1
|
Horng JL, Hu YH, Chen H, Chou MY. Impacts of an environmental ototoxic pollutant on fish fighting behaviors. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110103. [PMID: 39653098 DOI: 10.1016/j.cbpc.2024.110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Numerous environmental pollutants exhibit ototoxicity and cause damage to the lateral line structures in fish, including the neuromast and its hair cells. The lateral line is used to detect hydrodynamic changes and is thought to play a significant role in aggressive interactions. Fighting behaviors in fish are crucial for establishing social hierarchy and obtaining limited resources. In this study, we ablated the function of hair cells using a commonly used ototoxin, neomycin, to evaluate the impact of this ototoxic pollutant on fighting behavior through damaging the lateral line. Our results showed that the number of wins and the duration of dyadic fight behavior decreased in zebrafish with lateral line ablation. These zebrafish also exhibited increased anxiety and biting frequencies. On the other hand, social preferences and fitness were not affected in lateral line-ablated zebrafish. In conclusion, the lateral line mechanosensory system is crucial for fish to gather sufficient information and make correct decisions during conflicts and fighting behaviors. Impairment of hair cell function can affect aggressive behaviors and decision-making in fish, subtly altering their behavioral patterns and leading to significant impacts on the aquatic ecosystem.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yu-Huan Hu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hsi Chen
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Jägers P, Herlitze S. Fast, bioluminescent blinks attract group members of the nocturnal flashlight fish Anomalops katoptron (Bleeker, 1856). Front Zool 2025; 22:1. [PMID: 39800736 PMCID: PMC11727482 DOI: 10.1186/s12983-024-00555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND During their nighttime shoaling, the flashlight fish Anomalops katoptron produce fascinating, bioluminescent blink patterns, which have been related to the localization of food, determination of nearest neighbor distance, and initiation of the shoal's movement direction. Information transfer e.g., via alarm signals is an important aspect in group living species especially when being under threat. In dark environments, bioluminescence has the potential to accurately transfer such information. Under threat A. katoptron show increased swimming speeds and a higher group cohesion accompanied by fast blink frequencies. RESULTS In this study we used a two-choice paradigm to test the preferences for typical blink characteristics e.g., frequency and duration. Our data show that individuals decided within short periods (< 4 s) for faster blink frequencies of artificial light organs and the preference for the higher blink frequencies became more pronounced as the difference between the presented frequencies increased. The preference correlated with the frequency rather than the duration. CONCLUSION Our study suggests that fast, bioluminescent blinks of light organs lead to aggregations of A. katoptron.
Collapse
Affiliation(s)
- Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, 44801, Bochum, Germany.
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, 44801, Bochum, Germany.
| |
Collapse
|
3
|
Bartashevich P, Herbert-Read JE, Hansen MJ, Dhellemmes F, Domenici P, Krause J, Romanczuk P. Collective anti-predator escape manoeuvres through optimal attack and avoidance strategies. Commun Biol 2024; 7:1586. [PMID: 39604444 PMCID: PMC11603345 DOI: 10.1038/s42003-024-07267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The collective dynamics of self-organised systems emerge from the decision rules agents use to respond to each other and to external forces. This is evident in groups of animals under attack from predators, where understanding collective escape patterns requires evaluating the risks and rewards associated with particular social rules, prey escape behaviour, and predator attack strategies. Here, we find that the emergence of the 'fountain effect', a common collective pattern observed when animal groups evade predators, is the outcome of rules designed to maximise individual survival chances given predator hunting decisions. Using drone-based empirical observations of schooling sardine prey (Sardinops sagax caerulea) attacked by striped marlin (Kajikia audax), we first find the majority of attacks produce fountain effects, with the dynamics of these escapes dependent on the predator's attack direction. Then, using a spatially-explicit agent-based model of predator-prey dynamics, we show that fountain manoeuvres can emerge from combining an optimal individual prey escape angle with social interactions. The escape rule appears to prioritise maximising the distance to the predator and creates conflict in the effectiveness of predators' attacks and the prey's avoidance, explaining the empirically observed predators' attack strategies and the fountain evasions produced by prey. Overall, we identify the proximate and ultimate explanations for fountain effects and more generally highlight that the collective patterns of self-organised predatory-prey systems can be understood by considering both social escape rules and attack strategies.
