1
|
Chan AHH, Dunning J, Beck KB, Burke T, Chik HYJ, Dunleavy D, Evans T, Ferreira A, Fourie B, Griffith SC, Hillemann F, Schroeder J. Animal social networks are robust to changing association definitions. Behav Ecol Sociobiol 2025; 79:26. [PMID: 39927187 PMCID: PMC11802709 DOI: 10.1007/s00265-025-03559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025]
Abstract
The interconnecting links between individuals in an animal social network are often defined by discrete, directed behaviours, but where these are difficult to observe, a network link (edge) may instead be defined by individuals sharing a space at the same time, which can then be used to infer a social association. The method by which these associations are defined should be informed by the biological significance of edges, and therefore often vary between studies. Identifying an appropriate measure of association remains a challenge to behavioural ecologists. Here, we use automatically recorded feeder visit data from four bird systems to compare three methods to identify a social association: (1) strict time-window, (2) co-occurrence in a group, and (3) arrival-time. We tested the similarity of the resulting networks by comparing the repeatability and sensitivity of individuals' social traits (network degree, strength, betweenness). We found that networks constructed using different methods but applying similar, ecologically relevant definitions of associations based on individuals' spatio-temporal co-occurrence, showed similar characteristics. Our findings suggest that the different methods to construct animal social networks are comparable, but result in subtle differences driven by species biology and feeder design. We urge researchers to carefully evaluate the ecological context of their study systems when making methodological decisions. Specifically, researchers in ecology and evolution should carefully consider the biological relevance of an edge in animal social networks, and the implications of adopting different definitions. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-025-03559-7.
Collapse
Affiliation(s)
- Alex Hoi Hang Chan
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Collective Behaviour, Max Planck Institute of Animal Behaviour, Konstanz, Germany
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Jamie Dunning
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kristina B Beck
- Department of Biology, Edward Grey Institute, University of Oxford, Oxford, UK
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Heung Ying Janet Chik
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Daniel Dunleavy
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| | - Tim Evans
- Center for Complexity Science, Imperial College London, London, UK
| | - André Ferreira
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
| | - Babette Fourie
- Centre d’Ecologie Fonctionnelle et Evolutive, University Montpellier, Montpellier, France
- Centro de Investigação em Biodiversidade e Recursos Genéticos, University of Porto, Porto, Portugal
| | | | | | - Julia Schroeder
- Department of Life Sciences, Imperial College London, Silwood park, Ascot, UK
| |
Collapse
|
2
|
Maxwell LM, Walsh J, Olsen BJ, Kovach AI. Pre- and Post-Copulatory Sexual Traits Influence Male Fitness Across a Mosaic Hybrid Zone. Ecol Evol 2025; 15:e70935. [PMID: 39991451 PMCID: PMC11847615 DOI: 10.1002/ece3.70935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Primary and secondary male sexual traits can influence the interspecific interactions of hybridizing populations, yielding fitness consequences and either promoting or restricting gene flow. In this study, we evaluated the relative male fitness of two species of hybridizing tidal marsh endemics: saltmarsh (Ammospiza caudacutus) and Nelson's sparrows (A. nelsoni) and assessed the effects of male condition and competitive ability on resulting patterns of paternity and gene flow. We compared reproductive success (number of offspring sired) among saltmarsh, Nelson's, and hybrid sparrow males (n = 125) and modeled male fitness in relation to measured pre-copulatory (body size, fat scores, and muscle scores) and post-copulatory (cloacal protuberance (CP) volume and sperm length) male sexual traits across two sites within the center of the hybrid zone. We found saltmarsh sparrows had higher levels of skew in fertilization success than Nelson's and greater reproductive output than both Nelson's and hybrids, suggesting interspecific competition may occur. Body size was the best predictor of reproductive success, independent of male genotypes, providing evidence for a role of pre-copulatory sexual selection. We also found evidence of post-copulatory sexual selection and sperm competition contributing to patterns of hybridization, with CP volume and sperm length increasing with number of offspring sired. Differential mean fitness by species may influence patterns of hybridization and has the potential to drive asymmetrical introgression; however, the drivers of male fitness differed between species and sites, suggesting the level of sexual selection and resulting patterns of gene flow are context dependent and not stable across a small sptatial scale within the center of this mosaic hybrid zone. Overall, few interspecific offspring and nearly equal backcrossing in both parental species within the center of the hybrid zone suggest mechanisms such as reinforcement exist to limit hybridization and minimize asymmetric introgression.
