-matched participants (HP) without cognitive and vestibular deficits (n = 67). Analyses focused on paradigm-specific mean angular deviation of pointing in the azimuth (horizontal) and polar (vertical) spatial planes, of the preferred pointing strategy (egocentric or allocentric), and the resulting shape configuration of the pointing array relative to the stimulus array. Statistical analysis was performed using age-corrected ANCOVA-testing with Bonferroni correction and correlation analysis using Spearman's rho. RESULTS Patients with cognitive impairment employed more egocentric pointing strategies while patients with BVP but normal cognition and HP used more world-based solutions (pBonf 5.78 × 10-3**). Differences in pointing accuracy were only found in the azimuth plane, unveiling unique patterns where patients with cognitive impairment showed decreased accuracy in the transformation tasks of the 3D-RWPT (pBonf < 0.001***) while patients with BVP struggled in the post-rotation tasks (pBonf < 0.001***). Overall azimuth pointing performance was still adequate in some patients with BVP but significantly decreased when combined with a cognitive deficit. CONCLUSION The 3D-RWPT provides a simple and fast measure of spatial orientation and memory. Cognitive impairment often led to a shift from world-based allocentric pointing strategy to an egocentric performance with less azimuth accuracy compared to age-matched controls. This supports the view that cognitive deficits hinder the mental buildup of the stimulus pattern represented as a geometrical form. Vestibular hypofunction negatively affected spatial memory and pointing performance in the azimuth plane. The most severe spatial impairments (angular deviation, figure frame configuration) were found in patients with combined cognitive and vestibular deficits.
Collapse
Affiliation(s)
- J Gerb
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany.
| | - T Brandt
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - M Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Graduate School of Systemic Neuroscience, Ludwig-Maximilians-University, Munich, Germany
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
13
|
Tian Y, Kuruvilla MV, Park M. The use of virtual reality in screening for preclinical Alzheimer's disease: A scoping review protocol. PLoS One 2023; 18:e0282436. [PMID: 36848392 PMCID: PMC9970083 DOI: 10.1371/journal.pone.0282436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
INTRODUCTION Preclinical Alzheimer's disease (AD) represents the earliest phase of AD, often years before the onset of mild cognitive impairment (MCI). There is a pressing focus on identifying individuals in the preclinical AD phase to alter the trajectory or impact of the disease potentially. Increasingly, Virtual Reality (VR) technology is being used to support a diagnosis of AD. While VR technology has been applied to the assessment of MCI and AD, studies about how best to utilize VR as a screening tool for preclinical AD are limited and discordant. The objectives of this review are to synthesize the evidence pertaining to the use of VR as a screening tool for preclinical AD as well as to identify factors that need to be considered when utilizing VR to screen for preclinical AD. METHODS AND ANALYSIS The methodological framework proposed by Arksey and O'Malley (2005) will be introduced to guide the conduction of the scoping review, and Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) (2018) will be used to organize and structure the review. PubMed, Web of Science, Scopus, ScienceDirect and Google Scholar will be used to search for literature. Obtained studies will be screened for eligibility based on predefined exclusion criteria. A narrative synthesis of eligible studies will be performed, after tabulating the extracted data from existing literature, to answer the research questions. ETHICS AND DISSEMINATION Ethical approval is not required for this scoping review. Findings will be disseminated through conference presentations, publication in a peer-reviewed journal, and discussions among professional networks in the research domain combining neuroscience and information and communications technology (ICT). REGISTRATION DETAILS This protocol has been registered on Open Science Framework (OSF). Relevant materials and potential following updates are available at https://osf.io/aqmyu.