Collapse
Affiliation(s)
- Palina Bartashevich
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany.
| | - James E Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge, UK
- Aquatic Ecology Unit, Department of Biology, University of Lund, Lund, Sweden
| | - Matthew J Hansen
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Félicie Dhellemmes
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Paolo Domenici
- IBF-CNR, Consiglio Nazionale delle Ricerche, Area di Ricerca San Cataldo, Via G. Moruzzi No. 1, Pisa, 56124, Italy
| | - Jens Krause
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany
- Department of Fish Biology, Fisheries and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Romanczuk
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Yang Y, Kawafi A, Tong Q, Kague E, Hammond CL, Royall CP. Tuning collective behaviour in zebrafish with genetic modification. PLoS Comput Biol 2024; 20:e1012034. [PMID: 39466814 PMCID: PMC11542821 DOI: 10.1371/journal.pcbi.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Zebrafish collective behaviour is widely used to assess their physical and mental state, serving as a valuable tool to assess the impact of ageing, disease genetics, and the effect of drugs. The essence of these macroscopic phenomena can be represented by active matter models, where the individuals are abstracted as interactive self-propelling agents. The behaviour of these agents depends on a set of parameters in a manner reminiscent of those between the constituents of physical systems. In a few cases, the system may be controlled at the level of the individual constituents such as the interactions between colloidal particles, or the enzymatic behaviour of de novo proteins. Usually, however, while the collective behaviour may be influenced by environmental factors, it typically cannot be changed at will. Here, we challenge this scenario in a biological context by genetically modifying zebrafish. We thus demonstrate the potential of genetic modification in the context of controlling the collective behaviour of biological active matter systems at the level of the constituents, rather than externally. In particular, we probe the effect of the lack of col11a2 gene in zebrafish, which causes the early onset of osteoarthritis. The resulting col11a2 -/- zebrafish exhibited compromised vertebral column properties, bent their body less while swimming, and took longer to change their orientations. Surprisingly, a group of 25 mutant fish exhibited more orderly collective motion than the wildtype. We show that the collective behaviour of wildtype and col11a2 -/- zebrafish are captured with a simple active matter model, in which the mutant fish are modelled by self-propelling agents with a higher orientational noise on average. In this way, we demonstrate the possibility of tuning a biological system, changing the state space it occupies when interpreted with a simple active matter model.
Collapse
Affiliation(s)
- Yushi Yang
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Bristol, United Kingdom
| | - Abdelwahab Kawafi
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Qiao Tong
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
- Institute of Genetics and Cancer, Centre for Genomic and Experimental Medicine, University of Edinburgh, Crewe Road South, Edinburgh, United Kingdom
| | - Chrissy L. Hammond
- Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
5
|
Jägers P, Frischmuth T, Herlitze S. Correlation between bioluminescent blinks and swimming behavior in the splitfin flashlight fish Anomalops katoptron. BMC Ecol Evol 2024; 24:97. [PMID: 38987674 PMCID: PMC11234731 DOI: 10.1186/s12862-024-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The light organs of the splitfin flashlight fish Anomalops katoptron are necessary for schooling behavior, to determine nearest neighbor distance, and to feed on zooplankton under dim light conditions. Each behavior is coupled to context-dependent blink frequencies and can be regulated via mechanical occlusion of light organs. During shoaling in the laboratory individuals show moderate blink frequencies around 100 blinks per minute. In this study, we correlated bioluminescent blinks with the spatio-temporal dynamics of swimming profiles in three dimensions, using a stereoscopic, infrared camera system. RESULTS Groups of flashlight fish showed intermediate levels of polarization and distances to the group centroid. Individuals showed higher swimming speeds and curved swimming profiles during light organ occlusion. The largest changes in swimming direction occurred when darkening the light organs. Before A. katoptron exposed light organs again, they adapted a nearly straight movement direction. CONCLUSIONS We conclude that a change in movement direction coupled to light organ occlusion in A. katoptron is an important behavioral trait in shoaling of flashlight fish.
