1
|
Bartas M, Petrovič M, Brázda V, Trenz O, Ďurčanský A, Šťastný J. CpX Hunter web tool allows high-throughput identification of CpG, CpA, CpT, and CpC islands: A case study in Drosophila genome. J Biol Chem 2025; 301:108537. [PMID: 40286849 DOI: 10.1016/j.jbc.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
With continuous advances in DNA sequencing methods, accessibility to high-quality genomic information for all living organisms is ever-increasing. However, to interpret this information effectively and formulate hypotheses, users often require higher level programming skills. Therefore, the generation of web-based tools is becoming increasingly popular. CpG island regions in genomes are often found in gene promoters and are prone to DNA methylation, with their methylation status determining if a gene is expressed. Notably, understanding the biological impact of CpX modifications on genomic regulation is becoming increasingly important as these modifications have been associated with diseases such as cancer and neurodegeneration. However, there is currently no easy-to-use, scalable tool to detect and quantify CpX islands in full genomes. We have developed a Java-based web server for CpX island analyses that benefits from the DNA Analyzer Web server environment and overcomes several limitations. For a pilot demonstration study, we selected a well-described model organism Drosophila melanogaster. Subsequent analysis of the obtained CpX islands revealed several interesting and previously undescribed phenomena. One of them is the fact, that nearly half of long CpG islands were located on chromosome X, and that long CpA and CpT islands were significantly overrepresented at the subcentromeric regions of autosomes (chr2 and chr3) and also on chromosome Y. Wide genome overlays of predicted CpX islands revealed their co-occurrence with various (epi)genomics features comprising cytosine methylations, accessible chromatin, transposable elements, or binding of transcription factors and other proteins. CpX Hunter is freely available as a web tool at: https://bioinformatics.ibp.cz/#/analyse/cpg.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Michal Petrovič
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Václav Brázda
- Department of Biophysical Chemistry and Molecular Oncology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Oldřich Trenz
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Aleš Ďurčanský
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic
| | - Jiří Šťastný
- Department of Informatics, Mendel University in Brno, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| |
Collapse
|
2
|
de Oliveira NFP, Persuhn DC, dos Santos MCLG. Can Global DNA Methylation Be Influenced by Polymorphisms in Genes Involved in Epigenetic Mechanisms? A Review. Genes (Basel) 2024; 15:1504. [PMID: 39766772 PMCID: PMC11675890 DOI: 10.3390/genes15121504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Global methylation refers to the total methylation in the DNA and can also be inferred from the Line 1 and Alu regions, as these repeats are very abundant in the genome. The main function of DNA methylation is to control gene expression and is associated with both normal and pathological mechanisms. DNA methylation depends on enzymes that generate the methyl radical (e.g., methylenetetrahydrofolate reductase-MTHFR) and attach this radical to the DNA (DNA methyltransferases-DNMT). Genetic variants such as single nucleotide polymorphisms (SNP) in these genes can lead to changes in the activity or expression of MTHFR and DNMT proteins and consequently influence the DNA methylation profile. This review focuses on studies investigating inter-individual variations in the global DNA methylation profile associated with genetic polymorphisms in the MTHFR and DNMT genes. METHODS A narrative review was conducted, taking into account articles published in the last 15 years. RESULTS It was found that the SNPs rs1801131, rs1801133 and rs1537514 in the MTHFR gene, rs2241531, rs2228611, rs2228612, rs21124724 and the haplotype rs2288349, rs2228611, rs2228612, rs16999593 in the DNMT1 gene, rs2424909, rs998382, rs6058891, rs6058897, rs4911256, rs2889703 and rs1883729 in the DNMT3B were associated with the level of global DNA methylation, including LINE and Alu regions in different contexts. No association was found with polymorphisms in the DNMT3A gene. CONCLUSIONS It is concluded that polymorphisms in the MTHFR and DNMT genes may influence the global DNA methylation profile in health, inflammation, tumours and mental illness.