Collapse
Affiliation(s)
- Logan M. Maxwell
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| | - Jennifer Walsh
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyIthacaNew YorkUSA
| | - Brian J. Olsen
- School of Biology & EcologyUniversity of MaineOronoMaineUSA
| | - Adrienne I. Kovach
- Department of Natural Resources and the EnvironmentUniversity of New HampshireDurhamNew HampshireUSA
| |
Collapse
|
3
|
Lackey ACR, Scordato ESC, Keagy J, Tinghitella RM, Heathcote RJP. The role of mate competition in speciation and divergence: a systematic review. J Evol Biol 2024; 37:1225-1243. [PMID: 39276025 DOI: 10.1093/jeb/voae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations-mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, KY, United States
| | | | - Jason Keagy
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Robert J P Heathcote
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Yan JL, Dobbin ML, Dukas R. Sexual conflict and sexual networks in bed bugs: the fitness cost of traumatic insemination, female avoidance and male mate choice. Proc Biol Sci 2024; 291:20232808. [PMID: 39016237 PMCID: PMC11253432 DOI: 10.1098/rspb.2023.2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 07/18/2024] Open
Abstract
Sexual conflict is prevalent among animals and is primarily caused by the fact that the optimal mating rates are often higher in males than in females. While there is a growing appreciation that females can also gain from multiple matings, we still know relatively little about which sex controls the observed mating rates and how close it is to the optimal female mating rates. To address this issue, we tracked female bed bugs (Cimex lectularius) inseminated daily versus weekly and found that weekly inseminated females lived longer and produced over 50% more offspring. In a follow-up experiment employing a social network framework, we placed 24 bed bugs into a semi-naturalistic arena and recorded all sexual interactions. While recently inseminated females did not avoid males more often, they were more frequently rejected by males. Finally, we tracked avoidance behaviour in a single cohort of female bed bugs as they received six successive daily inseminations. Avoidance rates increased and insemination durations decreased with increasing number of prior inseminations. Overall, our results indicate high costs of polyandry. Although females possess some plastic avoidance strategies, the observed rates of insemination fall closer to the male rather than female optimum.
Collapse
Affiliation(s)
- Janice L. Yan
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Maggie L. Dobbin
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
McDonald GC. The impact of small groups on pre- and postcopulatory sexual selection in polyandrous populations. Ecol Evol 2023; 13:e10057. [PMID: 37153025 PMCID: PMC10154804 DOI: 10.1002/ece3.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Sexual selection is a key evolutionary force but varies widely between populations. Two key factors that influence sexual selection are the extent to which females copulate with multiple males (polyandry) and variation in the social environment. Increasing research demonstrates populations are structured by complex socio-sexual networks, and the structure of these networks can influence sexual selection by shaping the relationship between male precopulatory mating success and the intensity of postcopulatory competition. However, comparatively less attention has been dedicated to the influence of group structure on sexual selection and how differences in the size of groups may impact on the relative force of pre- and postcopulatory sexual selection in polyandrous populations. The presence of groups (i.e., group structure) and the size of groups varies widely in nature and forms an implicit part of much experimental sexual selection research under laboratory conditions. Here I use simulations of mating competition within populations that vary in the size of groups they contain, to show that variation in group size, and in particular small groups, can influence sexual selection. Specifically, I show that null expectations for the operation of pre- and postcopulatory sexual selection is governed by the size of groups within populations because smaller group sizes constrain the structure of sexual networks leading to reinforcing episodes of pre- and postcopulatory sexual selection. Given broad variation in group structure in nature and the tendency for experimental sexual selection research to study replicate small groups, these effects have implications for our understanding of the operation of sexual selection in polyandrous populations.
Collapse
Affiliation(s)
- Grant C. McDonald
- Department of EcologyUniversity of Veterinary Medicine BudapestBudapestHungary
| |
Collapse
|
6
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
7
|
Matzke M, Rossi A, Tuni C. Pre- and post-copulatory sexual selection increase offspring quality but impose survival costs to female field crickets. J Evol Biol 2023; 36:296-308. [PMID: 36484616 DOI: 10.1111/jeb.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022]
Abstract
Whether sexual selection increases or decreases fitness is under ongoing debate. Sexual selection operates before and after mating. Yet, the effects of each episode of selection on individual reproductive success remain largely unexplored. We ask how disentangled pre- and post-copulatory sexual selection contribute to fitness of field crickets Gryllus bimaculatus. Treatments allowed exclusively for (i) pre-copulatory selection, with males fighting and courting one female, and the resulting pair breeding monogamously, (ii) post-copulatory selection, with females mating consecutively to multiple males and (iii) relaxed selection, with enforced pair monogamy. While standardizing the number of matings, we estimated a number of fitness traits across treatments and show that females experiencing sexual selection were more likely to reproduce, their offspring hatched sooner, developed faster and had higher body mass at adulthood, but females suffered survival costs. Interestingly, we found no differences in fitness of females or their offspring from pre- and post-copulatory sexual selection treatments. Our findings highlight the potential for sexual selection in enhancing indirect female fitness while concurrently imposing direct survival costs. By potentially outweighing these costs, increased offspring quality could lead to beneficial population-level consequences of sexual selection.