Collapse
Affiliation(s)
- Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr- University Bochum, 44801, Bochum, Germany.
| | - Timo Frischmuth
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr- University Bochum, 44801, Bochum, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr- University Bochum, 44801, Bochum, Germany
| |
Collapse
|
6
|
Tidswell BK, Veliko-Shapko A, Tytell ED. The role of vision and lateral line sensing for schooling in giant danios (Devario aequipinnatus). J Exp Biol 2024; 227:jeb246887. [PMID: 38680124 DOI: 10.1242/jeb.246887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
Schooling is a collective behavior that relies on a fish's ability to sense and respond to the other fish around it. Previous work has identified 'rules' of schooling - attraction to neighbors that are far away, repulsion from neighbors that are too close and alignment with neighbors at the correct distance - but we do not understand well how these rules emerge from the sensory physiology and behavior of individual fish. In particular, fish use both vision and their lateral lines to sense each other, but it is unclear how much they rely on information from these sensory modalities to coordinate schooling behavior. To address this question, we studied how the schooling of giant danios (Devario aequipinnatus) changes when they are unable to see or use their lateral lines. We found that giant danios were able to school without their lateral lines but did not school in darkness. Surprisingly, giant danios in darkness had the same attraction properties as fish in light when they were in close proximity, indicating that they could sense nearby fish with their lateral lines. However, they were not attracted to more distant fish, suggesting that long-distance attraction through vision is important for maintaining a cohesive school. These results help us expand our understanding of the roles that vision and the lateral line play in the schooling of some fish species.
Collapse
Affiliation(s)
- Ben K Tidswell
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Eric D Tytell
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
7
|
Zampetaki A, Yang Y, Löwen H, Royall CP. Dynamical order and many-body correlations in zebrafish show that three is a crowd. Nat Commun 2024; 15:2591. [PMID: 38519478 PMCID: PMC10959973 DOI: 10.1038/s41467-024-46426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Zebrafish constitute a convenient laboratory-based biological system for studying collective behavior. It is possible to interpret a group of zebrafish as a system of interacting agents and to apply methods developed for the analysis of systems of active and even passive particles. Here, we consider the effect of group size. We focus on two- and many-body spatial correlations and dynamical order parameters to investigate the multistate behavior. For geometric reasons, the smallest group of fish which can exhibit this multistate behavior consisting of schooling, milling and swarming is three. We find that states exhibited by groups of three fish are similar to those of much larger groups, indicating that there is nothing more than a gradual change in weighting between the different states as the system size changes. Remarkably, when we consider small groups of fish sampled from a larger group, we find very little difference in the occupancy of the state with respect to isolated groups, nor is there much change in the spatial correlations between the fish. This indicates that fish interact predominantly with their nearest neighbors, perceiving the rest of the group as a fluctuating background. Therefore, the behavior of a crowd of fish is already apparent in groups of three fish.
Collapse
Affiliation(s)
- Alexandra Zampetaki
- Institute for Applied Physics, TU Wien, A-1040, Wien, Austria.
- Institut für Theoretische Physik: Weiche Materie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| | - Yushi Yang
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.
| | - Hartmut Löwen
- Institut für Theoretische Physik: Weiche Materie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - C Patrick Royall
- Gulliver, UMR CNRS 7083, ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
8
|
Suire A, Kunita I, Harel R, Crofoot M, Mutinda M, Kamau M, Hassel JM, Murray S, Kawamura S, Matsumoto-Oda A. Estimating individual exposure to predation risk in group-living baboons, Papio anubis. PLoS One 2023; 18:e0287357. [PMID: 37939092 PMCID: PMC10631679 DOI: 10.1371/journal.pone.0287357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
In environments with multiple predators, vulnerabilities associated with the spatial positions of group-living prey are non-uniform and depend on the hunting styles of the predators. Theoretically, coursing predators follow their prey over long distances and attack open areas, exposing individuals at the edge of the group to predation risk more than those at the center (marginal predation). In contrast, ambush predators lurk unnoticed by their prey and appear randomly anywhere in the group; therefore, isolated individuals in the group would be more vulnerable to predators. These positions of vulnerability to predation are expected to be taken by larger-bodied males. Moreover, dominant males presumably occupy the center of the safe group. However, identifying individuals at higher predation risk requires both simultaneous recording of predator location and direct observation of predation events; empirical observations leave ambiguity as to who is at risk. Instead, several theoretical methods (predation risk proxies) have been proposed to assess predation risk: (1) the size of the individual 'unlimited domain of danger' based on Voronoi tessellation, (2) the size of the 'limited domain of danger' based on predator detection distance, (3) peripheral/center position in the group (minimum convex polygon), (4) the number and direction of others in the vicinity (surroundedness), and (5) dyadic distances. We explored the age-sex distribution of individuals in at-risk positions within a wild baboon group facing predation risk from leopards, lions, and hyenas, using Global Positioning System collars. Our analysis of the location data from 26 baboons revealed that adult males were consistently isolated at the edge of the group in all predation risk proxies. Empirical evidence from previous studies indicates that adult male baboons are the most frequently preyed upon, and our results highlights the importance of spatial positioning in this.
