1
|
Simmons LW, Lovegrove M. Interacting phenotypic plasticities: do male and female responses to the sociosexual environment interact to determine fitness? Evolution 2024; 78:1969-1979. [PMID: 39290090 DOI: 10.1093/evolut/qpae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Socially induced plasticity in reproductive effort is a widely documented phenomenon. However, few empirical studies have examined how male and female plastic responses to the social environment might interact in determining fitness outcomes. In field crickets, Teleogryllus oceanicus, males respond to rival songs by increasing expenditure on seminal fluid proteins that enhance competitive fertilization success at the cost of reduced embryo survival. It remains unknown whether plastic responses in females could moderate the effects of male competitiveness on offspring performance. Here, we used a fully factorial design to explore the interacting effects on fitness of male and female plasticity to the sociosexual environment. We found that female crickets exposed to male songs increased the number of eggs produced during early life reproduction, which came at the cost of reduced offspring size. There was evidence, albeit weak, that interacting effects of male and female sociosexual environments contributed to variation in the hatching success of eggs laid by females. Lifetime offspring production was unaffected by the sociosexual environments to which upstream male and female plastic responses were made. Our data offer a rare test of the theoretical expectation that male and female plasticities should interact in their effects on female fitness.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
2
|
Smithson CH, Duncan EJ, Sait SM, Bretman A. Sensory perception of rivals has trait-dependent effects on plasticity in Drosophila melanogaster. Behav Ecol 2024; 35:arae031. [PMID: 38680228 PMCID: PMC11053361 DOI: 10.1093/beheco/arae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The social environment has myriad effects on individuals, altering reproduction, immune function, cognition, and aging. Phenotypic plasticity enables animals to respond to heterogeneous environments such as the social environment but requires that they assess those environments accurately. It has been suggested that combinations of sensory cues allow animals to respond rapidly and accurately to changeable environments, but it is unclear whether the same sensory inputs are required in all traits that respond to a particular environmental cue. Drosophila melanogaster males, in the presence of rival males, exhibit a consistent behavioral response by extending mating duration. However, exposure to a rival also results in a reduction in their lifespan, a phenomenon interpreted as a trade-off associated with sperm competition strategies. D. melanogaster perceive their rivals by using multiple sensory cues; interfering with at least two olfactory, auditory, or tactile cues eliminates the extension of mating duration. Here, we assessed whether these same cues were implicated in the lifespan reduction. Removal of combinations of auditory and olfactory cues removed the extended mating duration response to a rival, as previously found. However, we found that these manipulations did not alter the reduction in lifespan of males exposed to rivals or induce any changes in activity patterns, grooming, or male-male aggression. Therefore, our analysis suggests that lifespan reduction is not a cost associated with the behavioral responses to sperm competition. Moreover, this highlights the trait-specific nature of the mechanisms underlying plasticity in response to the same environmental conditions.
Collapse
Affiliation(s)
- Claire H Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Álvarez-Ocaña R, Shahandeh MP, Ray V, Auer TO, Gompel N, Benton R. Odor-regulated oviposition behavior in an ecological specialist. Nat Commun 2023; 14:3041. [PMID: 37236992 DOI: 10.1038/s41467-023-38722-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Colonization of a novel ecological niche can require, or be driven by, evolution of an animal's behaviors promoting their reproductive success. We investigated the evolution and sensory basis of oviposition in Drosophila sechellia, a close relative of Drosophila melanogaster that exhibits extreme specialism for Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other drosophilids and lays these almost exclusively on noni substrates. We show that visual, textural and social cues do not explain this species-specific preference. By contrast, we find that loss of olfactory input in D. sechellia, but not D. melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates gustatory-driven noni preference. Noni odors are detected by redundant olfactory pathways, but we discover a role for hexanoic acid and the cognate Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor exchange in D. melanogaster, we provide evidence for a causal contribution of odor-tuning changes in Ir75b to the evolution of D. sechellia's oviposition behavior.
