1
|
Starska-Kowarska K. Role of Mesenchymal Stem/Stromal Cells in Head and Neck Cancer-Regulatory Mechanisms of Tumorigenic and Immune Activity, Chemotherapy Resistance, and Therapeutic Benefits of Stromal Cell-Based Pharmacological Strategies. Cells 2024; 13:1270. [PMID: 39120301 PMCID: PMC11311692 DOI: 10.3390/cells13151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-42-2725237
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
2
|
Hamel KM, Frazier TP, Williams C, Duplessis T, Rowan BG, Gimble JM, Sanchez CG. Adipose Tissue in Breast Cancer Microphysiological Models to Capture Human Diversity in Preclinical Models. Int J Mol Sci 2024; 25:2728. [PMID: 38473978 PMCID: PMC10931959 DOI: 10.3390/ijms25052728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Female breast cancer accounts for 15.2% of all new cancer cases in the United States, with a continuing increase in incidence despite efforts to discover new targeted therapies. With an approximate failure rate of 85% for therapies in the early phases of clinical trials, there is a need for more translatable, new preclinical in vitro models that include cellular heterogeneity, extracellular matrix, and human-derived biomaterials. Specifically, adipose tissue and its resident cell populations have been identified as necessary attributes for current preclinical models. Adipose-derived stromal/stem cells (ASCs) and mature adipocytes are a normal part of the breast tissue composition and not only contribute to normal breast physiology but also play a significant role in breast cancer pathophysiology. Given the recognized pro-tumorigenic role of adipocytes in tumor progression, there remains a need to enhance the complexity of current models and account for the contribution of the components that exist within the adipose stromal environment to breast tumorigenesis. This review article captures the current landscape of preclinical breast cancer models with a focus on breast cancer microphysiological system (MPS) models and their counterpart patient-derived xenograft (PDX) models to capture patient diversity as they relate to adipose tissue.
Collapse
Affiliation(s)
- Katie M. Hamel
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Trivia P. Frazier
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Christopher Williams
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA;
| | | | - Brian G. Rowan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Jeffrey M. Gimble
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| | - Cecilia G. Sanchez
- Obatala Sciences, Inc., New Orleans, LA 70148, USA; (K.M.H.); (T.P.F.); (J.M.G.)
| |
Collapse
|
3
|
Wang Y, Hou L, Wang M, Xiang F, Zhao X, Qian M. Autologous Fat Grafting for Functional and Aesthetic Improvement in Patients with Head and Neck Cancer: A Systematic Review. Aesthetic Plast Surg 2023; 47:2800-2812. [PMID: 37605032 DOI: 10.1007/s00266-023-03331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 08/23/2023]
Abstract
INTRODUCTION The efficacy and safety of autologous fat grafting for use in oncology patients are controversial. Patients with head and neck cancer have complex anatomy and require reconstructive repair of the head and neck after comprehensive treatment. The limited additional aesthetic and functional studies on the use of autologous fat fillers in patients with head and neck cancer are unclear. This study systematically evaluates the additional function of autologous fat fillers in the head and neck and systematically reviews issues related to autologous fat grafting after comprehensive head and neck cancer treatment, including current indications, techniques, potential complications, graft survival, and patient satisfaction. METHODS A systematic literature review was performed using PubMed, The Cochrane Library, EMBASE, and Web of Science (last accessed on January 9, 2023). RESULTS A total of 249 cases of autologous fat fillers in patients with head and neck cancer were reported in 10 clinical publications. Observations were based mainly on subjective physician and patient evaluation indicators, and all studies reported the beneficial effects of autologous fat fillers on aesthetics and function after treatment for head and neck cancer. CONCLUSIONS Autologous fat fillers are effective in improving the aesthetics and function of head and neck cancer, and due to the limitations of the original study, future studies with large samples are needed to support this. PROSPERO registration number is CRD42020222870. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Yu Wang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lili Hou
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Mingyi Wang
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Fuping Xiang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Nursing Department, Affiliated Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaomei Zhao
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Meizhen Qian
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
4
|
Felicio-Briegel A, Sharaf K, Haubner F, Echternach M. Primary injection laryngoplasty after chordectomy for small glottic carcinomas. Eur Arch Otorhinolaryngol 2023; 280:1291-1299. [PMID: 36197582 PMCID: PMC9899722 DOI: 10.1007/s00405-022-07663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The purpose of this study was to analyze the short- and middle-term effects of primary injection laryngoplasty in patients having tumor resection within the same surgery concerning the vocal outcome. Injection laryngoplasty was performed after harvesting autologous adipose tissue via lipoaspiration. METHODS A prospective study was performed with 16 patients (2 female; 14 male) who received tumor resection and an injection laryngoplasty using autologous adipose tissue during a single stage procedure. Multidimensional voice evaluation including videostroboscopy, patient self-assessment, voice perception, aerodynamics, and acoustic parameters was performed preoperatively, as well as 1.5, 3 and 6 months postoperatively. RESULTS Results show an improvement in the roughness-breathiness-hoarseness (RBH) scale, voice dynamics and subjective voice perception 6 months postoperatively. Maintenance of Voice Handycap Index, jitter and shimmer could be observed 6 months postoperatively. There was no deterioration in RBH and subjective voice perception 2 and 6 weeks postoperatively. No complications occurred in the fat harvesting site. CONCLUSIONS Using the lipoaspiration and centrifugation approach, primary fat injection laryngoplasty shows short-term maintenance und middle-term improvement in voice quality in patients with vocal fold defect immediately after chordectomy 6 months postoperatively. Cancer recurrence rate is comparable to the reported cancer recurrence rate for laryngeal carcinoma and thus not elevated through primary augmentation.