Collapse
Affiliation(s)
- Naila Francis Paulo de Oliveira
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba—UFPB, João Pessoa 58051-900, PB, Brazil;
| | - Darlene Camati Persuhn
- Department of Molecular Biology, Center for Exact and Natural Sciences, Federal University of Paraíba—UFPB, João Pessoa 58051-900, PB, Brazil;
| | | |
Collapse
|
3
|
Cai M, Guo H, Wang D, Zhao T, Liang X, Li J, Cui X, Fu S, Yu J. Expression, DNA methylation pattern and transcription factor EPB41L3 in gastric cancer: a study of 262 cases. Cell Commun Signal 2024; 22:470. [PMID: 39354571 PMCID: PMC11446029 DOI: 10.1186/s12964-024-01849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC). METHODS Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker. RESULTS High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells. CONCLUSION In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.
Collapse
Affiliation(s)
- Mengdi Cai
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Haonan Guo
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Dong Wang
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Tie Zhao
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China
| | - Xiao Liang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jiaqi Li
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - XiaoBo Cui
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| | - Jingcui Yu
- Scientific Research Centre, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, 150081, China.
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China.
| |
Collapse
|
4
|
Davletgildeeva AT, Kuznetsov NA. The Role of DNMT Methyltransferases and TET Dioxygenases in the Maintenance of the DNA Methylation Level. Biomolecules 2024; 14:1117. [PMID: 39334883 PMCID: PMC11430729 DOI: 10.3390/biom14091117] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
This review deals with the functional characteristics and biological roles of enzymes participating in DNA methylation and demethylation as key factors in epigenetic regulation of gene expression. The set of enzymes that carry out such processes in human cells is limited to representatives of two families, namely DNMT (DNA methyltransferases) and TET (DNA dioxygenases). The review presents detailed information known today about each functionally important member of these families and describes the catalytic activity and roles in the mammalian body while also providing examples of dysregulation of the expression and/or activity of these enzymes in conjunction with the development of some human disorders, including cancers, neurodegenerative diseases, and developmental pathologies. By combining the up-to-date information on the dysfunction of various enzymes that control the DNA "methylome" in the human body, we hope not only to draw attention to the importance of the maintenance of a required DNA methylation level (ensuring epigenetic regulation of gene expression and normal functioning of the entire body) but also to help identify new targets for directed control over the activity of the enzymes that implement the balance between processes of DNA methylation and demethylation.
Collapse
Affiliation(s)
- Anastasiia T Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Lin SM, Huang HT, Fang PJ, Chang CF, Satange R, Chang CK, Chou SH, Neidle S, Hou MH. Structural basis of water-mediated cis Watson-Crick/Hoogsteen base-pair formation in non-CpG methylation. Nucleic Acids Res 2024; 52:8566-8579. [PMID: 38989613 DOI: 10.1093/nar/gkae594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Non-CpG methylation is associated with several cellular processes, especially neuronal development and cancer, while its effect on DNA structure remains unclear. We have determined the crystal structures of DNA duplexes containing -CGCCG- regions as CCG repeat motifs that comprise a non-CpG site with or without cytosine methylation. Crystal structure analyses have revealed that the mC:G base-pair can simultaneously form two alternative conformations arising from non-CpG methylation, including a unique water-mediated cis Watson-Crick/Hoogsteen, (w)cWH, and Watson-Crick (WC) geometries, with partial occupancies of 0.1 and 0.9, respectively. NMR studies showed that an alternative conformation of methylated mC:G base-pair at non-CpG step exhibits characteristics of cWH with a syn-guanosine conformation in solution. DNA duplexes complexed with the DNA binding drug echinomycin result in increased occupancy of the (w)cWH geometry in the methylated base-pair (from 0.1 to 0.3). Our structural results demonstrated that cytosine methylation at a non-CpG step leads to an anti→syntransition of its complementary guanosine residue toward the (w)cWH geometry as a partial population of WC, in both drug-bound and naked mC:G base pairs. This particular geometry is specific to non-CpG methylated dinucleotide sites in B-form DNA. Overall, the current study provides new insights into DNA conformation during epigenetic regulation.