Collapse
Affiliation(s)
- Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vijayaditya Ray
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Chen Y, Zhang Y, Yang L, Chen W, Jiang Z, Xiao Z, Xie X, Zhong G, Yi X. Group housing enhances mating and increases the sensitization of chemical cues in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:391-401. [PMID: 36177942 DOI: 10.1002/ps.7208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Changes in population density have profound impacts on mating behaviors in group-living animals. The plasticity of mating behavior enables insects to respond to social signals and adjust mating frequency in accordance with rival competition and reproductive opportunity. RESULTS In this study, we found that low levels of cis-vaccenyl acetate (cVA), a Drosophila pheromone, increased mating rates of Bactrocera dorsalis, but high concentrations of cVA inhibited mating, indicating a functional role of cVA in regulating mating behaviors in insect species other than Drosophila. Moreover, we demonstrated that group housing conditions had positive effects for B. dorsalis on their mating rates, responses toward cVA and cVA-mediated mating behaviors, which are dependent on the activity of c-AMP reponse element binding protein (CREB) binding protein (CBP). CONCLUSIONS Our data suggest that CBP-mediated plasticity in mating behavior and chemical recognition enables insects to adapt to different housing conditions and highlight the potential of cVA as an efficient agent in regulating mating behaviors in insect species other than Drosophila. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoyao Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuhua Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlong Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhiyan Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ziwei Xiao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Xie
- School of Life Sciences, Shaoxing University, Zhejiang, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Fowler EK, Leigh S, Rostant WG, Thomas A, Bretman A, Chapman T. Memory of social experience affects female fecundity via perception of fly deposits. BMC Biol 2022; 20:244. [PMID: 36310170 PMCID: PMC9620669 DOI: 10.1186/s12915-022-01438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/14/2022] [Indexed: 08/30/2023] Open
Abstract
Background Animals can exhibit remarkable reproductive plasticity in response to their social surroundings, with profound fitness consequences. The presence of same-sex conspecifics can signal current or future expected competition for resources or mates. Plastic responses to elevated sexual competition caused by exposure to same-sex individuals have been well-studied in males. However, much less is known about such plastic responses in females, whether this represents sexual or resource competition, or if it leads to changes in investment in mating behaviour and/or reproduction. Here, we used Drosophila melanogaster to measure the impact of experimentally varying female exposure to other females prior to mating on fecundity before and after mating. We then deployed physical and genetic methods to manipulate the perception of different social cues and sensory pathways and reveal the potential mechanisms involved. Results The results showed that females maintained in social isolation prior to mating were significantly more likely to retain unfertilised eggs before mating, but to show the opposite and lay significantly more fertilised eggs in the 24h after mating. More than 48h of exposure to other females was necessary for this social memory response to be expressed. Neither olfactory nor visual cues were involved in mediating fecundity plasticity—instead, the relevant cues were perceived through direct contact with the non-egg deposits left behind by other females. Conclusions The results demonstrate that females show reproductive plasticity in response to their social surroundings and can carry this memory of their social experience forward through mating. Comparisons of our results with previous work show that the nature of female plastic reproductive responses and the cues they use differ markedly from those of males. The results emphasise the deep divergence in how each sex realises its reproductive success. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01438-5.
Collapse
Affiliation(s)
- E. K. Fowler
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - S. Leigh
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - W. G. Rostant
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Thomas
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - A. Bretman
- grid.9909.90000 0004 1936 8403School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT UK
| | - T. Chapman
- grid.8273.e0000 0001 1092 7967School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
6
|
Fowler EK, Leigh S, Bretman A, Chapman T. Plastic responses of males and females interact to determine mating behavior. Evolution 2022; 76:2116-2129. [PMID: 35880536 PMCID: PMC9544784 DOI: 10.1111/evo.14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 01/22/2023]
Abstract
Individuals can respond plastically to variation in their social environment. However, each sex may respond to different cues and contrasting aspects of competition. Theory suggests that the plastic phenotype expressed by one sex can influence evolutionary dynamics in the other, and that plasticity simultaneously expressed by both sexes can exert sex-specific effects on fitness. However, data are needed to test this theory base. Here, we examined whether the simultaneous expression of adaptive plasticity by both sexes of Drosophila melanogaster fruit flies in response to their respective social environments interacts to determine the value of key reproductive traits (mating latency, duration, and fecundity). To vary social environments, males were kept alone, or with same sex rivals, and females were kept alone, in same-sex, or mixed-sex groups. Matings were then conducted between individuals from all of these five social treatments in all combinations, and the resulting reproductive traits measured in both "choice" and "no-choice" assays. Mating latency was determined by an interaction between the plastic responses of both sexes to their social environments. Interestingly, the mating latency response occurred in opposing directions in the different assays. In females exposed to same-sex social treatments, mating latency was more rapid with rival treatment males in the choice assays, but slower with those same males in no-choice assays. In contrast, mating duration was determined purely by responses of males to their social environments, and fecundity purely by responses of females. Collectively, the results show that plastic responses represent an important and novel facet of sexual interactions.