Collapse
Affiliation(s)
- Axelle Felicio-Briegel
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Kariem Sharaf
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Matthias Echternach
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
5
|
Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture. Int J Mol Sci 2023; 24:ijms24021293. [PMID: 36674806 PMCID: PMC9861345 DOI: 10.3390/ijms24021293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.
Collapse
|
6
|
Burnham AJ, Wicks J, Baugnon KL, El‐Deiry MW, Schmitt NC. Free Flap Fat Volume is Not Associated With Recurrence or Wound Complications in Oral Cancer. OTO Open 2023; 7:e46. [PMID: 36998554 PMCID: PMC10046715 DOI: 10.1002/oto2.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Objective Adipose stem cells (ASCs) have been shown in many preclinical studies to be potent suppressors of the immune system. Prior studies suggest that ASCs may promote cancer progression and wound healing. However, clinical studies investigating the effects of native, or fat-grafted adipose tissue on cancer recurrence have generated mixed results. We investigated whether adipose content in reconstructive free flaps for oral squamous cell carcinoma (OSCC) is associated with disease recurrence and/or reduction in wound complications. Study Design Retrospective chart review. Setting Academic medical center. Methods We performed a review of 55 patients undergoing free flap reconstruction for OSCC over a 14-month period. Using texture analysis software, we measured the relative free flap fat volume (FFFV) in postoperative computed tomography scans and compared fat volume with patient survival, recurrence, and wound healing complications. Results We report no difference in mean FFFV between patients with or without recurrence: 13.47 cm3 in cancer-free survivors and 17.99 cm3 in cases that recurred (p = .56). Two-year recurrence-free survival in patients with high and low FFFV was 61.0% and 59.1%, respectively (p = .917). Although only 9 patients had wound healing complications, we found no trend in the incidence of wound healing complications between patients with high versus low FFFV. Conclusion FFFV is not associated with recurrence or wound healing in patients undergoing free flap reconstruction for OSCC, suggesting adipose content should not be of concern to the reconstructive surgeon.
Collapse
Affiliation(s)
- Andre J. Burnham
- Department of Otolaryngology–Head and Neck SurgeryEmory University School of MedicineAtlantaGeorgiaUSA
| | - Jaime Wicks
- Department of RadiologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Kristen L. Baugnon
- Department of RadiologyEmory University School of MedicineAtlantaGeorgiaUSA
- Head and Neck ProgramWinship Cancer Institute at Emory UniversityGeorgiaAtlantaUSA
| | - Mark W. El‐Deiry
- Head and Neck ProgramWinship Cancer Institute at Emory UniversityGeorgiaAtlantaUSA
| | - Nicole C. Schmitt
- Head and Neck ProgramWinship Cancer Institute at Emory UniversityGeorgiaAtlantaUSA
| |
Collapse
|
7
|
Ettl T, Grube M, Schulz D, Bauer RJ. Checkpoint Inhibitors in Cancer Therapy: Clinical Benefits for Head and Neck Cancers. Cancers (Basel) 2022; 14:4985. [PMID: 36291769 PMCID: PMC9599671 DOI: 10.3390/cancers14204985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, considerable progress has been achieved in cancer immunotherapy. Targeted immune checkpoint therapies have been established for several forms of cancers, which resulted in a tremendous positive impact on patient survival, even in more advanced tumor stages. With a better understanding of cellular responses to immune checkpoint therapies, it will soon be feasible to find targeted compounds which will make personalized medicine practicable. This is a great opportunity, but it also sets tremendous challenges on both the scientific and clinical aspects. Head and neck tumors evade immune surveillance through various mechanisms. They contain fewer lymphocytes (natural killer cells) than normal tissue with an accumulation of immunosuppressive regulatory T cells. Standard therapies for HNSCC, such as surgery, radiation, and chemotherapy, are becoming more advantageous by targeting immune checkpoints and employing combination therapies. The purpose of this review is to provide an overview of the expanded therapeutic options, particularly the combination of immune checkpoint inhibition with various conventional and novel therapeutics for head and neck tumor patients.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Matthias Grube
- Department of Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Organ-Specific Differentiation of Human Adipose-Derived Stem Cells in Various Organs of Xenotransplanted Rats: A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081116. [PMID: 35892918 PMCID: PMC9330795 DOI: 10.3390/life12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022]
Abstract