Collapse
Affiliation(s)
| | - Aurora Rossi
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Cristina Tuni
- Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
8
|
Ojer J, Pastor-Satorras R. Flocking dynamics mediated by weighted social networks. Phys Rev E 2022; 106:044601. [PMID: 36397465 DOI: 10.1103/physreve.106.044601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We study the effects of animal social networks with a weighted pattern of interactions on the flocking transition exhibited by models of self-organized collective motion. We consider variations of traditional models of collective motion in which interactions between individuals are mediated by static complex weighted networks, representing patterns of social interactions. For a model representing dynamics on a one-dimensional substrate, application of a heterogeneous mean-field theory provides a phase diagram as function of the heterogeneity of the network connections and the correlations between weights and degree. In this diagram we observe two phases, one corresponding to the presence of a transition and other to a transition suppressed in an always ordered system, already observed in the nonweighted case. Interestingly, a third phase, with no transition in an always disordered state, is also obtained. These predictions, numerically recovered in computer simulations, are also fulfilled for the more realistic Vicsek model, with movement in a two-dimensional space. Additionally, we observe at finite network sizes the presence of a maximum threshold for particular weight configurations, indicating that it is possible to tune weights to achieve a maximum resilience to noise effects. Simulations in real weighted animal social networks show that, in general, the presence of weights diminishes the value of the flocking threshold, thus increasing the fragility of the flocking state. The shift in the threshold is observed to depend on the heterogeneity of the weight pattern.
Collapse
Affiliation(s)
- Jaume Ojer
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord, 08034 Barcelona, Spain
| | - Romualdo Pastor-Satorras
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord, 08034 Barcelona, Spain
| |
Collapse
|
9
|
Tregenza T, Niemelä PT, Rodríguez-Muñoz R, Hopwood PE. Environment and mate attractiveness in a wild insect. Behav Ecol 2022; 33:999-1006. [PMID: 36382230 PMCID: PMC9639583 DOI: 10.1093/beheco/arac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
The role of female choice in sexual selection is well established, including the recognition that females choose their mates based on multiple cues. These cues may include intrinsic aspects of a male's phenotype as well as aspects of the environment associated with the male. The role of the spatial location of a potential mate has been well studied in territorial vertebrates. However, despite their role as laboratory models for studies of sexual selection, the potential for insects to choose their mates on the basis of location has scarcely been studied. We studied a natural population of individually tagged crickets (Gryllus campestris) in a meadow in Northern Spain. Adults typically move between burrows every few days, allowing us to examine how pairing success of males can be predicted by the burrow they occupy, independent of their own characteristics. We observed the entirety of ten independent breeding seasons to provide replication and to determine whether the relative importance of these factors is stable across years. We find that both male ID and the ID his burrow affect the likelihood that he is paired with a female, but the burrow has a consistently greater influence. Furthermore, the two factors interact: the relative attractiveness of an individual male depends on which burrow he occupies. Our finding demonstrates a close interaction between naturally and sexually selected traits. It also demonstrates that mate choice studies may benefit from considering not only obvious secondary sexual traits, but also more cryptic traits such as microhabitat choice.
Collapse
Affiliation(s)
- Tom Tregenza
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Petri T Niemelä
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari, Biocenter, Helsinki, Finland
| | - Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| | - Paul E Hopwood
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
10
|
Brodie ED, Cook PA, Costello RA, Formica VA. Phenotypic Assortment Changes the Landscape of Selection. J Hered 2021; 113:91-101. [PMID: 34878556 DOI: 10.1093/jhered/esab062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 10/05/2021] [Indexed: 11/14/2022] Open
Abstract
Social interactions with conspecifics can dramatically affect an individual's fitness. The positive or negative consequences of interacting with social partners typically depend on the value of traits that they express. These pathways of social selection connect the traits and genes expressed in some individuals to the fitness realized by others, thereby altering the total phenotypic selection on and evolutionary response of traits across the multivariate phenotype. The downstream effects of social selection are mediated by the patterns of phenotypic assortment between focal individuals and their social partners (the interactant covariance, Cij', or the multivariate form, CI). Depending on the sign and magnitude of the interactant covariance, the direction of social selection can be reinforced, reversed, or erased. We report estimates of Cij' from a variety of studies of forked fungus beetles to address the largely unexplored questions of consistency and plasticity of phenotypic assortment in natural populations. We found that phenotypic assortment of male beetles based on body size or horn length was highly variable among subpopulations, but that those differences also were broadly consistent from year to year. At the same time, the strength and direction of Cij' changed quickly in response to experimental changes in resource distribution and social properties of populations. Generally, interactant covariances were more negative in contexts in which the number of social interactions was greater in both field and experimental situations. These results suggest that patterns of phenotypic assortment could be important contributors to variability in multilevel selection through their mediation of social selection gradients.