Collapse
Affiliation(s)
- Alexandre Suire
- Faculty of Global and Regional Studies, University of the Ryukyus, Okinawa, Japan
| | - Itsuki Kunita
- Faculty of Engineering, University of the Ryukyus, Okinawa, Japan
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Margaret Crofoot
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Maureen Kamau
- Smithsonian Conservation Biology Institute, Global Health Program, Washington, DC, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - James M. Hassel
- Smithsonian Conservation Biology Institute, Global Health Program, Washington, DC, United States of America
| | - Suzan Murray
- Smithsonian Conservation Biology Institute, Global Health Program, Washington, DC, United States of America
| | - Shoji Kawamura
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
9
|
MacGregor HEA, Ioannou CC. Shoaling behaviour in response to turbidity in three-spined sticklebacks. Ecol Evol 2023; 13:e10708. [PMID: 37941736 PMCID: PMC10630046 DOI: 10.1002/ece3.10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Many fresh and coastal waters are becoming increasingly turbid because of human activities, which may disrupt the visually mediated behaviours of aquatic organisms. Shoaling fish typically depend on vision to maintain collective behaviour, which has a range of benefits including protection from predators, enhanced foraging efficiency and access to mates. Previous studies of the effects of turbidity on shoaling behaviour have focussed on changes to nearest neighbour distance and average group-level behaviours. Here, we investigated whether and how experimental shoals of three-spined sticklebacks (Gasterosteus aculeatus) in clear (<10 Nephelometric Turbidity Units [NTU]) and turbid (~35 NTU) conditions differed in five local-level behaviours of individuals (nearest and furthest neighbour distance, heading difference with nearest neighbour, bearing angle to nearest neighbour and swimming speed). These variables are important for the emergent group-level properties of shoaling behaviour. We found an indirect effect of turbidity on nearest neighbour distances driven by a reduction in swimming speed, and a direct effect of turbidity which increased variability in furthest neighbour distances. In contrast, the alignment and relative position of individuals was not significantly altered in turbid compared to clear conditions. Overall, our results suggest that the shoals were usually robust to adverse effects of turbidity on collective behaviour, but group cohesion was occasionally lost during periods of instability.
Collapse
Affiliation(s)
- Hannah E. A. MacGregor
- Department of ZoologyUniversity of CambridgeCambridgeUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | |
Collapse
|
10
|
Ioannou CC, Laskowski KL. A multi-scale review of the dynamics of collective behaviour: from rapid responses to ontogeny and evolution. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220059. [PMID: 36802782 PMCID: PMC9939272 DOI: 10.1098/rstb.2022.0059] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/21/2023] Open
Abstract
Collective behaviours, such as flocking in birds or decision making by bee colonies, are some of the most intriguing behavioural phenomena in the animal kingdom. The study of collective behaviour focuses on the interactions between individuals within groups, which typically occur over close ranges and short timescales, and how these interactions drive larger scale properties such as group size, information transfer within groups and group-level decision making. To date, however, most studies have focused on snapshots, typically studying collective behaviour over short timescales up to minutes or hours. However, being a biological trait, much longer timescales are important in animal collective behaviour, particularly how individuals change over their lifetime (the domain of developmental biology) and how individuals change from one generation to the next (the domain of evolutionary biology). Here, we give an overview of collective behaviour across timescales from the short to the long, illustrating how a full understanding of this behaviour in animals requires much more research attention on its developmental and evolutionary biology. Our review forms the prologue of this special issue, which addresses and pushes forward understanding the development and evolution of collective behaviour, encouraging a new direction for collective behaviour research. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
| | - Kate L. Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Scott E, Edgley DE, Smith A, Joyce DA, Genner MJ, Ioannou CC, Hauert S. Lateral line morphology, sensory perception and collective behaviour in African cichlid fish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221478. [PMID: 36704254 PMCID: PMC9874273 DOI: 10.1098/rsos.221478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
The lateral line system of fishes provides cues for collective behaviour, such as shoaling, but it remains unclear how anatomical lateral line variation leads to behavioural differences among species. Here we studied associations between lateral line morphology and collective behaviour using two morphologically divergent species and their second-generation hybrids. We identify collective behaviours associated with variation in canal and superficial lateral line morphology, with closer proximities to neighbouring fish associated with larger canal pore sizes and fewer superficial neuromasts. A mechanistic understanding of the observed associations was provided by hydrodynamic modelling of an artificial lateral line sensor, which showed that simulated canal-based neuromasts were less susceptible to saturation during unidirectional movement than simulated superficial neuromasts, while increasing the canal pore size of the simulated lateral line sensor elevated sensitivity to vortices shed by neighbouring fish. Our results propose a mechanism behind lateral line flow sensing during collective behaviour in fishes.