Adipose-derived stem cells (ADSCs) are potential therapeutics considering their self-renewal capacity and ability to differentiate into all somatic cell types in vitro. The ideal ADSC-based therapy is a direct injection into the relevant organs. The objective of this study was to investigate the viability and safety of intra-organ human ADSC (h-ADSC) xenotransplants in vivo. Subcutaneous adipose tissue from the abdominal area of 10 patients was sampled. h-ADSCs were isolated from adipose tissue samples and identified using immunofluorescence antibodies. Multi-differentiation potential assays for adipocytes, osteocytes, and chondrocytes were performed. Cultured h-ADSCs at passage 4 were transplanted into multiple organs of 17 rats, including the skin, subcutaneous layer, liver, kidney, pancreas, and spleen. The h-ADSC-injected organs excised after 100 days were examined, and the survival of h-ADSCs was measured by quantitative real-time polymerase chain reaction (qRT-PCR) using specific human and rat target genes. h-ADSCs confirmed by stem cell phenotyping were induced to differentiate into adipogenic, osteogenic, and chondrogenic lineages in vitro. All rats were healthy and exhibited no side effects during the study; the transplanted h-ADSCs did not cause inflammation and were indiscernible from the native organ cells. The presence of transplanted h-ADSCs was confirmed using qRT-PCR. However, the engrafted survival rates varied as follows: subcutaneous fat (70.6%), followed by the liver (52.9%), pancreas (50.0%), kidney (29.4%), skin (29.4%), and spleen (12.5%). h-ADSCs were successfully transplanted into a rat model, with different survival rates depending on the organ.
Collapse
|
9
|
Human Mesenchymal Stromal Cells Do Not Cause Radioprotection of Head-and-Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23147689. [PMID: 35887032 PMCID: PMC9323822 DOI: 10.3390/ijms23147689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Radiotherapy of head-and-neck squamous cell carcinoma (HNSCC) can cause considerable normal tissue injuries, and mesenchymal stromal cells (MSCs) have been shown to aid regeneration of irradiation-damaged normal tissues. However, utilization of MSC-based treatments for HNSCC patients undergoing radiotherapy is hampered by concerns regarding potential radioprotective effects. We therefore investigated the influence of MSCs on the radiosensitivity of HNSCCs. Several human papillomavirus (HPV)-negative and HPV-positive HNSCCs were co-cultured with human bone marrow-derived MSCs using two-dimensional and three-dimensional assays. Clonogenic survival, proliferation, and viability of HNSCCs after radiotherapy were assessed depending on MSC co-culture. Flow cytometry analyses were conducted to examine the influence of MSCs on irradiation-induced cell cycle distribution and apoptosis induction in HNSCCs. Immunofluorescence stainings of γH2AX were conducted to determine the levels of residual irradiation-induced DNA double-strand breaks. Levels of connective tissue growth factor (CTGF), a multifunctional pro-tumorigenic cytokine, were analyzed using enzyme-linked immunosorbent assays. Neither direct MSC co-culture nor MSC-conditioned medium exerted radioprotective effects on HNSCCs as determined by clonogenic survival, proliferation, and viability assays. Consistently, three-dimensional microwell arrays revealed no radioprotective effects of MSCs. Irradiation resulted in a G2/M arrest of HNSCCs at 96 h independently of MSC co-culture. HNSCCs’ apoptosis rates were increased by irradiation irrespective of MSCs. Numbers of residual γH2AX foci after irradiation with 2 or 8 Gy were comparable between mono- and co-cultures. MSC mono-cultures and HNSCC-MSC co-cultures exhibited comparable CTGF levels. We did not detect radioprotective effects of human MSCs on HNSCCs. Our results suggest that the usage of MSC-based therapies for radiotherapy-related toxicities in HNSCC patients may be safe in the context of absent radioprotection.
Collapse
|
10
|
Liu X, Zhao G, Huo X, Wang Y, Tigyi G, Zhu BM, Yue J, Zhang W. Adipose-Derived Stem Cells Facilitate Ovarian Tumor Growth and Metastasis by Promoting Epithelial to Mesenchymal Transition Through Activating the TGF-β Pathway. Front Oncol 2022; 11:756011. [PMID: 35004276 PMCID: PMC8727693 DOI: 10.3389/fonc.2021.756011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSC) are multipotent mesenchymal stem cells derived from adipose tissues and are capable of differentiating into multiple cell types in the tumor microenvironment (TME). The roles of ADSC in ovarian cancer (OC) metastasis are still not well defined. To understand whether ADSC contributes to ovarian tumor metastasis, we examined epithelial to mesenchymal transition (EMT) markers in OC cells following the treatment of the ADSC-conditioned medium (ADSC-CM). ADSC-CM promotes EMT in OC cells. Functionally, ADSC-CM promotes OC cell proliferation, survival, migration, and invasion. We further demonstrated that ADSC-CM induced EMT via TGF-β growth factor secretion from ADSC and the ensuing activation of the TGF-β pathway. ADSC-CM-induced EMT in OC cells was reversible by the TGF-β inhibitor SB431542 treatment. Using an orthotopic OC mouse model, we also provide the experimental evidence that ADSC contributes to ovarian tumor growth and metastasis by promoting EMT through activating the TGF-β pathway. Taken together, our data indicate that targeting ADSC using the TGF-β inhibitor has the therapeutic potential in blocking the EMT and OC metastasis.