Collapse
Affiliation(s)
- Edmund D Brodie
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Phoebe A Cook
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Robin A Costello
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
11
|
Beck KB, Farine DR, Kempenaers B. Social network position predicts male mating success in a small passerine. Behav Ecol 2021; 32:856-864. [PMID: 34690546 PMCID: PMC8528538 DOI: 10.1093/beheco/arab034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/15/2022] Open
Abstract
Individuals differ in the quantity and quality of their associations with conspecifics. The resulting variation in the positions that individuals occupy within their social environment can affect several aspects of life history, including reproduction. While research increasingly shows how social factors can predict dyadic mating patterns (who will breed with whom), much less is known about how an individual's social position affects its overall likelihood to acquire mating partner(s). We studied social networks of socially monogamous blue tits (Cyanistes caeruleus) to investigate whether the number and strength of connections to opposite-sex conspecifics, the ratio between same- and opposite-sex connections, and the tendency to move between social groups in the months prior to breeding affect individuals' success in acquiring 1) a breeding partner and 2) an extrapair partner. After controlling for differences in spatial location, we show that males that moved more often between social groups were more likely to acquire a breeding partner. Moreover, adult males that associated with more females were more likely to sire extrapair young. The number of female associates also predicted the proportion of familiar female breeding neighbors, suggesting that familiarity among neighbors may facilitate opportunities for extrapair matings. In females, none of the network metrics significantly predicted the likelihood of acquiring a breeding or extrapair partner. Our study suggests that the positioning of males within their social environment prior to breeding can translate into future mating success, adding an important new dimension to studies of (extrapair) mating behavior.
Collapse
Affiliation(s)
- Kristina B Beck
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319 Seewiesen, Germany
| |
Collapse
|
12
|
Greenway EV, Hamel JA, Miller CW. Exploring the effects of extreme polyandry on estimates of sexual selection and reproductive success. Behav Ecol 2021. [DOI: 10.1093/beheco/arab081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Multiple mating by females can dramatically alter selection on males by creating indirect interactions between rivals via sperm competition. Exactly how this behavior alters the relationship between male mating and fertilization success depends on multiple factors: re-mating frequency, sperm usage patterns, and mating assortment (the extent to which the most promiscuous individuals mate with each other). Here, we explore the role these elements play in determining sexual selection in a highly polygyandrous species, the squash bug Anasa tristis. Using replicated semi-natural enclosures, in which individuals were able to freely interact for a 2-week period, we tracked matings between individuals and subsequent female offspring production. Multiple mating was extremely common, resulting in very high levels of sperm competition intensity. However, network analysis revealed that the most promiscuous males mated with less polyandrous females, and therefore experienced lower levels of sperm competition. As a result, estimated male reproductive success increased with mating success, but this relationship varied according to the mode of sperm utilization with which it was calculated. Furthermore, females with more mating partners produced more offspring, suggesting they also benefit from mating multiply. Our findings highlight that polyandry has numerous and complex effects on sexual selection which may only be exposed when examined under naturalistic conditions.
Collapse
Affiliation(s)
- E V(Ginny) Greenway
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jennifer A Hamel
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
- Department of Biology, Elon University, Elon, NC, USA
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Cantor M, Maldonado‐Chaparro AA, Beck KB, Brandl HB, Carter GG, He P, Hillemann F, Klarevas‐Irby JA, Ogino M, Papageorgiou D, Prox L, Farine DR. The importance of individual‐to‐society feedbacks in animal ecology and evolution. J Anim Ecol 2020; 90:27-44. [DOI: 10.1111/1365-2656.13336] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Maurício Cantor
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
- Centro de Estudos do Mar Universidade Federal do Paraná Pontal do Paraná Brazil
| | - Adriana A. Maldonado‐Chaparro
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Kristina B. Beck
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Hanja B. Brandl
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Gerald G. Carter
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| | - Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Friederike Hillemann
- Edward Grey Institute of Field Ornithology Department of Zoology University of Oxford Oxford UK
| | - James A. Klarevas‐Irby
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Department of Migration Max Planck Institute of Animal Behavior Konstanz Germany
| | - Mina Ogino
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Lea Prox
- Department of Biology University of Konstanz Konstanz Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology & Anthropology University of Göttingen Göttingen Germany
- Behavioral Ecology & Sociobiology Unit German Primate Center Göttingen Germany
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
14
|
Montana L, Rousseu F, Garant D, Festa-Bianchet M. Siring success in kangaroos: size matters for those in the right place at the right time. Behav Ecol 2020. [DOI: 10.1093/beheco/araa020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
In polygynous species, male reproductive success is predicted to be monopolized by a few dominant males. This prediction is often not supported, suggesting that ecological and alternative mating tactics influence siring success. The spatiotemporal distribution of individuals and the number of males competing for each receptive female are often overlooked because they are difficult to monitor in wild animals. We examined how spatial overlap of female–male pairs, the time spent by a male on the breeding site, number of competitors, and morphological traits influence siring probability in eastern gray kangaroos (Macropus giganteus). We compared home range overlap for 12 208 dam–male pairs and 295 known dam–sire pairs to define local competitive groups and to estimate every male’s opportunity to sire the young of each female. We compared models considering morphological traits relative to the entire population or to local competitive groups. Including local competition improved model performance because it estimated the intensity of competition and compared each male’s morphological traits to those of its competitive group. Regardless of size, males can increase their probability to sire a young by increasing their mating opportunity relative to the mother. We underline the importance of considering spatial structure to assess the intensity of competition in species where males cannot equally access all females in a population. The estimation of mating opportunity and intensity of local competition improves our understanding of how morphological traits affect siring success when each mating event involves a different set of competing males, a characteristic of most wild species.
