1
|
Gedzun VR, Sukhanova IA, Aliper GM, Kotova MM, Melnik NO, Karimova EB, Voronkova AS, Coffman A, Pavshintcev VV, Mitkin NA, Doronin II, Babkin GA, Malyshev AV. From land to water: "Sunken" T-maze for associated learning in cichlid fish. Behav Brain Res 2024; 471:115077. [PMID: 38825022 DOI: 10.1016/j.bbr.2024.115077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
The study introduced and evaluated learning paradigms for Maylandia callainos cichlids using a modified version of the rodent T-maze, filled with tank water (the "sunken" modification). Both male and female fish underwent training in two distinct conditioning paradigms. Firstly, simple operant conditioning involved placing a food reward in either the right or left compartment. Cichlids demonstrated the ability to purposefully find the bait within 6 days of training, with a persistent place preference lasting up to 6 days. Additionally, the learning dynamics varied with sex: female cichlids exhibited reduction in latency to visit the target compartment and consume the bait, along with a decrease in the number of errors 3 and 4 days earlier than males, respectively. Secondly, visually-cued operant conditioning was conducted, with a food reward exclusively placed in the yellow compartment, randomly positioned on the left or right side of the maze during each training session. Visual learning persisted for 10 days until reaction time improvement plateaued. Color preference disappeared after 4 consecutive check-ups, with no sex-related interference. For further validation of visually-cued operant conditioning paradigm, drugs MK-801 (dizocilpine) and caffeine, known to affect performance in learning tasks, were administered intraperitoneally. Chronic MK-801 (0.17 mg/kg) impaired maze learning, resulting in no color preference development. Conversely, caffeine administration enhanced test performance, increasing precision in fish. This developed paradigm offers a viable approach for studying learning and memory and presents an effective alternative to rodent-based drug screening tools, exhibiting good face and predictive validity.
Collapse
|
2
|
Tomasek M, Soller K, Dufour V, Jordan A. Differences in inhibitory control in two species of Tanganyikan bower-building cichlids contrasting in building flexibility. Ecol Evol 2024; 14:e11406. [PMID: 38846708 PMCID: PMC11154817 DOI: 10.1002/ece3.11406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
A central challenge in understanding the evolution of cognition is the ability to compare a set of species differing in a trait of interest while being ecologically and phylogenetically close. Here, we examine whether differences in bower-building flexibility are related to differences in cognitive flexibility between two Tanganyikan cichlids. Cognitive flexibility enables animals to modify their decision rules when faced with new situations, and inhibitory control, the ability to inhibit a normally favoured response, is an essential component of this capacity. We tested male Aulonocranus dewindti and Cyathopharynx furcifer in a choice-against-preference paradigm. Both species clean their bowers of foreign objects and we found that both preferred to remove a snail shell over a stone. We tested their ability to modify this preference and learned to preferably select the stone instead of the shell. Although neither species showed clear learning of the new preference rule, both demonstrated inhibitory control through increased decision times and manipulations of the objects when selecting the stone. Specifically, A. dewindti, the species exhibiting greater behavioural flexibility in the construction of their bowers, selected the stone in fewer trials than C. furcifer, providing support for a link between behavioural flexibility in bower construction and cognitive flexibility.
Collapse
Affiliation(s)
- Maëlan Tomasek
- LAboratoire de Psychologie Sociale et CognitiveUMR6024, CNRS, UCAClermont‐FerrandFrance
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| | - Katinka Soller
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| | - Valérie Dufour
- LAboratoire de Psychologie Sociale et CognitiveUMR6024, CNRS, UCAClermont‐FerrandFrance
| | - Alex Jordan
- Behavioural Evolution Research GroupMax Planck Institute of Animal BehaviourKonstanzGermany
- University of KonstanzKonstanzGermany
| |
Collapse
|
3
|
Choi N, Mathevon N, Hebets EA, Beauchaud M. Influence of ambient water coloration on habitat and conspecific choice in the female Lake Malawi cichlid, Metriaclima zebra. Curr Zool 2024; 70:214-224. [PMID: 38726246 PMCID: PMC11078059 DOI: 10.1093/cz/zoad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2024] Open
Abstract
Female cichlid fish living in African great lakes are known to have sensory systems that are adapted to ambient light environments. These sensory system adaptations are hypothesized to have influenced the evolution of the diverse male nuptial coloration. In rock-dwelling Lake Malawi mbuna cichlids, however, the extent to which ambient light environments influence female sensory systems and potentially associated male nuptial coloration remains unknown. Yet, the ubiquitous blue flank coloration and UV reflection of male mbuna cichlids suggest the potential impacts of the blue-shifted ambient light environment on these cichlid's visual perception and male nuptial coloration in the shallow water depth in Lake Malawi. In the present study, we explored whether and how the sensory bias of females influences intersexual communication in the mbuna cichlid, Metriaclima zebra. A series of choice experiments in various light environments showed that M. zebra females 1) have a preference for the blue-shifted light environment, 2) prefer to interact with males in blue-shifted light environments, 3) do not show a preference between dominant and subordinate males in full-spectrum, long-wavelength filtered, and short-wavelength filtered light environments, and 4) show a "reversed" preference for subordinate males in the UV-filtered light environment. These results suggest that the visual perception of M. zebra females may be biased to the ambient light spectra in their natural habitat by local adaptation and that this sensory bias may influence the evolution of blue and UV reflective patterns in male nuptial coloration.