Collapse
Affiliation(s)
- Yuan Tian
- School of Information and Communication Technology, University of Tasmania, Hobart, Tasmania, Australia
| | - Maneesh V. Kuruvilla
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Mira Park
- School of Information and Communication Technology, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
14
|
Ibnidris A, Robinson JN, Stubbs M, Piumatti G, Govia I, Albanese E. Evaluating measurement properties of subjective cognitive decline self-reported outcome measures: a systematic review. Syst Rev 2022; 11:144. [PMID: 35850915 PMCID: PMC9290248 DOI: 10.1186/s13643-022-02018-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Subjective cognitive decline (SCD) is present in the early stage of preclinical Alzheimer's disease (AD) and is associated with an increased risk of further cognitive decline and AD dementia later in life. Early detection of at-risk groups with subjective complaints is critical for targeted dementia prevention at the earliest. Accurate assessment of SCD is crucial. However, current measures lack important psychometric evaluations and or reporting. OBJECTIVES To systematically evaluate measurement properties of self-reported outcome measures (PROMs) used to assess SCD in the older adult population with or at risk of AD. METHODS AND ANALYSIS We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols 2015 Checklist for reporting. We conducted a literature search, screened, and included validation studies of SCD based on self-reported questionnaires from both population-based and clinical studies, conducted in older adults (≥ 55). We critically appraised the included primary studies using the Consensus-based Standards for the selection of health Measurement Instruments (COSMIN) guidelines. RESULTS Sixteen studies met the inclusion criteria. The included studies reported psychometric properties of 17 SCD self-reported questionnaires. We extracted data on the structural validity, internal consistency, test-retest reliability, and cross-cultural validity and found a widespread proneness to bias across studies, and a marked heterogeneity is assessed and reported measurement properties that prevented the consolidation of results. CONCLUSION Our findings suggest that available SCD questionnaires lack content validity evaluation. Currently available measurements of SCD lack development and validation standards. Further work is needed to develop and validate SCD self-reported measurement with good quality measurement properties.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland. .,Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa.
| | - Janelle N Robinson
- Epidemiology Research Unit, Caribbean Institute for Health Research, The University of the West Indies, Mona Campus, Kingston, Jamaica
| | - Marissa Stubbs
- Epidemiology Research Unit, Caribbean Institute for Health Research, The University of the West Indies, Mona Campus, Kingston, Jamaica
| | | | - Ishtar Govia
- Epidemiology Research Unit, Caribbean Institute for Health Research, The University of the West Indies, Mona Campus, Kingston, Jamaica
| | - Emiliano Albanese
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
| |
Collapse
|
15
|
Laczó M, Martinkovic L, Lerch O, Wiener JM, Kalinova J, Matuskova V, Nedelska Z, Vyhnalek M, Hort J, Laczó J. Different Profiles of Spatial Navigation Deficits In Alzheimer’s Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front Aging Neurosci 2022; 14:886778. [PMID: 35721017 PMCID: PMC9201637 DOI: 10.3389/fnagi.2022.886778] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
BackgroundSpatial navigation impairment is a promising cognitive marker of Alzheimer’s disease (AD) that can reflect the underlying pathology.ObjectivesWe assessed spatial navigation performance in AD biomarker positive older adults with amnestic mild cognitive impairment (AD aMCI) vs. those AD biomarker negative (non-AD aMCI), and examined associations between navigation performance, MRI measures of brain atrophy, and cerebrospinal fluid (CSF) biomarkers.MethodsA total of 122 participants with AD aMCI (n = 33), non-AD aMCI (n = 31), mild AD dementia (n = 28), and 30 cognitively normal older adults (CN) underwent cognitive assessment, brain MRI (n = 100 had high-quality images for volumetric analysis) and three virtual navigation tasks focused on route learning (body-centered navigation), wayfinding (world-centered navigation) and perspective taking/wayfinding. Cognitively impaired participants underwent CSF biomarker assessment [amyloid-β1–42, total tau, and phosphorylated tau181 (p-tau181)] and amyloid PET imaging (n = 47 and n = 45, respectively), with a subset having both (n = 19).ResultsIn route learning, AD aMCI performed worse than non-AD aMCI (p < 0.001), who performed similarly to CN. In wayfinding, aMCI participants performed worse than CN (both p ≤ 0.009) and AD aMCI performed worse than non-AD aMCI in the second task session (p = 0.032). In perspective taking/wayfinding, aMCI participants performed worse than CN (both p ≤ 0.001). AD aMCI and non-AD aMCI did not differ in conventional cognitive tests. Route learning was associated with parietal thickness and amyloid-β1–42, wayfinding was associated with posterior medial temporal lobe (MTL) volume and p-tau181 and perspective taking/wayfinding was correlated with MRI measures of several brain regions and all CSF biomarkers.ConclusionAD biomarker positive and negative older adults with aMCI had different profiles of spatial navigation deficits that were associated with posterior MTL and parietal atrophy and reflected AD pathology.