Collapse
Affiliation(s)
- Shan-Meng Lin
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Ti Huang
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Pei-Ju Fang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Roshan Satange
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Ke Chang
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shan-Ho Chou
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Stephen Neidle
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Ming-Hon Hou
- Graduate Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Doctoral Program in Medical Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Yao YM, Miodownik I, O’Hagan MP, Jbara M, Afek A. Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome. Transcription 2024; 15:114-138. [PMID: 39033307 PMCID: PMC11810102 DOI: 10.1080/21541264.2024.2379161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transcription factors (TFs) intricately navigate the vast genomic landscape to locate and bind specific DNA sequences for the regulation of gene expression programs. These interactions occur within a dynamic cellular environment, where both DNA and TF proteins experience continual chemical and structural perturbations, including epigenetic modifications, DNA damage, mechanical stress, and post-translational modifications (PTMs). While many of these factors impact TF-DNA binding interactions, understanding their effects remains challenging and incomplete. This review explores the existing literature on these dynamic changes and their potential impact on TF-DNA interactions.
Collapse
Affiliation(s)
- Yumi Minyi Yao
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irina Miodownik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael P. O’Hagan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammad Jbara
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Afek
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Gautam P, Gupta S, Sachan M. Comprehensive DNA methylation profiling by MeDIP-NGS identifies potential genes and pathways for epithelial ovarian cancer. J Ovarian Res 2024; 17:83. [PMID: 38627856 PMCID: PMC11022481 DOI: 10.1186/s13048-024-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024] Open
Abstract
Ovarian cancer, among all gynecologic malignancies, exhibits the highest incidence and mortality rate, primarily because it is often presents with non-specific or no symptoms during its early stages. For the advancement of Ovarian Cancer Diagnosis, it is crucial to identify the potential molecular signatures that could significantly differentiate between healthy and ovarian cancerous tissues and can be used further as a diagnostic biomarker for detecting ovarian cancer. In this study, we investigated the genome-wide methylation patterns in ovarian cancer patients using Methylated DNA Immunoprecipitation (MeDIP-Seq) followed by NGS. Identified differentially methylated regions (DMRs) were further validated by targeted bisulfite sequencing for CpG site-specific methylation profiles. Furthermore, expression validation of six genes by Quantitative Reverse Transcriptase-PCR was also performed. Out of total 120 differentially methylated genes (DMGs), 68 genes were hypermethylated, and 52 were hypomethylated in their promoter region. After analysis, we identified the top 6 hub genes, namely POLR3B, PLXND1, GIGYF2, STK4, BMP2 and CRKL. Interestingly we observed Non-CpG site methylation in the case of POLR3B and CRKL which was statistically significant in discriminating ovarian cancer samples from normal controls. The most significant pathways identified were focal adhesion, the MAPK signaling pathway, and the Ras signaling pathway. Expression analysis of hypermethylated genes was correlated with the downregulation of the genes. POLR3B and GIGYF2 turned out to be the novel genes associated with the carcinogenesis of EOC. Our study demonstrated that methylation profiling through MeDIP-sequencing has effectively identified six potential hub genes and pathways that might exacerbate our understanding of underlying molecular mechanisms of ovarian carcinogenesis.
Collapse
Affiliation(s)
- Priyanka Gautam
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, 211004, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
8
|
Reamon-Buettner SM, Rittinghausen S, Klauke A, Hiemisch A, Ziemann C. Malignant peritoneal mesotheliomas of rats induced by multiwalled carbon nanotubes and amosite asbestos: transcriptome and epigenetic profiles. Part Fibre Toxicol 2024; 21:3. [PMID: 38297314 PMCID: PMC10829475 DOI: 10.1186/s12989-024-00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.
Collapse
Affiliation(s)
- Stella Marie Reamon-Buettner
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany.