Collapse
Affiliation(s)
- Luca Montana
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada
| | - François Rousseu
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada
- Centre d’étude de la forêt, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada
| | - Dany Garant
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada
| | - Marco Festa-Bianchet
- Département de biologie, Université de Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, Québec, Canada
| |
Collapse
|
15
|
Gallego-Abenza M, Mathevon N, Wheatcroft D. Experience modulates an insect's response to anthropogenic noise. Behav Ecol 2020; 31:90-96. [PMID: 32372854 PMCID: PMC7191250 DOI: 10.1093/beheco/arz159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
In response to anthropogenic noise, vertebrates express modified acoustic communication signals either through individual plasticity or local population adaptation. In contrast, how insects respond to this stressor is poorly studied. Field crickets Gryllus bimaculatus use acoustic signals to attract and locate mates and are commonly found in noisy roadside environments, offering a powerful system to study the effects of anthropogenic noise on insect communication. Rapid repetition of sexual calls (chirps) is essential to attract females, but calling incurs energetic costs and attracts predators. As a result, males are predicted to reduce calling rates when background noise is high. Here, we combine observations and experimental playbacks to show that the responses of field cricket males to anthropogenic noise also depend on their previous experience with passing cars. First, we show that males living on highway edges decrease their chirp rate in response to passing cars. To assess whether this behavioral response depends on previous exposure to car noise, we then broadcast recordings of car noise to males located at different distances from the road and, therefore, with different previous exposure to car noise. Although all tested individuals responded to broadcasted traffic noise, males closest to the road decreased their chirp rate less than individuals calling further from the road. These results suggest that regular exposure to anthropogenic noise may decrease individuals' sensitivity and behavioral responses to noise, allowing them to maintain effective signaling rates. Behavioral plasticity modulated by experience may thus allow some insect species to cope with human-induced environmental stressors.
Collapse
Affiliation(s)
- Mario Gallego-Abenza
- Konrad Lorenz Forschungsstelle, Core Facility for Behaviour and Cognition, University of Vienna, Austria
- Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Nicolas Mathevon
- Equipe Neuro-Ethologie Sensorielle, ENES/Neuro-PSI CNRS UMR9197, University of Lyon, Saint-Etienne, France
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Tuni C, Mizerakis V, Dingemanse NJ. Experimental evidence that winning or losing a fight does not affect sperm quality in a field cricket. Ethology 2019. [DOI: 10.1111/eth.12943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cristina Tuni
- Behavioural Ecology, Department of Biology Ludwig Maximilian University of Munich Munich Germany
| | | | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology Ludwig Maximilian University of Munich Munich Germany
| |
Collapse
|
17
|
Fisher DN, Rodríguez-Muñoz R, Tregenza T. Dynamic networks of fighting and mating in a wild cricket population. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
|
19
|
Wey TW, Kelly CD. Refuge size variation and potential for sperm competition in Wellington tree weta. Curr Zool 2019; 65:213-223. [PMID: 31263481 PMCID: PMC6595427 DOI: 10.1093/cz/zoy050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Ecological variation in resources can influence the distribution and encounter rates of potential mates and competitors and, consequently, the opportunity for sexual selection. Factors that influence the likelihood that females mate multiply could also affect the potential for sperm competition. In Wellington tree weta (Hemideina crassidens, plural "weta"), the size of tree cavities (called galleries) used as refuges affects weta distribution and thus the opportunity for sexual selection and selection on male weaponry size. We examined the predicted effects of gallery size and male weaponry size on the potential for sperm competition. We asked if gallery size influenced the potential for multiple mating by females and potential for sperm competition, if male weaponry size was associated with relative expected sperm competition intensity (SCI), and if estimated male mating success was correlated with potential SCI. To quantify relative competitive environments of males, we created and analyzed networks of potential competitors based on which males could have mated with the same females. We found that small galleries had higher potential for female multiple mating and higher potential for sperm competition. Size of male weaponry was not associated with expected relative SCI. Regardless of gallery size, males with more potential mates were expected to face lower expected relative sperm competition. Thus, in this system, variation in the size of available refuges is likely to influence the potential for sperm competition, in a way that we might expect to increase variation in overall reproductive success.