Collapse
Affiliation(s)
- Martina Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Lukas Martinkovic
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Jan M. Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, United Kingdom
| | - Jana Kalinova
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Veronika Matuskova
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czechia
- *Correspondence: Jan Laczó
| |
Collapse
|
16
|
Two Immersive Virtual Reality Tasks for the Assessment of Spatial Orientation in Older Adults with and Without Cognitive Impairment: Concurrent Validity, Group Comparison, and Accuracy Results. J Int Neuropsychol Soc 2022; 28:460-472. [PMID: 34080532 DOI: 10.1017/s1355617721000655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Spatial disorientation is common in Alzheimer's disease (AD), Mild Cognitive Impairment (MCI), and preclinical individuals with AD biomarkers. However, traditional neuropsychological tests lack ecological validity for the assessment of spatial orientation and to date, there is still no gold standard. The current study aimed to determine the validity and accuracy of two virtual reality tasks for the assessment of spatial orientation. METHODS We adapted two spatial orientation tasks to immersive virtual environments: a "survey to route" task in which participants had to transfer information from a map to their body position within a maze [Spatial Orientation in Immersive Virtual Environment Test (SOIVET) Maze], and an allocentric-type, route learning task, with well-established topographic landmarks (SOIVET Route). A total of 19 MCI patients and 29 cognitively healthy older adults aged 61-92 participated in this study. Regular neuropsychological assessments were used for correlation analysis and participant performances were compared between groups. Receiver Operating Characteristic (ROC) curve analysis was performed for accuracy. RESULTS The SOIVET Maze correlated with measures of visuoperception, mental rotation, and planning, and was not related to age, educational level, or technology use profile. The SOIVET Route immediate correlated with measures of mental rotation, memory, and visuoconstruction, and was influenced only by education. Both tasks significantly differentiated MCI and control groups, and demonstrated moderate accuracy for the MCI diagnosis. CONCLUSION Traditional neuropsychological assessment presents limitations and immersive environments allow for the reproduction of complex cognitive processes. The two immersive virtual reality tasks are valid tools for the assessment of spatial orientation and should be considered for cognitive assessments of older adults.
Collapse
|
17
|
Levine TF, Roe CM, Babulal GM, Fagan AM, Head D. Limited Longitudinal Change in Self-reported Spatial Navigation Ability in Preclinical Alzheimer Disease. Alzheimer Dis Assoc Disord 2022; 36:15-21. [PMID: 34966024 PMCID: PMC8881346 DOI: 10.1097/wad.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 01/03/2023]
Abstract
Subtle changes in objective spatial navigation ability have been observed in the preclinical stage of Alzheimer disease (AD) cross-sectionally and have been found to predict clinical progression. However, longitudinal change in self-reported spatial navigation ability in preclinical AD has yet to be examined. The current study examined whether AD biomarkers suggestive of preclinical AD at baseline spatial navigation assessment and APOE genotype predicted decline in self-reported spatial navigation ability and whether APOE genotype moderated the association of AD biomarkers with change in self-reported spatial navigation. Clinically normal (Clinical Dementia Rating Scale=0) adults aged 56 to 90 completed the Santa Barbara Sense of Direction Scale (SBSOD) annually for an average of 2.73 years. Biomarker data was collected within +/-2 years of baseline (ie, cerebrospinal fluid Aβ42, p-tau181, p-tau181/Aβ42 ratio, positron emission tomography imaging with Florbetapir or Pittsburgh Compound-B, and hippocampal volume). APOE genotyping was obtained for all participants. SBSOD demonstrated a nonsignificant trend toward a decline over time (P=0.082). AD biomarkers did not predict change in self-reported spatial navigation (all Ps>0.163). APOE genotype did not moderate the relationship between AD biomarkers and self-reported spatial navigation in planned analyses (all Ps>0.222). Results suggest that self-reported spatial navigation ability, as estimated with the SBSOD, may be limited as a measure of subtle cognitive change in the preclinical stage of AD.
Collapse
Affiliation(s)
- Taylor F. Levine
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO
| | - Catherine M. Roe
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ganesh M. Babulal
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Department of Psychology, Faculty of Humanities, University of Johannesburg, South Africa
| | - Anne M. Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University, St. Louis, MO
- Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
18
|
Sodoma MJ, Cole RC, Sloan TJ, Hamilton CM, Kent JD, Magnotta VA, Voss MW. Hippocampal acidity and volume are differentially associated with spatial navigation in older adults. Neuroimage 2021; 245:118682. [PMID: 34728245 PMCID: PMC8867536 DOI: 10.1016/j.neuroimage.2021.118682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The hippocampus is negatively affected by aging and is critical for spatial navigation. While there is evidence that wayfinding navigation tasks are especially sensitive to preclinical hippocampal deterioration, these studies have primarily used volumetric hippocampal imaging without considering microstructural properties or anatomical variation within the hippocampus. T1ρ is an MRI measure sensitive to regional pH, with longer relaxation rates reflecting acidosis as a marker of metabolic dysfunction and neuropathological burden. For the first time, we investigate how measures of wayfinding including landmark location learning and delayed memory in cognitively normal older adults (N = 84) relate to both hippocampal volume and T1ρ in the anterior and posterior hippocampus. Regression analyses revealed hippocampal volume was bilaterally related to learning, while right lateralized T1ρ was related to delayed landmark location memory and bilateral T1ρ was related to the delayed use of a cognitive map. Overall, results suggest hippocampal volume and T1ρ relaxation rate tap into distinct mechanisms involved in preclinical cognitive decline as assessed by wayfinding navigation, and laterality influenced these relationships more than the anterior-posterior longitudinal axis of the hippocampus.