Collapse
Affiliation(s)
- Xiaowu Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yaohong Wang
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gabor Tigyi
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States.,Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenjing Zhang
- Department of Genetics, Genomics & Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
11
|
de Miranda MC, Melo MIAD, Cunha PDS, Gentilini J, Faria JAQA, Rodrigues MA, Gomes DA. Roles of mesenchymal stromal cells in the head and neck cancer microenvironment. Biomed Pharmacother 2021; 144:112269. [PMID: 34794230 PMCID: PMC8630686 DOI: 10.1016/j.biopha.2021.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/27/2021] [Indexed: 10/19/2022] Open
Abstract
Head and neck cancer (HNC), a common malignancy worldwide, is associated with high morbidity and mortality rates. Squamous cell carcinoma is the most common HNC type, followed by salivary gland carcinomas, head and neck sarcomas, and lymphomas. The microenvironment of HNCs comprises various cells that regulate tumor development. Recent studies have reported that the tumor microenvironment, which modulates cancer progression, regulates cancer treatment response. However, the presence of different types of stromal cells in cancers is a major challenge to elucidate the role of individual cells in tumor progression. The role of mesenchymal stromal cells (MSCs), which are a component of the tumor microenvironment, in HNC is unclear. The major impediment for characterizing the role of MSCs in cancer progression is the lack of MSC-specific markers and their phenotypic similarity with stromal cells. This review aimed to summarize the latest findings on the role of MSCs in the progression of HNC to improve our understanding of HNC pathophysiology.
Collapse
Affiliation(s)
- Marcelo Coutinho de Miranda
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil.
| | - Mariane Izabella Abreu de Melo
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Pricila da Silva Cunha
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Jovino Gentilini
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | | | - Michele Angela Rodrigues
- Department of General Pathology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Dawidson Assis Gomes
- Biochemistry and Immunology Department, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
12
|
Fiedler LS, Saleh DB, Mukrowsky A. Autologous fat grafting in the face and neck: Multinational trends and knowledge of the safety, applications, and indications considering oncologic risk potential. Laryngoscope Investig Otolaryngol 2021; 6:1024-1030. [PMID: 34667845 PMCID: PMC8513435 DOI: 10.1002/lio2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Autologous fat grafting (AFG) is evolving in both aesthetic and reconstructive applications, since the body of evidence for its use has expanded. The earliest controversies were evident in lipofilling for oncological breast reconstruction, and to this day, some countries do not allow it for fear of inducing tumourigenesis in an oncologically ablated field. METHODS We sought to review contemporary harvesting and processing techniques for AFG in the craniofacial region, therefore distributed a survey to evaluate the clinical impact of oncological risk across four European countries. RESULTS We found no significant geographical differences between the German-speaking and the English groups concerning their harvesting and processing technique. Half of our respondents discuss the possibility of pro-oncologic behavior of AFG. CONCLUSION AFG harvesting and processing techniques do not considerably vary by geography. Further studies should evaluate oncologic risk potential of AFG in head and neck tumor sites, especially because there is no excellent article regarding this phenomenon.Level of Evidence: V.
Collapse
Affiliation(s)
- Lukas S Fiedler
- Otorhinolaryngology and Head and Neck SurgeryKlinikum Mutterhaus der Borromäerinnen MitteTrierGermany
| | - Daniel B Saleh
- Plastic and Reconstructive Surgery, Royal Victoria InfirmaryNewcastle upon TyneUK
| | - Alicia Mukrowsky
- General and Thoracic SurgeryKlinikum Mutterhaus der Borromäerinnen MitteGermany
| |
Collapse
|
13
|
Update on the Basic Science Concepts and Applications of Adipose-Derived Stem Cells in Hand and Craniofacial Surgery. Plast Reconstr Surg 2021; 148:475e-486e. [PMID: 34432707 DOI: 10.1097/prs.0000000000008279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Adipose-derived stem cell therapy offers plastic surgeons a novel treatment alternative for conditions with few therapeutic options. Adipose-derived stem cells are a promising treatment because of their broad differentiation potential, capacity for self-renewal, and ease of isolation. Over the past decade, plastic surgeons have attempted to harness adipose-derived stem cells' unique cellular characteristics to improve the survival of traditional fat grafting procedures, a process known as cell-assisted lipotransfer. However, the full implications of cell-assisted lipotransfer in clinical practice remain incompletely understood, stressing the urgent need to assess the scientific evidence supporting adipose-derived stem cell-based interventions. Furthermore, with the strict regulatory climate surrounding tissue explantation therapies, reviewing the safety and efficacy of these treatments will clarify their regulatory viability moving forward. In this report, the authors provide a comprehensive, up-to-date appraisal of best evidence-based practices supporting adipose-derived stem cell-derived therapies, highlighting the known mechanisms behind current clinical applications in tissue engineering and regenerative medicine specific to plastic and reconstructive surgery. The authors outline best practices for the harvest and isolation of adipose-derived stem cells and discuss why procedure standardization will elucidate the scientific bases for their broad use. Finally, the authors discuss challenges posed by U.S. Food and Drug Administration oversight of these cell-based therapies and examine the role of adipose-derived stem cell-based applications in the future of plastic surgery.