Collapse
Affiliation(s)
- Tina W Wey
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - Clint D Kelly
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Quebec, Canada
| |
Collapse
|
20
|
Zonana DM, Gee JM, Bridge ES, Breed MD, Doak DF. Assessing Behavioral Associations in a Hybrid Zone through Social Network Analysis: Complex Assortative Behaviors Structure Associations in a Hybrid Quail Population. Am Nat 2019; 193:852-865. [PMID: 31094596 DOI: 10.1086/703158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Behavior can strongly influence rates and patterns of hybridization between animal populations and species. Yet few studies have examined reproductive behaviors in natural hybrid zones within the fine-scale social context in which they naturally occur. We use radio-frequency identification tags with social network analyses to test whether phenotypic similarity in plumage and mass correlate with social behavior throughout a breeding season in a California and Gambel's quail hybrid zone. We use a novel approach to partition phenotypic variation in a way that does not confound differences between sexes and species, and we illustrate the complex ways that phenotype and behavior structure the social environment, mating opportunities, and male-male associations. Associations within the admixed population were random with respect to species-specific plumage but showed strong patterns of assortment based on sexually dimorphic plumage, monomorphic plumage, and mass. Weak behavioral reproductive isolation in this admixed population may be the result of complex patterns of phenotypic assortment based on multiple traits rather than a lack of phenotypic discrimination. More generally, our results support the utility of social network analyses for analyzing behavioral factors affecting genetic exchange between populations and species.
Collapse
|
21
|
McDonald GC, Gardner A, Pizzari T. Sexual selection in complex communities: Integrating interspecific reproductive interference in structured populations. Evolution 2019; 73:1025-1036. [PMID: 30941751 DOI: 10.1111/evo.13726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The social structure of populations plays a key role in shaping variation in sexual selection. In nature, sexual selection occurs in communities of interacting species; however, heterospecifics are rarely included in characterizations of social structure. Heterospecifics can influence the reproductive outcomes of intrasexual competition by interfering with intraspecific sexual interactions (interspecific reproductive interference [IRI]). We outline the need for studies of sexual selection to incorporate heterospecifics as part of the social environment. We use simulations to show that classic predictions for the effect of social structure on sexual selection are altered by an interaction between social structure and IRI. This interaction has wide-ranging implications for patterns of sexual conflict and kin-selected reproductive strategies in socially structured populations. Our work bridges the gap between sexual selection research on social structure and IRI, and highlights future directions to study sexual selection in interacting communities.
Collapse
Affiliation(s)
- Grant C McDonald
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, 1077, Hungary
| | - Andy Gardner
- School of Biology, University of St. Andrews, St. Andrews, KY16 9TH, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
22
|
Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nat Commun 2019; 10:283. [PMID: 30655522 PMCID: PMC6336784 DOI: 10.1038/s41467-018-08113-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophila. Theory predicts that mating systems influence the relative strength of sexual selection before and after mating. Here, Morimoto and colleagues demonstrate that higher polyandry weakens precopulatory while strengthening post-copulatory sexual selection on males in Drosophila melanogaster.
Collapse
|
23
|
Rodríguez-Muñoz R, Boonekamp JJ, Liu XP, Skicko I, Fisher DN, Hopwood P, Tregenza T. Testing the effect of early-life reproductive effort on age-related decline in a wild insect. Evolution 2019; 73:317-328. [PMID: 30597559 PMCID: PMC6590129 DOI: 10.1111/evo.13679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
The disposable soma theory of ageing predicts that when organisms invest in reproduction they do so by reducing their investment in body maintenance, inducing a trade‐off between reproduction and survival. Experiments on invertebrates in the lab provide support for the theory by demonstrating the predicted responses to manipulation of reproductive effort or lifespan. However, experimental studies in birds and evidence from observational (nonmanipulative) studies in nature do not consistently reveal trade‐offs. Most species studied previously in the wild are mammals and birds that reproduce over multiple discrete seasons. This contrasts with temperate invertebrates, which typically have annual generations and reproduce over a single season. We expand the taxonomic range of senescence study systems to include life histories typical of most temperate invertebrates. We monitored reproductive effort, ageing, and survival in a natural field cricket population over ten years to test the prediction that individuals investing more in early‐reproduction senesce faster and die younger. We found no evidence of a trade‐off between early‐life reproductive effort and survival, and only weak evidence for a trade‐off with phenotypic senescence. We discuss the possibility that organisms with multiple discrete breeding seasons may have greater opportunities to express trade‐offs between reproduction and senescence.