Collapse
Affiliation(s)
- Emily K. Fowler
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Stewart Leigh
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Amanda Bretman
- School of Biology, Faculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUnited Kingdom
| | - Tracey Chapman
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
7
|
O'Brien EK, Walter GM, Bridle J. Environmental variation and biotic interactions limit adaptation at ecological margins: lessons from rainforest Drosophila and European butterflies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210017. [PMID: 35184592 PMCID: PMC8859522 DOI: 10.1098/rstb.2021.0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
Models of local adaptation to spatially varying selection predict that maximum rates of evolution are determined by the interaction between increased adaptive potential owing to increased genetic variation, and the cost genetic variation brings by reducing population fitness. We discuss existing and new results from our laboratory assays and field transplants of rainforest Drosophila and UK butterflies along environmental gradients, which try to test these predictions in natural populations. Our data suggest that: (i) local adaptation along ecological gradients is not consistently observed in time and space, especially where biotic and abiotic interactions affect both gradient steepness and genetic variation in fitness; (ii) genetic variation in fitness observed in the laboratory is only sometimes visible to selection in the field, suggesting that demographic costs can remain high without increasing adaptive potential; and (iii) antagonistic interactions between species reduce local productivity, especially at ecological margins. Such antagonistic interactions steepen gradients and may increase the cost of adaptation by increasing its dimensionality. However, where biotic interactions do evolve, rapid range expansion can follow. Future research should test how the environmental sensitivity of genotypes determines their ecological exposure, and its effects on genetic variation in fitness, to predict the probability of evolutionary rescue at ecological margins. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Eleanor K. O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Greg M. Walter
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
8
|
Churchill ER, Dytham C, Bridle JR, Thom MDF. Social and physical environment independently affect oviposition decisions in Drosophila. Behav Ecol 2021; 32:1391-1399. [PMID: 34949961 PMCID: PMC8691557 DOI: 10.1093/beheco/arab105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/23/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
In response to environmental stimuli, including variation in the presence of conspecifics, genotypes show highly plastic responses in behavioral and physiological traits influencing reproduction. Although extensively documented in males, such female responses are rather less studied. We expect females to be highly responsive to environmental variation and to differentially allocate resources to increase offspring fitness, given the major contribution of mothers to offspring number, size, and developmental conditions. Using Drosophila melanogaster, we (a) manipulate exposure to conspecific females, which mothers could use to anticipate the number of potential mates and larval density, and; (b) test how this interacts with the spatial distribution of potential oviposition sites, with females from higher densities expected to prefer clustered resources that can support a larger number of larvae. We found that high density females were slower to start copulating and reduced their copulation duration, the opposite effect to that observed in males. There was a parallel, perhaps related, effect on egg production: females previously housed in groups laid fewer eggs than those housed in solitude. Resource patchiness also influenced oviposition behavior: females preferred aggregated substrate, which attracted more females to lay eggs. However, we found no interaction between prior housing conditions and resource patchiness, indicating that females did not perceive the value of different resource distributions differently when exposed to environments that could signal expected levels of larval competition. We show that, although exposure to consexual competition changes copulatory behaviors of females, the distribution of oviposition resources has a greater effect on oviposition decisions.
Collapse
Affiliation(s)
- Emily R Churchill
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Jon R Bridle
- Department for Genetics, Evolution and Environment, University College London, London, UK
| | - Michael D F Thom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|