1
|
Zheng Y, Cheng S, Li H, Sun Y, Guo L, Man C, Zhang Y, Zhang W, Jiang Y. Lacticaseibacillus paracasei JM053 alleviates osteoporosis in rats by increasing the content of soy isoflavone aglycones in fermented soymilk. Food Funct 2024; 15:12118-12133. [PMID: 39575987 DOI: 10.1039/d4fo04381b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Lacticaseibacillus paracasei JM053 has a significant ability to convert soy isoflavones and can be used as a fermentation strain to ferment soymilk, thereby increasing the content of free aglycones in soymilk and thus providing an effective method to alleviate osteoporosis symptoms. This study aims to establish a rat model of osteoporosis induced by dexamethasone (DEX) and clarify the alleviating effect of soymilk fermented with Lacticaseibacillus paracasei JM053 on osteoporosis. Research has shown that fermented soymilk with Lacticaseibacillus paracasei JM053 can inhibit weight loss in rats caused by DEX, regulate the expression of inflammatory factors such as tumor necrosis factor-α (TNF-α) towards normal levels, and increase levels of alkaline phosphatase (ALP) and osteocalcin (OCN) to promote bone synthesis. By observing the microstructure of bone tissue through microCT and Goldner staining, it was found that, compared with the model group, fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate the damage to bone tissue structure caused by DEX by increasing the number of bone trabeculae and reducing fracture. Fermented soymilk with Lacticaseibacillus paracasei JM053 can alleviate bone metabolism disorders by regulating gut microbiota and metabolite content. This study provides theoretical and data-based support for developing functional products that can alleviate osteoporosis.
Collapse
Affiliation(s)
- Yaping Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Shasha Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Hongxuan Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yilin Sun
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- Food Laboratory of Zhongyuan, Luohe, Henan, 462300, China
| |
Collapse
|
2
|
Chen H, Xiong R, Cheng J, Ye J, Qiu Y, Huang S, Li M, Liu Z, Pang J, Zhang X, Guo S, Li H, Zhu H. Effects and Mechanisms of Polyunsaturated Fatty Acids on Age-Related Musculoskeletal Diseases: Sarcopenia, Osteoporosis, and Osteoarthritis-A Narrative Review. Nutrients 2024; 16:3130. [PMID: 39339730 PMCID: PMC11434726 DOI: 10.3390/nu16183130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The process of the globally aging population has been accelerating, leading to an increasing social burden. As people age, the musculoskeletal system will gradually go through a series of degenerative and loss of function and eventually develop age-related musculoskeletal diseases, like sarcopenia, osteoporosis, and osteoarthritis. On the other hand, several studies have shown that polyunsaturated fatty acids (PUFAs) possess various important physiological functions on the health of muscles, bones, and joints. Objective: This narrative review paper provides a summary of the literature about the effects and mechanisms of PUFAs on age-related musculoskeletal diseases for the prevention and management of these diseases. Methods: Web of Science, PubMed, Science Direct, and Scopus databases have been searched to select the relevant literature on epidemiological, cellular, and animal experiments and clinical evidence in recent decades with keywords "polyunsaturated fatty acids", "PUFAs", "omega-3", "omega-6", "musculoskeletal diseases", "sarcopenia", "osteoporosis", "osteoarthritis", and so on. Results: PUFAs could prevent and treat age-related musculoskeletal diseases (sarcopenia, osteoporosis, and osteoarthritis) by reducing oxidative stress and inflammation and controlling the growth, differentiation, apoptosis, and autophagy of cells. This review paper provides comprehensive evidence of PUFAs on age-related musculoskeletal diseases, which will be helpful for exploitation into functional foods and drugs for their prevention and treatment. Conclusions: PUFAs could play an important role in the prevention and treatment of sarcopenia, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Haoqi Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jin Cheng
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jialu Ye
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingzhen Qiu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Siyu Huang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengchu Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyan Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jinzhu Pang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shanshan Guo
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011050, China
| | - Huabin Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huilian Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Sun Yat-sen University-Mengniu Joint Research Center of Nutrition and Health for Middle-Aged and Elderly, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Wang X, Zhang C, Zhao G, Yang K, Tao L. Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 2024; 54:61. [PMID: 38818830 PMCID: PMC11188977 DOI: 10.3892/ijmm.2024.5385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/01/2024] Open
Abstract