Collapse
Affiliation(s)
- Noori Choi
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
- Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Nicolas Mathevon
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marilyn Beauchaud
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, Université de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
4
|
Culbert BM, Barnett JB, Ligocki IY, Salena MG, Wong MYL, Hamilton IM, Balshine S. Colorful facial markings are associated with foraging rates and affiliative relationships in a wild group-living cichlid fish. Curr Zool 2024; 70:70-78. [PMID: 38476131 PMCID: PMC10926260 DOI: 10.1093/cz/zoac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/11/2022] [Indexed: 03/14/2024] Open
Abstract
Many animals use color to signal their quality and/or behavioral motivations. Colorful signals have been well studied in the contexts of competition and mate choice; however, the role of these signals in nonsexual, affiliative relationships is not as well understood. Here, we used wild social groups of the cichlid fish Neolamprologus pulcher to investigate whether the size of a brightly colored facial patch was related to 1) individual quality, 2) social dominance, and/or 3) affiliative relationships. Individuals with larger patches spent more time foraging and tended to perform more aggressive acts against conspecific territory intruders. We did not find any evidence that the size of these yellow patches was related to social rank or body size, but dominant males tended to have larger patches than dominant females. Additionally, patch size had a rank-specific relationship with the number of affiliative interactions that individuals engaged in. Dominant males with large patches received fewer affiliative acts from their groupmates compared to dominant males with small patches. However, subordinates with large patches tended to receive more affiliative acts from their groupmates while performing fewer affiliative acts themselves. Taken together, our results suggest that patch size reflects interindividual variation in foraging effort in this cichlid fish and offer some of the first evidence that colorful signals may shape affiliative relationships within wild social groups.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Isaac Y Ligocki
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Biology, Millersville University, Millersville, PA, USA
| | - Matthew G Salena
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Ian M Hamilton
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Reyes-Contreras M, Taborsky B. Stress axis programming generates long-term effects on cognitive abilities in a cooperative breeder. Proc Biol Sci 2022; 289:20220117. [PMID: 35582802 PMCID: PMC9114936 DOI: 10.1098/rspb.2022.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to flexibly adjust behaviour to social and non-social challenges is important for successfully navigating variable environments. Social competence, i.e. adaptive behavioural flexibility in the social domain, allows individuals to optimize their expression of social behaviour. Behavioural flexibility outside the social domain aids in coping with ecological challenges. However, it is unknown if social and non-social behavioural flexibility share common underlying cognitive mechanisms. Support for such shared mechanism would be provided if the same neural mechanisms in the brain affected social and non-social behavioural flexibility similarly. We used individuals of the cooperatively breeding fish Neolamprologus pulcher that had undergone early-life programming of the hypothalamic-pituitary-interrenal axis by exposure to (i) cortisol, (ii) the glucocorticoid receptor antagonist mifepristone, or (iii) control treatments, and where effects of stress-axis programming on social flexibility occurred. One year after the treatments, adults learned a colour discrimination task and subsequently, a reversal-learning task testing for behavioural flexibility. Early-life mifepristone treatment marginally enhanced learning performance, whereas cortisol treatment significantly reduced behavioural flexibility. Thus, early-life cortisol treatment reduced both social and non-social behavioural flexibility, suggesting a shared cognitive basis of behavioural flexibility. Further our findings imply that early-life stress programming affects the ability of organisms to flexibly cope with environmental stressors.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| |
Collapse
|
6
|
Downer-Bartholomew BMB, Rodd FH. Female preference for color-enhanced males: a test of the sensory bias model in medaka, a drab fish. Behav Ecol 2021. [DOI: 10.1093/beheco/arab131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Sexual selection research has long focused on the evolution of female mate preferences. Most of the models that have been developed posit that mate preferences evolve in a mating context. In contrast, the sensory bias model proposes that mate choice preferences arise in a non-mating context, as a by-product of natural selection acting on a female’s perceptual system. Recent research has shown that many species of fishes, from across a large clade including poeciliids, goodeids, and medaka, have a bias for long wavelength (LW) colors (yellow, orange, red) in a non-mating context. Even species that do not have LW-colored ornaments, apparently because they have been lost secondarily, retain this latent bias for LW colors. Here, we predicted that female Oryzias latipes (Japanese medaka), a drab species with a latent preference for LW colors, would show a mate choice preference for males with an artificial secondary sexual trait—a colored stripe added to their flank. We confirmed that females were more responsive to red and orange objects in a non-mating context than to other colors. We also showed that females were less resistant towards males with an LW-colored stripe than to those enhanced with a non-LW stripe and that, for many females, responses towards specific LW colors were consistent across these non-mating and mating contexts. Therefore, our results provide support for the sensory bias model by providing a link between a sensory bias in a non-mating context and a mate choice preference in a drab species like medaka.