Collapse
Affiliation(s)
- Matthew J Sodoma
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| | - Rachel C Cole
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Taylor J Sloan
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Chase M Hamilton
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - James D Kent
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Department of Psychology, University of Texas at Austin, Austin, TX, 78712 USA
| | - Vincent A Magnotta
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA; Department of Radiology, University of Iowa, Iowa City, IA 52242, UCA; Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA; Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Zhào H, Chi L, Zhang Y, Huang Y, Tian H. Spatial Navigation Is Impaired in Elderly Patients With Cerebral Small Vessel Disease. Front Neurol 2021; 12:608797. [PMID: 34566827 PMCID: PMC8455869 DOI: 10.3389/fneur.2021.608797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (SVD) refers to a heterogeneous group of pathological processes that result from damage to the small penetrating vessels in the brain. Spatial navigation, one of the most fundamental behaviors, has lately attracted considerable clinical interest. This study aimed to determine whether spatial navigation performance is impaired in elderly SVD patients. In total, 18 elderly patients with severe SVD, 40 elderly patients with non-severe SVD, and 41 age-matched healthy volunteers were classified according to the Fazekas scale. Spatial navigation was evaluated by Amunet (a computer-based analogy of Morris water maze software), and a mini-mental scale evaluation (MMSE), animal category verbal fluency test (VFT), clock drawing test (CDT), and trail making test (TMT) -B were also applied. Compared to healthy controls, severe SVD, rather than non-severe SVD patients, exhibited significantly worse performance on “allocentric + egocentric” (41.74 ± 29.10 vs. 31.50 ± 16.47 vs. 29.21 ± 19.03; p = 0.031). Furthermore, the different abilities of spatial navigation among groups reached a statistical level on allocentric subtests (46.93 ± 31.27 vs. 43.69 ± 23.95 vs. 28.56 ± 16.38; p = 0.003), but not on egocentric subtest (56.16 ± 39.85 vs. 56.00 ± 28.81 vs. 43.06 ± 25.07; p = 0.105). The linear regression analysis revealed that allocentric navigation deficit was significantly correlated with TMT-B (p = 0.000, standardized β = 0.342) and VFT (p = 0.016, standardized β = −0.873) performance in elderly SVD patients. These results elucidated that spatial navigation ability could be a manifestation of cognitive deficits in elderly patients with SVD.
Collapse
Affiliation(s)
- Hóngyi Zhào
- Department of Neurology, Chinese PLA General Hospital, Beijing, China.,Department of Neurology, NO 984 Hospital of PLA, Beijing, China
| | - Liyi Chi
- Department of Neurology, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yanhai Zhang
- Department of Geriatrics, First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Yonghua Huang
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Hongyan Tian
- Department of Cardiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
20
|
Gollan TH, Smirnov DS, Salmon DP, Galasko D. Failure to stop autocorrect errors in reading aloud increases in aging especially with a positive biomarker for Alzheimer's disease. Psychol Aging 2020; 35:1016-1025. [PMID: 32584071 PMCID: PMC8357184 DOI: 10.1037/pag0000550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study examined the effects of aging and CSF biomarkers of Alzheimer's disease (AD) on the ability to control production of unexpected words in connected speech elicited by reading aloud. Fifty-two cognitively healthy participants aged 66-86 read aloud 6 paragraphs with 10 malapropisms including 5 on content words (e.g., "window cartons" that elicited autocorrect errors to "window curtains") and 5 on function words (e.g., "thus concept" that elicited autocorrections to "this concept") and completed a battery of neuropsychological tests including a standardized Stroop task. Reading aloud elicited more autocorrect errors on function than content words, but these were equally correlated with age and Aβ1-42 levels. The ability to stop autocorrect errors declined in aging and with lower (more AD-like) levels of Aβ1-42, and multiplicatively so, such that autocorrect errors were highest in the oldest-old with the lowest Aβ1-42 levels. Critically, aging effects were significant even when controlling statistically for Aβ1-42. Finally, both autocorrect and Stroop errors were correlated with Aβ1-42, but only autocorrect errors captured unique variance in predicting Aβ1-42 levels. Reading aloud requires simultaneous planning and monitoring of upcoming speech. These results suggest that healthy aging leads to decline in the ability to intermittently monitor for and detect conflict during speech planning and that subtle cognitive changes in preclinical AD magnify this aging deficit. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Tamar H. Gollan