Collapse
|
14
|
Human Adipose-Derived Stem/Stromal Cells Promote Proliferation and Migration in Head and Neck Cancer Cells. Cancers (Basel) 2021; 13:cancers13112751. [PMID: 34206064 PMCID: PMC8199568 DOI: 10.3390/cancers13112751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Fat grafts obtained from a minimal invasive liposuction device contain multipotent stem cells termed adipose-derived stem/stromal cells (ASCs). ASCs can be used for their proposed wound healing relevant characteristics, including for tissue defects in cancer patients. For head and neck cancers, little is known about the effects of ASCs on tumor cells. Using supernatants of ASCs from five patients in different functional experiments, this study aimed to investigate how ASCs influence tumor growth, invasive properties, and neoangiogenesis. The data show that all mentioned characteristics are promoted by fat graft stem cells in vitro in head and neck cancer cell lines. Although clinical relevance of these in vitro findings is unclear, due to the lack of in vivo and clinical data, fat grafts should be used cautiously and complete removal of tumor should be ensured before augmentation in head and neck cancer patients is performed. Abstract Human adipose-derived stem/stromal cells (ASCs) are increasingly used as auto-transplants in regenerative medicine to restore tissue defects or induce wound healing, especially in cancer patients. The impact of ASCs on squamous cell carcinoma of the upper aerodigestive tract (UAT) including head and neck and esophageal squamous cell carcinoma (HNSCC and ESCC) is not yet fully understood. ASCs were cultured from subcutaneous, abdominal lipoaspirates of five patients, who received auto-transplants to the head and neck. Supernatants were tested for paracrine effects in functional in vitro assays of proliferation of HNSCC tumor cell line FaDu and ESCC cell line Kyse30, and their cell migration/invasion capacities in Boyden chambers, in addition to endothelial tube formation assay using human umbilical vein endothelial cells (HUVECs). All ASC-derived supernatants enhanced proliferation of FaDu cells, invasive migration, and tube formation by HUVECs, compared to controls. Of five patients’ lipoaspirates, ASC-derived supernatants of four patients increased proliferation and invasive migration in Kyse30 cells. The data suggests that ASCs can promote tumor cell proliferation, invasiveness, and neo-angiogenesis in these tumor cell lines of the UAT and HUVEC in a paracrine manner. Although clinical studies on the subject of oncological safety are still needed, these findings emphasize the importance of complete tumor removal before ASCs are used in the head and neck.
Collapse
|
15
|
Flont M, Jastrzębska E, Brzózka Z. A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. Analyst 2021; 145:6937-6947. [PMID: 32851999 DOI: 10.1039/d0an00911c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cellular models of cancer tissue are necessary tools to analyze new anticancer drugs under in vitro conditions. Diagnostics and treatment of ovarian cancer are major challenges for current medicine. In our report we propose a new three-dimensional (3D) cellular model of ovarian cancer which can mimic a fragment of heterogeneous cancer tissue. We used Lab-on-a-chip technology to create a microfluidic system that allows cellular multilayer to be cultured. Cellular multilayer mimics the structure of two important elements of cancer tissue: flesh and stroma. For this reason, it has an advantage over other in vitro cellular models. We used human ovarian fibroblasts (HOF) and human ovarian cancer cells in our research (A2780). In the first stage of the study, we proved that the presence of non-malignant fibroblasts in co-culture with ovarian cancer cells stimulates the proliferation of cancer cells, which is important in the progression of ovarian cancer. In the next stage of the research, we tested the usefulness of the newly-developed cellular model in the analysis of anticancer drugs and therapies under in vitro conditions. We tested two photosensitizers (PS): free and nanoencapsulated meso-tetrafenylporphyrin, and we evaluated the potential of these drugs in anticancer photodynamic therapy (PDT) of ovarian cancer. We also studied the mechanism of PDT based on the analysis of the level of reactive oxygen species (ROS) in cell cultures. Our research confirmed that the use of new-generation PS can significantly increase the efficacy of PDT in the treatment of ovarian cancer. We also proved that the newly-developed 3D cellular model is suitable for rapid screening of anticancer drugs and has the potential to be used clinically in the future, e.g. in the selection of treatment methods for anticancer personalized medicine.