Collapse
Affiliation(s)
- Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Jelle J Boonekamp
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Xing P Liu
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Ian Skicko
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - David N Fisher
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom.,Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St West, Hamilton, Ontario, L8S 4L8, Canada
| | - Paul Hopwood
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Tom Tregenza
- Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| |
Collapse
|
24
|
Andrade MC. Sexual selection and social context: Web-building spiders as emerging models for adaptive plasticity. ADVANCES IN THE STUDY OF BEHAVIOR 2019. [DOI: 10.1016/bs.asb.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Stanley CR, Liddiard Williams H, Preziosi RF. Female clustering in cockroach aggregations-A case of social niche construction? Ethology 2018. [DOI: 10.1111/eth.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina R. Stanley
- Department of Biological Sciences; University of Chester; Chester UK
- Faculty of Life Sciences; University of Manchester; Manchester UK
| | | | - Richard F. Preziosi
- Faculty of Life Sciences; University of Manchester; Manchester UK
- School of Science and the Environment; Manchester Metropolitan University; Manchester UK
| |
Collapse
|
26
|
Órfão I, Ojanguren AF, Barbosa M, Vicente L, Varela SA, Magurran AE. How pre- and postcopulatory sexual selection influence male mating decisions in a promiscuous species. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Bani-Yaghoub M, Reed A. A methodology to quantify the long-term changes in social networks of competing species. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2017.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Structure of sexual networks determines the operation of sexual selection. Proc Natl Acad Sci U S A 2017; 115:E53-E61. [PMID: 29255016 DOI: 10.1073/pnas.1710450115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual selection is a fundamental evolutionary process but remains debated, particularly in the complexity of polyandrous populations where females mate with multiple males. This lack of resolution is partly because studies have largely ignored the structure of the sexual network, that is, the pattern of mate sharing. Here, we quantify what we call mating assortment with network analysis to specify explicitly the indirect as well as direct relationships between partners. We first review empirical studies, showing that mating assortment varies considerably in nature, due largely to basic properties of the sexual network (size and density) and partly to nonrandom patterns of mate sharing. We then use simulations to show how variation in mating assortment interacts with population-level polyandry to determine the strength of sexual selection on males. Controlling for average polyandry, positive mating assortment, arising when more polygynous males tend to mate with more polyandrous females, drastically decreases the intensity of precopulatory sexual selection on male mating success (Bateman gradient) and the covariance between male mating success and postcopulatory paternity share. Average polyandry independently weakened some measures of sexual selection and crucially also impacted sexual selection indirectly by constraining mating assortment through the saturation of the mating network. Mating assortment therefore represents a key-albeit overlooked-modulator of the strength of sexual selection. Our results show that jointly considering sexual network structure and average polyandry more precisely describes the strength of sexual selection.
Collapse
|
29
|
McDonald GC, Spurgin LG, Fairfield EA, Richardson DS, Pizzari T. Pre- and postcopulatory sexual selection favor aggressive, young males in polyandrous groups of red junglefowl. Evolution 2017; 71:1653-1669. [PMID: 28369868 DOI: 10.1111/evo.13242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/18/2017] [Indexed: 12/31/2022]
Abstract
A challenge in evolutionary biology is to understand the operation of sexual selection on males in polyandrous groups, where sexual selection occurs before and after mating. Here, we combine fine-grained behavioral information (>41,000 interactions) with molecular parentage data to study sexual selection in replicated, age-structured groups of polyandrous red junglefowl, Gallus gallus. Male reproductive success was determined by the number of females mated (precopulatory sexual selection) and his paternity share, which was driven by the polyandry of his female partners (postcopulatory sexual selection). Pre- and postcopulatory components of male reproductive success covaried positively; males with high mating success also had high paternity share. Two male phenotypes affected male pre- and postcopulatory performance: average aggressiveness toward rival males and age. Aggressive males mated with more females and more often with individual females, resulting in higher sexual exclusivity. Similarly, younger males mated with more females and more often with individual females, suffering less intense sperm competition than older males. Older males had a lower paternity share even allowing for their limited sexual exclusivity, indicating they may produce less competitive ejaculates. These results show that-in these populations-postcopulatory sexual selection reinforces precopulatory sexual selection, consistently promoting younger and more aggressive males.
