1
|
Raduly FM, Raditoiu V, Raditoiu A, Grapin M, Constantin M, Răut I, Nicolae CA, Frone AN. Ag 0-Ginger Nanocomposites Integrated into Natural Hydrogelated Matrices Used as Antimicrobial Delivery Systems Deposited on Cellulose Fabrics. Gels 2024; 10:106. [PMID: 38391436 PMCID: PMC10887898 DOI: 10.3390/gels10020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
In the textile, medical, and food industries, many of the applications have targeted the use of textile fabrics with antimicrobial properties. Obtaining eco-friendly coatings is of wide interest, especially for applications related to wound dressing or to food packaging. In order to obtain coatings with antimicrobial properties through environmentally friendly methods, a series of experiments were carried out on the use of natural polymers loaded with silver nanoparticles. In this study, coatings with antimicrobial properties were obtained by depositing natural composites based on rice flour, carob flour, or alginate on cotton fabrics. These antimicrobial coatings were multicomponent systems, in which the host matrix was generated via hydration of natural polymers. The nanocomposite obtained from the phytosynthesis of silver particles in ginger extract was embedded in hydrogel matrices. The multicomponent gels obtained by embedding silver nanoparticles in natural polymer matrices were deposited on cotton fabric and were studied in relation to nanoparticles and the type of host matrix, and the antimicrobial activity was evaluated. Fabrics coated with such systems provide a hydrophilic surface with antimicrobial properties and can therefore be used in various areas where textiles provide antibacterial protection.
Collapse
Affiliation(s)
- Florentina Monica Raduly
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Valentin Raditoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Alina Raditoiu
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Maria Grapin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Mariana Constantin
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai, No.16, 040441 Bucharest, Romania
| | - Iuliana Răut
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Cristian Andi Nicolae
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- Laboratory of Functional Dyes and Related Materials, National Research and Development Institute for Chemistry and Petrochemistry-ICECHIM, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
2
|
Chauhan M, Kalaivendan RGT, Eazhumalai G, Annapure US. Atmospheric pressure pin-to-plate cold plasma effect on physicochemical, functional, pasting, thermal, and structural characteristics of proso-millet starch. Food Res Int 2023; 173:113444. [PMID: 37803769 DOI: 10.1016/j.foodres.2023.113444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023]
Abstract
The present work aimed to study the influence of atmospheric pressure pin-to-plate cold plasma on the physicochemical (pH, moisture, and amylose content), functional (water & oil binding capacity, solubility & swelling power, paste clarity on storage, pasting), powder flow, thermal and structural (FTIR, XRD, and SEM) characteristics at an input voltage of 170-230 V for 5-15 min. The starch surface modification by cold plasma was seen in the SEM images which cause the surge in WBC (1.54 g/g to 1.93 g/g), OBC (2.22 g/g to 2.79 g/g), solubility (3.05-5.38% at 70 °C; 37.11-52.98% at 90 °C) and swelling power (5.39-7.83% at 70 °C; 25.67-35.33% at 90 °C) of starch. Reduction in the amylose content (27.82% to 25.07%) via plasma-induced depolymerization resists the retrogradation tendency, thereby increasing the paste clarity (up to ̴ 39%) during the 5 days of refrigerated storage. However, the paste viscosity is reduced after cold plasma treatment yielding low-strength starch pastes. The relative crystallinity of starch increased (37.35% to 45.36%) by the plasma-induced fragmented starch granules which would aggregate and broaden the gelatinization temperature, but these starch fragments reduced the gelatinization enthalpy. The fundamental starch structure is conserved as seen in FTIR spectra. Thus, cold plasma aids in the production of soluble, low-viscous, stable, and clear paste-forming depolymerized proso-millet starch.