Collapse
Affiliation(s)
- Elliott Scott
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| | - Duncan E. Edgley
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Alan Smith
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Domino A. Joyce
- Department of Biological and Marine Sciences, University of Hull, Hull HU6 7RX, UK
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Sabine Hauert
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
| |
Collapse
|
12
|
Sankey DWE. 'Selfish herders' finish last in mobile animal groups. Proc Biol Sci 2022; 289:20221653. [PMID: 36285496 PMCID: PMC9597400 DOI: 10.1098/rspb.2022.1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022] Open
Abstract
Predation is a powerful selective pressure and probably a driver of why many animal species live in groups. One key explanation for the evolution of sociality is the 'selfish herd' model, which describes how individuals who stay close to others effectively put neighbours between themselves and a predator to survive incoming attacks. This model is often illustrated with reference to herds of ungulates, schools of fish or flocks of birds. Yet in nature, when a predator strikes, herds are often found fleeing cohesively in the same direction, not jostling for position in the centre of the group. This paper highlights a critical assumption of the original model, namely that prey do not move in response to position of their predator. In this model, I relax this assumption and find that individuals who adopt 'selfish herd' behaviour are often more likely to be captured, because they end up at the back of a fleeing herd. By contrast, individuals that adopt a rule of 'neighbour to neighbour alignment' are able to avoid rearmost positions in a moving herd. Alignment is more successful than selfish herding across much of the parameter space, which may explain why highly aligned fleeing behaviour is commonly observed in nature.
Collapse
Affiliation(s)
- Daniel W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9FE, UK
| |
Collapse
|
13
|
Furuichi S, Kamimura Y, Suzuki M, Yukami R. Density-dependent attributes of schooling in small pelagic fishes. Naturwissenschaften 2022; 109:49. [DOI: 10.1007/s00114-022-01819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
|
14
|
Jolles JW, Sosna MMG, Mazué GPF, Twomey CR, Bak-Coleman J, Rubenstein DI, Couzin ID. Both prey and predator features predict the individual predation risk and survival of schooling prey. eLife 2022; 11:e76344. [PMID: 35852826 PMCID: PMC9348852 DOI: 10.7554/elife.76344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Predation is one of the main evolutionary drivers of social grouping. While it is well appreciated that predation risk is likely not shared equally among individuals within groups, its detailed quantification has remained difficult due to the speed of attacks and the highly dynamic nature of collective prey response. Here, using high-resolution tracking of solitary predators (Northern pike) hunting schooling fish (golden shiners), we not only provide insights into predator decision-making, but show which key spatial and kinematic features of predator and prey predict the risk of individuals to be targeted and to survive attacks. We found that pike tended to stealthily approach the largest groups, and were often already inside the school when launching their attack, making prey in this frontal 'strike zone' the most vulnerable to be targeted. From the prey's perspective, those fish in central locations, but relatively far from, and less aligned with, neighbours, were most likely to be targeted. While the majority of attacks were successful (70%), targeted individuals that did manage to avoid being captured exhibited a higher maximum acceleration response just before the attack and were further away from the pike's head. Our results highlight the crucial interplay between predators' attack strategy and response of prey underlying the predation risk within mobile animal groups.