Osteoporosis is a common bone metabolic disease that causes a heavy social burden and seriously threatens life. Improving osteogenic capacity is necessary to correct bone mass loss in the treatment of osteoporosis. Osteoblasts are derived from the differentiation of bone marrow mesenchymal stem cells, a process that opposes adipogenic differentiation. The peroxisome proliferator‑activated receptor γ and Wnt/β‑catenin signaling pathways mediate the mutual regulation of osteogenesis and adipogenesis. Lipid substances play an important role in the occurrence and development of osteoporosis. The content and proportion of lipids modulate the activity of immunocytes, mainly macrophages, and the secretion of inflammatory factors, such as IL‑1, IL‑6 and TNF‑α. These inflammatory effectors increase the activity and promote the differentiation of osteoclasts, which leads to bone imbalance and stronger bone resorption. Obesity also decreases the activity of antioxidases and leads to oxidative stress, thereby inhibiting osteogenesis. The present review starts by examining the bidirectional differentiation of BM‑MSCs, describes in detail the mechanism by which lipids affect bone metabolism, and discusses the regulatory role of inflammation and oxidative stress in this process. The review concludes that a reasonable adjustment of the content and proportion of lipids, and the alleviation of inflammatory storms and oxidative damage induced by lipid imbalances, will improve bone mass and treat osteoporosis.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guang Zhao
- Department of Orthopedics, Fourth Hospital of China Medical University, Shenyang, Liaoning 110165, P.R. China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
4
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
5
|
Liu Y, Shen N, Xin H, Yu L, Xu Q, Cui Y. Unsaturated fatty acids in natural edible resources, a systematic review of classification, resources, biosynthesis, biological activities and application. FOOD BIOSCI 2023; 53:102790. [DOI: 10.1016/j.fbio.2023.102790] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
|
6
|
Li X, Wang Y, Gao M, Bao B, Cao Y, Cheng F, Zhang L, Li Z, Shan J, Yao W. Metabolomics-driven of relationships among kidney, bone marrow and bone of rats with postmenopausal osteoporosis. Bone 2022; 156:116306. [PMID: 34963648 DOI: 10.1016/j.bone.2021.116306] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
As a global public health problem, postmenopausal osteoporosis (PMOP) poses a great threat to old women's health. Bone is the target organ of PMOP, and the dynamic changes of bone marrow could affect the bone status. Kidney is the main organ regulating calcium and phosphorus homeostasis. Kidney, bone marrow and bone play crucial roles in PMOP, but the relationships of the three tissues in the disease have not been completely described. Here, metabolomics was employed to investigate the disease mechanism of PMOP from the perspectives of kidney, bone marrow and bone, and the relationships among the three tissues were also discussed. Six-month-old female Sprague-Dawley (SD) rats were randomly divided into ovariectomized (OVX) group (with bilateral ovariectomy) and sham group (with sham surgery). 13 weeks after surgery, gas chromatography-mass spectrometry (GC-MS) was performed to analyze the metabolic profiling of two groups. Multivariate statistical analysis revealed that the number of differential metabolites in kidney, bone marrow and bone between the two groups were 37, 16 and 17, respectively. The common differential metabolites of the three tissues were N-methyl-L-alanine. Kidney and bone marrow had common differential metabolites, including N-methyl-L-alanine, 2-hydroxybutyric acid, (R)-3-hydroxybutyric acid (β-hydroxybutyric acid, βHBA), urea and dodecanoic acid. There were three common differential metabolites between kidney and bone, including N-methyl-L-alanine, α-tocopherol and isofucostanol. The common differential metabolite of bone marrow and bone was N-methyl-L-alanine. Some common metabolic pathways were disturbed in multiple tissues of OVX rats, such as glycine, serine and threonine metabolism, purine metabolism, tryptophan metabolism, ubiquinone and other terpenoid-quinone biosynthesis and fatty acid biosynthesis. In conclusion, our study demonstrated that profound metabolic changes have taken place in the kidney, bone marrow and bone, involving common differential metabolites and metabolic pathways. The evaluation of differential metabolites strengthened the understanding of the kidney-bone axis and the metabolic relationships among the three tissues of OVX rats.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yifei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Beihua Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yudan Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, PR China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Metabolomics in Bone Research. Metabolites 2021; 11:metabo11070434. [PMID: 34357328 PMCID: PMC8303949 DOI: 10.3390/metabo11070434] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying the changes in endogenous metabolites in response to intrinsic and extrinsic factors has excellent potential to obtain an understanding of cells, biofluids, tissues, or organisms' functions and interactions with the environment. The advantages provided by the metabolomics strategy have promoted studies in bone research fields, including an understanding of bone cell behaviors, diagnosis and prognosis of diseases, and the development of treatment methods such as implanted biomaterials. This review article summarizes the metabolism changes during osteogenesis, osteoclastogenesis, and immunoregulation in hard tissue. The second section of this review is dedicated to describing and discussing metabolite changes in the most relevant bone diseases: osteoporosis, bone injuries, rheumatoid arthritis, and osteosarcoma. We consolidated the most recent finding of the metabolites and metabolite pathways affected by various bone disorders. This collection can serve as a basis for future metabolomics-driven bone research studies to select the most relevant metabolites and metabolic pathways. Additionally, we summarize recent metabolic studies on metabolomics for the development of bone disease treatment including biomaterials for bone engineering. With this article, we aim to provide a comprehensive summary of metabolomics in bone research, which can be helpful for interdisciplinary researchers, including material engineers, biologists, and clinicians.
Collapse
|