Collapse
Affiliation(s)
- Manish Chauhan
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai, India
| | | | - Gunaseelan Eazhumalai
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai, India
| | - Uday S Annapure
- Department of Food Engineering Technology, Institute of Chemical Technology, Mumbai, India; Institute of Chemical Technology, Marathwada Campus, Jalna, India.
| |
Collapse
|
3
|
Sivakumar C, Findlay CRJ, Karunakaran C, Paliwal J. Non-destructive characterization of pulse flours-A review. Compr Rev Food Sci Food Saf 2023; 22:1613-1632. [PMID: 36880584 DOI: 10.1111/1541-4337.13123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
The consumption of plant-based proteins sourced from pulses is sustainable from the perspective of agriculture, environment, food security, and nutrition. Increased incorporation of high-quality pulse ingredients into foods such as pasta and baked goods is poised to produce refined food products to satisfy consumer demand. However, a better understanding of pulse milling processes is required to optimize the blending of pulse flours with wheat flour and other traditional ingredients. A thorough review of the state-of-the-art on pulse flour quality characterization reveals that research is required to elucidate the relationships between the micro- and nanoscale structures of these flours and their milling-dependent properties, such as hydration, starch and protein quality, components separation, and particle size distribution. With advances in synchrotron-enabled material characterization techniques, there exist a few options that have the potential to fill knowledge gaps. To this end, we conducted a comprehensive review of four high-resolution nondestructive techniques (i.e., scanning electron microscopy, synchrotron X-ray microtomography, synchrotron small-angle X-ray scattering, and Fourier-transformed infrared spectromicroscopy) and a comparison of their suitability for characterizing pulse flours. Our detailed synthesis of the literature concludes that a multimodal approach to fully characterize pulse flours will be vital to predicting their end-use suitability. A holistic characterization will help optimize and standardize the milling methods, pretreatments, and post-processing of pulse flours. Millers/processors will benefit by having a range of well-understood pulse flour fractions to incorporate into food formulations.
Collapse
Affiliation(s)
- Chitra Sivakumar
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | - Jitendra Paliwal
- Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Ishikawa D, Yang J, Fujii T. Quantification of Starch Order in Physically Modified Rice Flours Using Small-Angle X-ray Scattering (SAXS) and Fourier Transform Infrared (FT-IR) Spectroscopy. APPLIED SPECTROSCOPY 2021; 75:1033-1042. [PMID: 34264122 DOI: 10.1177/00037028211028278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to understand the ordered structure of starch in rice flour based on a physical modification with non-heating, milling, and water sorption through the structural evaluation of rice flour using small-angle X-ray scattering (SAXS) and infrared spectroscopy within the 4000-100 cm-1 region. The SAXS pattern of the samples with low moisture contents subjected to milling yield a band within the 0.4-0.9 nm-1 of the q range owing to a lamellar repeat of starch with an ordered structure in rice flour. We proposed an order parameter using the intensity of the SAXS band to quantify the order structure of starch in rice flour, and the true density was negatively correlated with the order parameter. Infrared band at 990 cm-1 in COH bending mode applied to the hydroxyl group of C6 shifted to a low wavenumber corresponding to the order parameter. A linear correlation was found between the order parameter and the 990 cm-1 and band at 861 cm-1 owing to COC symmetrical stretching of glycoside bond and CH2 deformation of the glucose unit of starch, 572, 472, and 436 cm-1, owing to the pyranose ring in the glucose unit of starch. The identified infrared bands are effective for quantifying the ordered structure of starch at the lamellar level. When subjected to water sorption, the band position at 990 cm-1 shifted to a higher wavenumber above a water activity of 0.7. This result revealed that the water-induced transition of glass to rubber of starch in rice flour can be clearly evaluated through infrared spectroscopy using the band at 990 cm-1. In addition, the band at 861 cm-1 also shifted to a higher wavenumber, whereas those at 572 and 436 cm-1 did not show a significant shift. These results indicate that water sorption slightly affects the internal structure and may mainly affect the surface of starch.
Collapse
Affiliation(s)
- Daitaro Ishikawa
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Jiamin Yang
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tomoyuki Fujii
- Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| |
Collapse
|