| | - Susanne Rittinghausen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Annika Klauke
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Andreas Hiemisch
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
9
|
Fanfarillo F, Ferraguti G, Lucarelli M, Fuso A, Ceccanti M, Terracina S, Micangeli G, Tarani L, Fiore M. The Impact of Alcohol-Induced Epigenetic Modifications in the Treatment of Alcohol use Disorders. Curr Med Chem 2024; 31:5837-5855. [PMID: 37828672 DOI: 10.2174/0109298673256937231004093143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Alcohol use disorders are responsible for 5.9% of all death annually and 5.1% of the global disease burden. It has been suggested that alcohol abuse can modify gene expression through epigenetic processes, namely DNA and histone methylation, histone acetylation, and microRNA expression. The alcohol influence on epigenetic mechanisms leads to molecular adaptation of a wide number of brain circuits, including the hypothalamus-hypophysis-adrenal axis, the prefrontal cortex, the mesolimbic-dopamine pathways and the endogenous opioid pathways. Epigenetic regulation represents an important level of alcohol-induced molecular adaptation in the brain. It has been demonstrated that acute and chronic alcohol exposure can induce opposite modifications in epigenetic mechanisms: acute alcohol exposure increases histone acetylation, decreases histone methylation and inhibits DNA methyltransferase activity, while chronic alcohol exposure induces hypermethylation of DNA. Some studies investigated the chromatin status during the withdrawal period and the craving period and showed that craving was associated with low methylation status, while the withdrawal period was associated with elevated activity of histone deacetylase and decreased histone acetylation. Given the effects exerted by ethanol consumption on epigenetic mechanisms, chromatin structure modifiers, such as histone deacetylase inhibitors and DNA methyltransferase inhibitors, might represent a new potential strategy to treat alcohol use disorder. Further investigations on molecular modifications induced by ethanol might be helpful to develop new therapies for alcoholism and drug addiction targeting epigenetic processes.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Sapienza University of Rome, Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Ginevra Micangeli
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
10
|
Raia T, Armeli F, Cavallaro RA, Ferraguti G, Businaro R, Lucarelli M, Fuso A. Perinatal S-Adenosylmethionine Supplementation Represses PSEN1 Expression by the Cellular Epigenetic Memory of CpG and Non-CpG Methylation in Adult TgCRD8 Mice. Int J Mol Sci 2023; 24:11675. [PMID: 37511434 PMCID: PMC10380323 DOI: 10.3390/ijms241411675] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
DNA methylation, the main epigenetic modification regulating gene expression, plays a role in the pathophysiology of neurodegeneration. Previous evidence indicates that 5'-flanking hypomethylation of PSEN1, a gene involved in the amyloidogenic pathway in Alzheimer's disease (AD), boosts the AD-like phenotype in transgenic TgCRND8 mice. Supplementation with S-adenosylmethionine (SAM), the methyl donor in the DNA methylation reactions, reverts the pathological phenotype. Several studies indicate that epigenetic signatures, driving the shift between normal and diseased aging, can be acquired during the first stages of life, even in utero, and manifest phenotypically later on in life. Therefore, we decided to test whether SAM supplementation during the perinatal period (i.e., supplementing the mothers from mating to weaning) could exert a protective role towards AD-like symptom manifestation. We therefore compared the effect of post-weaning vs. perinatal SAM treatment in TgCRND8 mice by assessing PSEN1 methylation and expression and the development of amyloid plaques. We found that short-term perinatal supplementation was as effective as the longer post-weaning supplementation in repressing PSEN1 expression and amyloid deposition in adult mice. These results highlight the importance of epigenetic memory and methyl donor availability during early life to promote healthy aging and stress the functional role of non-CpG methylation.
Collapse
Affiliation(s)
- Tiziana Raia
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | | | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00161 Rome, Italy
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Zhao S, Li J, Zhang H, Qi L, Du Y, Kogiso M, Braun FK, Xiao S, Huang Y, Li J, Teo WY, Lindsay H, Baxter P, Su JMF, Adesina A, Laczik M, Genevini P, Veillard AC, Schvartzman S, Berguet G, Ding SR, Du L, Stephan C, Yang J, Davies PJA, Lu X, Chintagumpala M, Parsons DW, Perlaky L, Xia YF, Man TK, Huang Y, Sun D, Li XN. Epigenetic Alterations of Repeated Relapses in Patient-matched Childhood Ependymomas. Nat Commun 2022; 13:6689. [PMID: 36335125 PMCID: PMC9637194 DOI: 10.1038/s41467-022-34514-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.