- Department of Psychiatry, University of California, San Diego
| | - Denis S. Smirnov
- Department of Neurosciences, University of California, San Diego
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego
| |
Collapse
|
21
|
Coughlan G, Puthusseryppady V, Lowry E, Gillings R, Spiers H, Minihane AM, Hornberger M. Test-retest reliability of spatial navigation in adults at-risk of Alzheimer's disease. PLoS One 2020; 15:e0239077. [PMID: 32960930 PMCID: PMC7508365 DOI: 10.1371/journal.pone.0239077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
The Virtual Supermarket Task (VST) and Sea Hero Quest detect high-genetic-risk Alzheimer`s disease (AD). We aimed to determine their test-retest reliability in a preclinical AD population. Over two time points, separated by an 18-month period, 59 cognitively healthy individuals underwent a neuropsychological and spatial navigation assessment. At baseline, participants were classified as low-genetic-risk of AD or high-genetic-risk of AD. We calculated two-way mixed effects intraclass correlation coefficients (ICC) for task parameters and used repeated measures ANOVAS to determine whether genetic risk or sex contributed to test-retest variability. The egocentric parameter of the VST measure showed the highest test-retest reliability (ICC = .72), followed by the SHQ distance travelled parameter (ICC = .50). Post hoc longitudinal analysis showed that boundary-based navigation predicts worsening episodic memory concerns in high-risk (F = 5.01, P = 0.03), but in not low-risk, AD candidates. The VST and the Sea Hero Quest produced parameters with acceptable test-retest reliability. Further research in larger sample sizes is desirable.
Collapse
Affiliation(s)
- Gillian Coughlan
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Ellen Lowry
- Department of Psychology, University of East Anglia, Norwich, United Kingdom
| | - Rachel Gillings
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Hugo Spiers
- Department of Experimental Psychology, Institute of Behavioural Neuroscience, University College London, London, United Kingdom
| | | | - Michael Hornberger
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
22
|
Levine TF, Allison SL, Stojanovic M, Fagan AM, Morris JC, Head D. Spatial navigation ability predicts progression of dementia symptomatology. Alzheimers Dement 2020; 16:491-500. [PMID: 32043719 DOI: 10.1002/alz.12031] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/22/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Spatial navigation deficits are observed in Alzheimer's disease cross-sectionally, but prediction of longitudinal clinical decline has been less examined. METHODS Cognitive mapping (CM) was assessed in 95 participants and route learning (RL) was assessed in 65 participants at baseline. Clinical progression over an average of 4 to 5 years was assessed using the clinical dementia rating (CDR) scale. Relative predictive ability was compared to episodic memory, hippocampus, and cerebrospinal fluid biomarkers (phosphorylated tau/amyloid β 42 (ptau181 /Aβ42 ) ratio). RESULTS CM and RL were predictors of clinical progression (P's < 0.032). All measures, except RL-Learning remained predictors with episodic memory in models (P's < 0.048). Only RL-Retrieval remained a predictor when ptau181 /Aβ42 was included (P < 0.001). CM interacted with hippocampus and ptau181 /Aβ42 in prediction (P's < 0.013). CM, RL, and episodic memory evidenced strong diagnostic accuracy (area under the curve (AUC) = 0.894, 0.794, and 0.735, respectively); CM tended to perform better than episodic memory (P = 0.056). DISCUSSION Baseline spatial navigation performance may be appropriate for assessing risk of clinical progression.
Collapse
Affiliation(s)
- Taylor F Levine
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Samantha L Allison
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Marta Stojanovic
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri
| | - Anne M Fagan
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, Missouri.,Neurology Department, Washington University in St. Louis, St. Louis, Missouri
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Neurology Department, Washington University in St. Louis, St. Louis, Missouri
| | - Denise Head
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, Missouri.,Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, Missouri.,Radiology Department, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|