Collapse
Affiliation(s)
- Jolle Wolter Jolles
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
- Centre for Ecological Research and Forestry Applications (CREAF)BarcelonaSpain
| | - Matthew MG Sosna
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Geoffrey PF Mazué
- School of Life and Environmental Sciences, University of SydneySydneyAustralia
| | - Colin R Twomey
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Joseph Bak-Coleman
- eScience Institute, University of WashingtonSeattleUnited States
- Center for an Informed Public, University of WashingtonSeattleUnited States
| | - Daniel I Rubenstein
- Department of Ecology and Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal BehaviorKonstanzGermany
- Department of Biology, University of KonstanzKonstanzGermany
- Centre for the Advanced Study of Collective Behaviour, University of KonstanzKonstanzGermany
| |
Collapse
|
15
|
Ecological decision-making: From circuit elements to emerging principles. Curr Opin Neurobiol 2022; 74:102551. [DOI: 10.1016/j.conb.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 01/05/2023]
|
16
|
Pertzelan A, Ariel G, Kiflawi M. Light flashes and the geometry of specular fish schools. J R Soc Interface 2022; 19:20210906. [PMID: 35730177 PMCID: PMC9214278 DOI: 10.1098/rsif.2021.0906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
The risk of predation presents a difficult challenge in environments that offer no physical shelter, such as the open waters of the world's seas. In the absence of hiding places, many marine fishes turn to two main anti-predator strategies: aggregation and camouflage, which, mostly, have been studied separately. Here, we consider both aspects together and examine the visual imprint of fish schools of different sizes and geometries, given that camouflage is attained by specular (mirror-like) skin texture. To do so, we developed ray-tracing simulations that model the passage of sunbeams as they go through an optically realistic aquatic environment and reflect off the skins of the fish. We find that due to frequent high-intensity specular reflections (light flashes), the marginal increase in detectability with increasing school size is significantly higher than previously estimated under the assumption of diffusive reflection. However, we also find that by increasing density and alignment the fish can mitigate the detectability of individuals, albeit at the expense of the detectability of the school as a whole. Our findings provide a new perspective on documented responses to threat by schooling pelagic fishes and underscore the importance of the optical signature of animals in structuring their behaviour.
Collapse
Affiliation(s)
- Assaf Pertzelan
- Faculty of Life Sciences, Ben Gurion University, PO Box 653, Beer-Sheva, 84105, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 52000, Israel
| | - Moshe Kiflawi
- Faculty of Life Sciences, Ben Gurion University, PO Box 653, Beer-Sheva, 84105, Israel
- The Interuniversity Institute for Marine Sciences at Eilat (IUI), Israel
| |
Collapse
|
17
|
Ioannou CC. Collective behaviour: When avoidance becomes a deterrent. Curr Biol 2022; 32:R123-R125. [DOI: 10.1016/j.cub.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Papadopoulou M, Hildenbrandt H, Sankey DWE, Portugal SJ, Hemelrijk CK. Self-organization of collective escape in pigeon flocks. PLoS Comput Biol 2022; 18:e1009772. [PMID: 35007287 PMCID: PMC8782486 DOI: 10.1371/journal.pcbi.1009772] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/21/2022] [Accepted: 12/19/2021] [Indexed: 11/22/2022] Open
Abstract
Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons' collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
Collapse
Affiliation(s)
- Marina Papadopoulou
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Hanno Hildenbrandt
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Daniel W. E. Sankey
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Charlotte K. Hemelrijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
|
20
|
Simulated encounters with a novel competitor reveal the potential for maladaptive behavioural responses to invasive species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractDuring the early stage of biological invasions, interactions occur between native and non-native species that do not share an evolutionary history. This can result in ecological naïveté, causing native species to exhibit maladaptive behavioural responses to novel enemies, leading to negative consequences for individual fitness and ecosystem function. The behavioural response of native to non-native species during novel encounters can determine the impact of non-native species, and restrict or facilitate their establishment. In this study we simulated novel encounters between a widespread invasive fish species, the Nile tilapia (Oreochromis niloticus), and a threatened native Manyara tilapia (Oreochromis amphimelas). In the first experiment single adult O. niloticus were presented with a stimulus chamber (a transparent plastic cylinder) which was empty during control trials and contained a pair of juvenile O. amphimelas in stimulus trials. In the second experiment, the reciprocal set up was used, with pairs of juvenile O. amphimelas as the focal species and adult O. niloticus as the stimulus. Both species approached the stimulus chamber more readily during stimulus trials, a behavioural response which would increase the prevalence of interspecific interactions in situ. This included physical aggression, observed from the competitively dominant O. niloticus towards O. amphimelas. Despite an initial lack of fear shown by O. amphimelas, close inspection of the stimulus chamber often resulted in an energetically costly dart response. Under field conditions we predict that naïve native individuals may readily approach O. niloticus, increasing the likelihood of interactions and exacerbating widely reported negative outcomes.