Collapse
Affiliation(s)
- Magdalena Flont
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| | | | | |
Collapse
|
16
|
LAGO G, RAPOSIO E. The role of lipotransfer in postmastectomy breast reconstruction. Chirurgia (Bucur) 2021. [DOI: 10.23736/s0394-9508.19.05010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Trivisonno A, Nachira D, Boškoski I, Porziella V, Di Rocco G, Baldari S, Toietta G. Regenerative medicine approaches for the management of respiratory tract fistulas. Stem Cell Res Ther 2020; 11:451. [PMID: 33097096 PMCID: PMC7583298 DOI: 10.1186/s13287-020-01968-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Respiratory tract fistulas (or fistulae) are abnormal communications between the respiratory system and the digestive tract or the adjacent organs. The origin can be congenital or, more frequently, iatrogenic and the clinical presentation is heterogeneous. Respiratory tract fistulas can lead to severely reduced health-related quality of life and short survival. Therapy mainly relies on endoscopic surgical interventions but patients often require prolonged hospitalization and may develop complications. Therefore, more conservative regenerative medicine approaches, mainly based on lipotransfer, have also been investigated. Adipose tissue can be delivered either as unprocessed tissue, or after enzymatic treatment to derive the cellular stromal vascular fraction. In the current narrative review, we provide an overview of the main tissue/cell-based clinical studies for the management of various types of respiratory tract fistulas or injuries. Clinical experience is limited, as most of the studies were performed on a small number of patients. Albeit a conclusive proof of efficacy cannot be drawn, the reviewed studies suggest that grafting of adipose tissue-derived material may represent a minimally invasive and conservative treatment option, alternative to more aggressive surgical procedures. Knowledge on safety and tolerability acquired in prior studies can lead to the design of future, larger trials that may exploit innovative procedures for tissue processing to further improve the clinical outcome.
Collapse
Affiliation(s)
- Angelo Trivisonno
- Department of Surgical Science, University of Rome “La Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Ivo Boškoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Venanzio Porziella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy
| |
Collapse
|
18
|
Oncologic Safety of Fat Grafting for Autologous Breast Reconstruction in an Animal Model of Residual Breast Cancer. Plast Reconstr Surg 2019; 143:103-112. [PMID: 30589782 DOI: 10.1097/prs.0000000000005085] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Clinical outcomes suggest that postoncologic reconstruction with fat grafting yields cumulative incidence curves of recurrence comparable to those of other breast reconstruction procedures; however, results from experimental research studies suggest that adipose stem cells can stimulate cancer growth. In this study, a novel animal model of residual cancer was developed in mouse mammary pads to test whether lipofilling impacts the probability of locoregional recurrence of breast cancer after breast conserving surgery. METHODS Mammary fat pads of female NOD-SCID gamma mice were each injected with MCF-7 cells in Matrigel. Tumors were allowed to engraft for 2 weeks, after which time either sterile saline (n = 20) or human fat graft (n = 20) was injected adjacent to tumor sites. After 8 weeks, tumors were assessed for volume measurement, histologic grade, Ki67 positivity, and metastatic spread. RESULTS Animals receiving lipofilling after tumor cell engraftment had lower tumor volume and mass (p = 0.046 and p = 0.038, respectively). Macroscopic invasion was higher in the saline group. Histologic grade was not significantly different in the two groups (p = 0.17). Ki67 proliferation index was lower in tumors surrounded by fat graft (p = 0.01). No metastatic lesion was identified in any animal. CONCLUSIONS Adipose transfer for breast reconstruction performed in the setting of residual breast tumor in a clinically relevant animal model did not increase tumor size, proliferation, histologic grade, or metastatic spread. This study supports the oncologic safety of lipofilling as part of the surgical platform for breast reconstruction after cancer therapy.
Collapse
|
19
|
Danan D, Lehman CE, Mendez RE, Langford B, Koors PD, Dougherty MI, Peirce SM, Gioeli DG, Jameson MJ. Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma. Otolaryngol Head Neck Surg 2018; 158:882-888. [PMID: 29313435 DOI: 10.1177/0194599817750361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.
Collapse
Affiliation(s)
- Deepa Danan
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Christine E Lehman
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rolando E Mendez
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Brian Langford
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Paul D Koors
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Michael I Dougherty
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Shayn M Peirce
- 2 Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Daniel G Gioeli
- 3 Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Mark J Jameson
- 1 Division of Head and Neck Oncologic and Microvascular Surgery, Department of Otolaryngology-Head and Neck Surgery, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Autologous Fat Grafting as a Novel Antiestrogen Vehicle for the Treatment of Breast Cancer. Plast Reconstr Surg 2017; 140:537-544. [PMID: 28841614 DOI: 10.1097/prs.0000000000003579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Adipose fat transfer is increasingly used for contour corrections of the tumor bed after lumpectomy and breast reconstructions after mastectomy. The lipophilic nature of the fat tissue may render adipocytes an ideal vehicle with which to deliver a high boost of an antiestrogen to the tumor bed to serve as an adjunct systemic hormonal therapy. The authors therefore tested whether adipocytes could safely be loaded with an antiestrogen and allow for release at therapeutic concentrations to treat breast cancer. METHODS Adipose tissue was collected from patients undergoing autologous fat grafting. The influence of adipose tissue on tumorigenesis was determined both in vitro and in vivo using breast cancer cell lines. Ex vivo, adipose tissue was assessed for its ability to depot fulvestrant and inhibit the growth of breast cancer cell lines. RESULTS Adipose tissue harvested from patients did not promote breast cancer cell growth in vitro or in an in vivo mouse model. Adipose tissue was successfully loaded with fulvestrant and released at levels sufficient to inhibit estrogen receptor signaling and growth of breast cancer cells. CONCLUSIONS This work supports the hypothesis that adipose tissue used for autologous fat grafting can serve as a novel method for local drug delivery. As this technique is used to reconstruct a variety of postsurgical defects following cancer resection, this approach for local drug delivery may be an effective alternative in therapeutic settings beyond breast cancer.