Collapse
Affiliation(s)
- Grant C McDonald
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Eleanor A Fairfield
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tommaso Pizzari
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Kuriwada T. Male–male courtship behaviour, not relatedness, affects the intensity of contest competition in the field cricket. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Fisher DN, Ilany A, Silk MJ, Tregenza T. Analysing animal social network dynamics: the potential of stochastic actor-oriented models. J Anim Ecol 2017; 86:202-212. [PMID: 28004848 PMCID: PMC6849756 DOI: 10.1111/1365-2656.12630] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/04/2016] [Indexed: 01/03/2023]
Abstract
Animals are embedded in dynamically changing networks of relationships with conspecifics. These dynamic networks are fundamental aspects of their environment, creating selection on behaviours and other traits. However, most social network‐based approaches in ecology are constrained to considering networks as static, despite several calls for such analyses to become more dynamic. There are a number of statistical analyses developed in the social sciences that are increasingly being applied to animal networks, of which stochastic actor‐oriented models (SAOMs) are a principal example. SAOMs are a class of individual‐based models designed to model transitions in networks between discrete time points, as influenced by network structure and covariates. It is not clear, however, how useful such techniques are to ecologists, and whether they are suited to animal social networks. We review the recent applications of SAOMs to animal networks, outlining findings and assessing the strengths and weaknesses of SAOMs when applied to animal rather than human networks. We go on to highlight the types of ecological and evolutionary processes that SAOMs can be used to study. SAOMs can include effects and covariates for individuals, dyads and populations, which can be constant or variable. This allows for the examination of a wide range of questions of interest to ecologists. However, high‐resolution data are required, meaning SAOMs will not be useable in all study systems. It remains unclear how robust SAOMs are to missing data and uncertainty around social relationships. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with dynamic network analyses likely to prove highly informative. Researchers can then extend the basic method to tackle a range of existing questions in ecology and explore novel lines of questioning.
Collapse
Affiliation(s)
- David N Fisher
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.,Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amiyaal Ilany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
32
|
Evans JP, Garcia-Gonzalez F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J Evol Biol 2016; 29:2338-2361. [PMID: 27520979 DOI: 10.1111/jeb.12960] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
It is well known that sexual selection can target reproductive traits during successive pre- and post-mating episodes of selection. A key focus of recent studies has been to understand and quantify how these episodes of sexual selection interact to determine overall variance in reproductive success. In this article, we review empirical developments in this field but also highlight the considerable variability in patterns of pre- and post-mating sexual selection, attributable to variation in patterns of resource acquisition and allocation, ecological and social factors, genotype-by-environment interaction and possible methodological factors that might obscure such patterns. Our aim is to highlight how (co)variances in pre- and post-mating sexually selected traits can be sensitive to changes in a range of ecological and environmental variables. We argue that failure to capture this variation when quantifying the opportunity for sexual selection may lead to erroneous conclusions about the strength, direction or form of sexual selection operating on pre- and post-mating traits. Overall, we advocate for approaches that combine measures of pre- and post-mating selection across contrasting environmental or ecological gradients to better understand the dynamics of sexual selection in polyandrous species. We also discuss some directions for future research in this area.
Collapse
Affiliation(s)
- J P Evans
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia
| | - F Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Animal Biology (M092), University of Western Australia, Crawley, WA, Australia.,Doñana Biological Station, Spanish Research Council CSIC, Sevilla, Spain
| |
Collapse
|
33
|
Fisher DN, Rodríguez-Muñoz R, Tregenza T. Wild cricket social networks show stability across generations. BMC Evol Biol 2016; 16:151. [PMID: 27464504 PMCID: PMC4964091 DOI: 10.1186/s12862-016-0726-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND A central part of an animal's environment is its interactions with conspecifics. There has been growing interest in the potential to capture these interactions in the form of a social network. Such networks can then be used to examine how relationships among individuals affect ecological and evolutionary processes. However, in the context of selection and evolution, the utility of this approach relies on social network structures persisting across generations. This is an assumption that has been difficult to test because networks spanning multiple generations have not been available. We constructed social networks for six annual generations over a period of eight years for a wild population of the cricket Gryllus campestris. RESULTS Through the use of exponential random graph models (ERGMs), we found that the networks in any given year were able to predict the structure of networks in other years for some network characteristics. The capacity of a network model of any given year to predict the networks of other years did not depend on how far apart those other years were in time. Instead, the capacity of a network model to predict the structure of a network in another year depended on the similarity in population size between those years. CONCLUSIONS Our results indicate that cricket social network structure resists the turnover of individuals and is stable across generations. This would allow evolutionary processes that rely on network structure to take place. The influence of network size may indicate that scaling up findings on social behaviour from small populations to larger ones will be difficult. Our study also illustrates the utility of ERGMs for comparing networks, a task for which an effective approach has been elusive.
Collapse
Affiliation(s)
- David N. Fisher
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
- Department for Integrative Biology, Summerlee Science Complex, University of Guelph, Guelph, N1G 2W1 ON Canada
| | - Rolando Rodríguez-Muñoz
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
| | - Tom Tregenza
- Centre for Ecology and Conservation, Penryn Campus, University of Exeter, Penryn, TR109FE Cornwall UK
| |
Collapse
|
34
|
Santostefano F, Wilson AJ, Araya-Ajoy YG, Dingemanse NJ. Interacting with the enemy: indirect effects of personality on conspecific aggression in crickets. Behav Ecol 2016. [DOI: 10.1093/beheco/arw037] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|