Collapse
|
21
|
MacGregor HEA, Ioannou CC. Collective motion diminishes, but variation between groups emerges, through time in fish shoals. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210655. [PMID: 34703618 PMCID: PMC8527212 DOI: 10.1098/rsos.210655] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive interest in the dynamic interactions between individuals that drive collective motion in animal groups, the dynamics of collective motion over longer time frames are understudied. Using three-spined sticklebacks, Gasterosteus aculeatus, randomly assigned to 12 shoals of eight fish, we tested how six key traits of collective motion changed over shorter (within trials) and longer (between days) timescales under controlled laboratory conditions. Over both timescales, groups became less social with reduced cohesion, polarization, group speed and information transfer. There was consistent inter-group variation (i.e. collective personality variation) for all collective motion parameters, but groups also differed in how their collective motion changed over days in their cohesion, polarization, group speed and information transfer. This magnified differences between groups, suggesting that over time the 'typical' collective motion cannot be easily characterized. Future studies are needed to understand whether such between-group differences in changes over time are adaptive and represent improvements in group performance or are suboptimal but represent a compromise between individuals in their preferences for the characteristics of collective behaviour.
Collapse
|
22
|
Lambert PJ, Herbert-Read JE, Ioannou CC. The measure of spatial position within groups that best predicts predation risk depends on group movement. Proc Biol Sci 2021; 288:20211286. [PMID: 34521249 PMCID: PMC8441135 DOI: 10.1098/rspb.2021.1286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
Both empirical and theoretical studies show that an individual's spatial position within a group can impact the risk of being targeted by predators. Spatial positions can be quantified in numerous ways, but there are no direct comparisons of different spatial measures in predicting the risk of being targeted by real predators. Here, we assess these spatial measures in groups of stationary and moving virtual prey being attacked by three-spined sticklebacks (Gasterosteus aculeatus). In stationary groups, the limited domain of danger best predicted the likelihood of attack. In moving groups, the number of near neighbours was the best predictor but only over a limited range of distances within which other prey were counted. Otherwise, measures of proximity to the group's edge outperformed measures of local crowding in moving groups. There was no evidence that predators preferentially attacked the front or back of the moving groups. Domains of danger without any limit, as originally used in the selfish herd model, were also a poor predictor of risk. These findings reveal that the collective properties of prey can influence how spatial position affects predation risk, via effects on predators' targeting. Selection may therefore act differently on prey positioning behaviour depending on group movement.
Collapse
Affiliation(s)
- Poppy J. Lambert
- Comparative Cognition Unit, Messerli Research Institute, University of Veterinary Medicine Vienna, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - James E. Herbert-Read
- Department of Zoology, University of Cambridge, Cambridge, UK
- Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
23
|
Nadler LE, McCormick MI, Johansen JL, Domenici P. Social familiarity improves fast-start escape performance in schooling fish. Commun Biol 2021; 4:897. [PMID: 34285330 PMCID: PMC8292327 DOI: 10.1038/s42003-021-02407-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
Using social groups (i.e. schools) of the tropical damselfish Chromis viridis, we test how familiarity through repeated social interactions influences fast-start responses, the primary defensive behaviour in a range of taxa, including fish, sharks, and larval amphibians. We focus on reactivity through response latency and kinematic performance (i.e. agility and propulsion) following a simulated predator attack, while distinguishing between first and subsequent responders (direct response to stimulation versus response triggered by integrated direct and social stimulation, respectively). In familiar schools, first and subsequent responders exhibit shorter latency than unfamiliar individuals, demonstrating that familiarity increases reactivity to direct and, potentially, social stimulation. Further, familiarity modulates kinematic performance in subsequent responders, demonstrated by increased agility and propulsion. These findings demonstrate that the benefits of social recognition and memory may enhance individual fitness through greater survival of predator attacks.