Collapse
|
21
|
Abstract
OBJECTIVE A vibratory vocal fold replacement would introduce a new treatment paradigm for structural vocal fold diseases such as scarring and lamina propria loss. This work implants a tissue-engineered replacement for vocal fold lamina propria and epithelium in rabbits and compares histology and function to injured controls and orthotopic transplants. Hypotheses were that the cell-based implant would engraft and control the wound response, reducing fibrosis and restoring vibration. STUDY DESIGN Translational research. METHODS Rabbit adipose-derived mesenchymal stem cells (ASC) were embedded within a three-dimensional fibrin gel, forming the cell-based outer vocal fold replacement (COVR). Sixteen rabbits underwent unilateral resection of vocal fold epithelium and lamina propria, as well as reconstruction with one of three treatments: fibrin glue alone with healing by secondary intention, replantation of autologous resected vocal fold cover, or COVR implantation. After 4 weeks, larynges were examined histologically and with phonation. RESULTS Fifteen rabbits survived. All tissues incorporated well after implantation. After 1 month, both graft types improved histology and vibration relative to injured controls. Extracellular matrix (ECM) of the replanted mucosa was disrupted, and ECM of the COVR implants remained immature. Immune reaction was evident when male cells were implanted into female rabbits. Best histologic and short-term vibratory outcomes were achieved with COVR implants containing male cells implanted into male rabbits. CONCLUSION Vocal fold cover replacement with a stem cell-based tissue-engineered construct is feasible and beneficial in acute rabbit implantation. Wound-modifying behavior of the COVR implant is judged to be an important factor in preventing fibrosis. LEVEL OF EVIDENCE NA. Laryngoscope, 128:153-159, 2018.
Collapse
Affiliation(s)
- Jennifer L Long
- Research Service, Greater Los Angeles VAHS, Los Angeles, California, U.S.A.,Department of Head and Neck Surgery, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, U.S.A
| |
Collapse
|
22
|
Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 2017; 18:816-27. [PMID: 27260205 DOI: 10.1016/j.jcyt.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs), which resemble bone marrow mesenchymal stromal cells (BMSCs), have shown great advantages and promise in the field of regenerative medicine. They can be readily harvested in large numbers with low donor-site morbidity. To date, a great number of preclinical and clinical studies have shown ADSCs' safety and efficacy in regenerative medicine. However, a better understanding of the mechanisms of homing of ADSCs is needed to advance the clinical utility of this therapy. In this review, the reports of the homing of ADSCs were searched using Pubmed and Google Scholar to update our knowledge. ADSCs were proved to interact with endothelial cells by expressing the similar integrins with BMSCs. In addition, ADSCs do not possess the dominant ligand for P-selectin, just like BMSCs. Stromal derived factor-1 (SDF-1)/CXCR4 and CXC ligand-5 (CXCL5)/CXCR2 interactions are the two main axes governing ADSCs extravasation from bone marrow vessels. Some more signaling pathways involved in migration of ADSCs have been investigated, including LPA/LPA1 signaling pathway, MAPK/Erk1/2 signaling pathway, RhoA/Rock signaling pathway and PDGF-BB/PDGFR-β signaling pathway. Status quo of a lack of intensive studies on the details of homing of ADSCs should be improved in the near future before clinical application.
Collapse
Affiliation(s)
- Yong Zhao
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China; Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
23
|
Wang G, Yuan N, Huang S, Feng L, Han R, Zhang Y, Ren J, Meng M, Zhao X. The CNGRCLLII(KLAKLAK)2 peptide shows cytotoxicity against HUVECs by inducing apoptosis: An in vitro and in vivo study. Tumour Biol 2017; 39:1010428317701649. [PMID: 28475015 DOI: 10.1177/1010428317701649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Fibrinogen Asn-Gly-Arg motif can specifically recognize and bind to Aminopeptidase N (CD13) on vascular endothelial cells in newly formed tumor vessels. Adipose-derived stem cells can serve as ideal vectors for gene therapy because of their ability of migrating to tumor tissues. First, this study was aimed to design a new peptide (CNGRCLLII(KLAKLAK)2) named CNAK which contains cyclic Asn-Gly-Arg motif and test its biological activity against human umbilical vein endothelial cells. Second, we aimed to construct stably transfected adipose-derived stem cells which express the CNAK peptide and investigate their anti-angiogenic activity in vivo. Adipose-derived stem cells were employed to localize CNAK on vascular endothelial cells in tumors based on their homing property. First of all, the new peptide was synthesized, which effectively entered into CD13+ human umbilical vein endothelial cells and showed cytotoxicity against human umbilical vein endothelial cells. The peptide induced apoptosis of human umbilical vein endothelial cells in a time- and dose-dependent manner, inhibited the expression of Bcl-2, and promoted the expression of Caspase-3 in human umbilical vein endothelial cells. Furthermore, the migration and tube formation of human umbilical vein endothelial cells were inhibited by CNAK. Primary adipose-derived stem cells were then isolated and identified. Stably transfected adipose-derived stem cells which express CNAK peptide (CNAK-ASCs) were successfully established, and the migration of CNAK-ASCs was assessed. In vivo, CNAK-ASCs were found to inhibit the growth and angiogenesis of breast cancer xenografts. This effect may be through inhibiting the secretion of matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase in vivo. It was also found that CNAK-ASCs reduced the quantity of breast cancer stem cells in tumor tissues. Our data suggested that the new peptide CNAK containing Asn-Gly-Arg motif had anti-angiogenic activity in vitro and in vivo.