Collapse
Affiliation(s)
| | - F Helen Rodd
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Toure MW, Reader SM. Colour biases in learned foraging preferences in Trinidadian guppies. Ethology 2021. [DOI: 10.1111/eth.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Wyatt Toure
- Department of Biology McGill University Montreal QC Canada
| | | |
Collapse
|
8
|
Santacà M, Dadda M, Miletto Petrazzini ME, Bisazza A. Stimulus characteristics, learning bias and visual discrimination in zebrafish (Danio rerio). Behav Processes 2021; 192:104499. [PMID: 34499984 DOI: 10.1016/j.beproc.2021.104499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Zebrafish is an emerging model in the study of brain function; however, knowledge about its behaviour and cognition is incomplete. Previous studies suggest this species has limited ability in visual learning tasks compared to other teleosts. In this study, we systematically examined zebrafish's ability to learn to discriminate colour, shape, size, and orientation of figures using an appetitive conditioning paradigm. Contrary to earlier reports, the zebrafish successfully completed all tasks. Not all discriminations were learned with the same speed and accuracy. Subjects discriminated the size of objects better than their shape or colour. In all three tasks, they were faster and more accurate when required to discriminate between outlined figures than between filled figures. With stimuli consisting of outlines, the learning performance of zebrafish was comparable to that observed in higher vertebrates. Zebrafish easily learned a horizontal-vertical discrimination task, but like many other vertebrates, they had great difficulty discriminating a figure from its mirror image. Performance was more accurate for subjects reinforced on one stimulus (green over red, triangle over circle, large over small). Unexpectedly, these stimulus biases occurred only when zebrafish were tested with filled figures, suggesting some causal relationship between stimulus preference, learning bias and performance.
Collapse
Affiliation(s)
- Maria Santacà
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Marco Dadda
- Department of General Psychology, University of Padova, Padova, Italy
| | | | - Angelo Bisazza
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Fischer S, Balshine S, Hadolt MC, Schaedelin FC. Siblings matter: Family heterogeneity improves associative learning later in life. Ethology 2021. [DOI: 10.1111/eth.13196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Stefan Fischer
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
- Department of Behavioural and Cognitive Biology University of Vienna Vienna Austria
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour McMaster University Hamilton ON Canada
| | - Michaela C. Hadolt
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| | - Franziska C. Schaedelin
- Department of Interdisciplinary Life Sciences Konrad Lorenz Institute of Ethology University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
10
|
Culbert BM, Tsui N, Balshine S. Learning performance is associated with social preferences in a group-living fish. Behav Processes 2021; 191:104464. [PMID: 34329728 DOI: 10.1016/j.beproc.2021.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/13/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Many animals live in groups yet grouping tendencies and preferences for groups of different sizes vary considerably between individuals. This variation reflects, at least in part, differences in how individuals evaluate and perceive their physical surroundings and their social environment. While such differences are likely related to individual variation in cognition, there have been few studies that have directly investigated how cognitive abilities are linked to individual grouping decisions. Therefore, in this study we assessed whether performance on a foraging-based reversal learning task is related to grouping preferences (a group of three fish versus a single fish) in a group-living cichlid fish, Neolamprologus pulcher. While most fish preferred to associate with the group over a single fish, individuals that completed the reversal learning task the quickest were the least interested in the group under elevated predation risk. In addition, fish that quickly completed the reversal learning task also adjusted their grouping preferences the most when predation risk increased. This result suggests that the observed relationship between learning performance and grouping decisions may be linked to individual differences in behavioural flexibility. Overall, our results offer valuable insight into the potential factors that underlie inter-individual variation in grouping decisions.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Nicholas Tsui
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Culbert BM, Talagala S, Barnett JB, Stanbrook E, Smale P, Balshine S. Context-dependent consequences of color biases in a social fish. Behav Ecol 2020. [DOI: 10.1093/beheco/araa099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Colorful visual signals can provide receivers with valuable information about food, danger, and the quality of social partners. However, the value of the information that color provides varies depending on the situation, and color may even act as a sensory trap where signals that evolved under one context are exploited in another. Despite some elegant early work on color as a sensory trap, few empirical studies have examined how color biases may vary depending on context and under which situations biases can be overridden. Here, using Neolamprologus pulcher, a highly social cichlid fish from Lake Tanganyika, we conducted a series of experiments to determine color biases and investigate the effects of these biases under different contexts. We found that N. pulcher interacted the most with yellow items and the least with blue items. These biases were maintained during a foraging-based associative learning assay, with fish trained using yellow stimuli performing better than those trained using blue stimuli. However, these differences in learning performance did not extend to reversal learning; fish were equally capable of forming new associations regardless of the color they were initially trained on. Finally, in a social choice assay, N. pulcher did not display a stronger preference for conspecifics whose yellow facial markings had been artificially enhanced. Together, these findings suggest that the influence of color biases varies under different contexts and supports the situational dependency of color functions.
Collapse
Affiliation(s)
- Brett M Culbert
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sanduni Talagala
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Emily Stanbrook
- School of Earth and Environmental Science, University of Manchester, Oxford Road, Manchester, UK
| | - Parker Smale
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Sigal Balshine
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|