Collapse
Affiliation(s)
- Lauren E Nadler
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia. .,Department of Marine and Environmental Sciences, Nova Southeastern University, Dania Beach, FL, USA.
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Kaneohe, HI, USA
| | | |
Collapse
|
24
|
Davidson JD, Sosna MMG, Twomey CR, Sridhar VH, Leblanc SP, Couzin ID. Collective detection based on visual information in animal groups. J R Soc Interface 2021; 18:20210142. [PMID: 34229461 PMCID: PMC8261228 DOI: 10.1098/rsif.2021.0142] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
We investigate key principles underlying individual, and collective, visual detection of stimuli, and how this relates to the internal structure of groups. While the individual and collective detection principles are generally applicable, we employ a model experimental system of schooling golden shiner fish (Notemigonus crysoleucas) to relate theory directly to empirical data, using computational reconstruction of the visual fields of all individuals. This reveals how the external visual information available to each group member depends on the number of individuals in the group, the position within the group, and the location of the external visually detectable stimulus. We find that in small groups, individuals have detection capability in nearly all directions, while in large groups, occlusion by neighbours causes detection capability to vary with position within the group. To understand the principles that drive detection in groups, we formulate a simple, and generally applicable, model that captures how visual detection properties emerge due to geometric scaling of the space occupied by the group and occlusion caused by neighbours. We employ these insights to discuss principles that extend beyond our specific system, such as how collective detection depends on individual body shape, and the size and structure of the group.
Collapse
Affiliation(s)
- Jacob D. Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Matthew M. G. Sosna
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Colin R. Twomey
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Mind Center for Outreach, Research, and Education, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek H. Sridhar
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Simon P. Leblanc
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
25
|
Dynamic visual noise promotes social attraction, but does not affect group size preference, in a shoaling fish. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Negro JJ, Doña J, Blázquez MC, Rodríguez A, Herbert-Read JE, Brooke MDL. Contrasting stripes are a widespread feature of group living in birds, mammals and fishes. Proc Biol Sci 2020; 287:20202021. [PMID: 33049169 PMCID: PMC7657865 DOI: 10.1098/rspb.2020.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Grouping is a widespread form of predator defence, with individuals in groups often performing evasive collective movements in response to attack by predators. Individuals in these groups use behavioural rules to coordinate their movements, with visual cues about neighbours' positions and orientations often informing movement decisions. Although the exact visual cues individuals use to coordinate their movements with neighbours have not yet been decoded, some studies have suggested that stripes, lines, or other body patterns may act as conspicuous conveyors of movement information that could promote coordinated group movement, or promote dazzle camouflage, thereby confusing predators. We used phylogenetic logistic regressions to test whether the contrasting achromatic stripes present in four different taxa vulnerable to predation, including species within two orders of birds (Anseriformes and Charadriiformes), a suborder of Artiodactyla (the ruminants), and several orders of marine fishes (predominantly Perciformes) were associated with group living. Contrasting patterns were significantly more prevalent in social species, and tended to be absent in solitary species or species less vulnerable to predation. We suggest that stripes taking the form of light-coloured lines on dark backgrounds, or vice versa, provide a widespread mechanism across taxa that either serves to inform conspecifics of neighbours' movements, or to confuse predators, when moving in groups. Because detection and processing of patterns and of motion in the visual channel is essentially colour-blind, diverse animal taxa with widely different vision systems (including mono-, di-, tri-, and tetrachromats) appear to have converged on a similar use of achromatic patterns, as would be expected given signal-detection theory. This hypothesis would explain the convergent evolution of conspicuous achromatic patterns as an antipredator mechanism in numerous vertebrate species.
Collapse
Affiliation(s)
- Juan J. Negro
- Estación Biológica de Doñana-CSIC, Avda. Americo Vespucio 26, 41092 Sevilla, Spain
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL 61820, USA
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - M. Carmen Blázquez
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), 23096 La Paz, Baja California Sur, Mexico
| | - Airam Rodríguez
- Estación Biológica de Doñana-CSIC, Avda. Americo Vespucio 26, 41092 Sevilla, Spain
- Grupo de Ornitología e Historia Natural de las Islas Canarias, GOHNIC, Canarias, Spain
| | - James E. Herbert-Read
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
- Department of Biology, Aquatic Ecology Unit, Lund University, Lund 223 62, Sweden
| | - M. de L. Brooke
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| |
Collapse
|