Collapse
Affiliation(s)
- Guanying Wang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Na Yuan
- 2 Department of Ultrasound, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Shangke Huang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lu Feng
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Rui Han
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yujiao Zhang
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Juan Ren
- 3 Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Meng
- 4 Department of Oncology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, People's Republic of China
| | - Xinhan Zhao
- 1 Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
24
|
Zhang C, Yang SJ, Wen Q, Zhong JF, Chen XL, Stucky A, Press MF, Zhang X. Human-derived normal mesenchymal stem/stromal cells in anticancer therapies. J Cancer 2017; 8:85-96. [PMID: 28123601 PMCID: PMC5264043 DOI: 10.7150/jca.16792] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/18/2016] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) not only plays a pivotal role during cancer progression and metastasis, but also has profound effects on therapeutic efficacy. Stromal cells of the TME are increasingly becoming a key consideration in the development of active anticancer therapeutics. However, dispute concerning the role of stromal cells to fight cancer continues because the use of mesenchymal stem/stromal cells (MSCs) as an anticancer agent is dependent on the specific MSCs subtype, in vitro or in vivo conditions, factors secreted by MSCs, types of cancer cell lines and interactions between MSCs, cancer cells and host immune cells. In this review, we mainly focus on the role of human-derived normal MSCs in anticancer therapies. We first discuss the use of different MSCs in the therapies for various cancers. We then focus on their anticancer mechanism and clinical application.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shi-Jie Yang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jiang F Zhong
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xue-Lian Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Andres Stucky
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.; Division of Periodontology, Diagnostic Sciences & Dental Hygiene, and Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.; Norris Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
25
|
Shah K. Stem cell-based therapies for tumors in the brain: are we there yet? Neuro Oncol 2016; 18:1066-78. [PMID: 27282399 DOI: 10.1093/neuonc/now096] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation.
Collapse
Affiliation(s)
- Khalid Shah
- Stem Cell Therapeutics and Imaging Program, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (K.S.); Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts (K.S.)
| |
Collapse
|
26
|
Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous Fat Grafting: The Science Behind the Surgery. Aesthet Surg J 2016; 36:488-96. [PMID: 26961989 DOI: 10.1093/asj/sjw004] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An invaluable part of the plastic surgeon's technical arsenal for soft tissue contouring, fat grafting continues to be plagued by unpredictable outcomes, resulting in either reoperation and/or patient dissatisfaction. Thus, extensive research has been conducted into the effects of adipose tissue procurement, processing, and placement on fat graft quality at both the cellular level and in terms of overall volume retention. Herein, we present an overview of the vast body of literature in these areas, with additional discussion of cell-assisted lipotransfer as a therapy to improve volume retention, and on the controversial use of autologous fat in the setting of prior irradiation.
Collapse
Affiliation(s)
- Elizabeth R Zielins
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth A Brett
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Michael T Longaker
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| | - Derrick C Wan
- From the Department of Surgery, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
27
|
Discussion: Improvement of Fat Graft Survival with Autologous Bone Marrow Aspirate and Bone Marrow Concentrate: A One-Step Method. Plast Reconstr Surg 2016; 137:687e-689e. [PMID: 27018696 DOI: 10.1097/prs.0000000000002031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Goldstone RN, Austen WG. Commentary on: Human Adipose Tissue-Derived Stromal/Stem Cells Promote Migration and Early Metastasis of Head and Neck Cancer Xenografts. Aesthet Surg J 2016; 36:105-6. [PMID: 26082093 DOI: 10.1093/asj/sjv103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert N Goldstone
- Dr Goldstone is a Postdoctoral Research Fellow and Dr Austen is Chief, Division of Plastic and Reconstructive Surgery and Division of Burn Surgery, Massachusetts General Hospital, Boston, MA
| | - William G Austen
- Dr Goldstone is a Postdoctoral Research Fellow and Dr Austen is Chief, Division of Plastic and Reconstructive Surgery and Division of Burn Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|