Collapse
Affiliation(s)
- Sibo Zhao
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.413584.f0000 0004 0383 5679Jane and John Justin Neurosciences Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA ,grid.413584.f0000 0004 0383 5679Hematology and Oncology Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA
| | - Jia Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA ,grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA ,grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University; and Guangzhou Laboratory, Bioland, 510120 Guangzhou, Guangdong P. R. China
| | - Huiyuan Zhang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lin Qi
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yuchen Du
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mari Kogiso
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Frank K. Braun
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sophie Xiao
- grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yulun Huang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.263761.70000 0001 0198 0694Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Department of Neurosurgery, Dushu Lake Hospital, Suzhou Medical College, Soochow University, 215007 Suzhou, P. R. China
| | - Jianfang Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Wan-Yee Teo
- grid.410724.40000 0004 0620 9745Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Singapore, 169610 Singapore ,grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore, Singapore ,grid.414963.d0000 0000 8958 3388KK Women’s & Children’s Hospital Singapore, Singapore, Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Holly Lindsay
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Patricia Baxter
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jack M. F. Su
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adekunle Adesina
- grid.39382.330000 0001 2160 926XDepartment of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Miklós Laczik
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Paola Genevini
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | | | - Sol Schvartzman
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Geoffrey Berguet
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Shi-Rong Ding
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Liping Du
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Clifford Stephan
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Jianhua Yang
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Peter J. A. Davies
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Xinyan Lu
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Murali Chintagumpala
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donald William Parsons
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Laszlo Perlaky
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun-Fei Xia
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Tsz-Kwong Man
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Huang
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Deqiang Sun
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Xiao-Nan Li
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
12
|
Huang J, Zhu W, Wang W, Xu Y, Jiang L, Gu Z. Diagnostic and Prognostic Value of DACH1 Methylation in the Sensitivity of Esophageal Cancer to Radiotherapy. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6857685. [PMID: 36247858 PMCID: PMC9537014 DOI: 10.1155/2022/6857685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 01/26/2023]
Abstract
To detect the methylation status of the cell fate determinant (DACH1) gene in esophageal cancer tissues and to explore the predictive value of methylation of DACH1 on the sensitivity to radiotherapy for esophageal cancer. Cancer tissues, corresponding paracancerous tissues, and 30 specimens of normal esophageal mucosal tissues from 70 patients admitted to the hospital after radical esophageal cancer radiotherapy from January 2016 to April 2017 were collected. The methylation status of DACH1 was detected by a methylation-specific polymerase chain reaction (MSP). The 70 esophageal cancer patients were divided into radiotherapy-sensitive and radiotherapy-insensitive groups according to the efficacy of radiotherapy, and the methylation status of DACH1 was compared between the two groups. The χ 2 test was used to analyze the relationship between the methylation status of DACH1 and the clinicopathological characteristics of esophageal cancer patients. The Kaplan-Meier survival curve was used to analyze the relationship between the methylation status of DACH1 and radiotherapy sensitivity and survival of esophageal cancer patients, and the Cox proportional risk model was used to analyze the independent influencing factors affecting the radiotherapy sensitivity of esophageal cancer patients. The methylation rate of DACH1 in esophageal cancer tissues was higher than that in paracancerous tissues and normal tissues, and the differences were statistically significant (P < 0.05). 70 patients with esophageal cancer completed radiotherapy, including 46 patients with radiotherapy sensitivity and 24 patients with radiotherapy insensitivity. The DACH1 methylation rate of esophageal cancer patients in the radiotherapy-sensitive group was lower than that in the radiotherapy-insensitive group, and the difference was statistically significant (P < 0.05). The DACH1 methylation rate of esophageal cancer patients with TNM stage (III-IV), tumor differentiation degree (hypofractionation), and lymph node metastasis was higher, and the difference was statistically significant (P < 0.05). The Kaplan-Meier curve showed that the median survival time of patients with DACH1 methylation before radiotherapy was 23 months, which was shorter than that of patients with DACH1 unmethylation before radiotherapy (36 months), and the difference between the survival curves of the two groups was statistically significant (χ 2 = 7.425, P < 0.05); the median survival time of patients in the radiotherapy-sensitive group was 39 months, which was longer than that of patients in the radiotherapy-insensitive group (25 months), and the difference between the two groups was statistically significant (P < 0.05). The median survival time of patients in the radiotherapy-sensitive group was 39 months, which was longer than that of patients in the radiotherapy-insensitive group (25 months), and the difference in survival curves between the two groups was statistically significant (χ 2 = 7.011, P < 0.05). The results of the multifactorial Cox regression model showed that TNM stage (stage III-IV) (HR = 1.961, 95% CI: 1.125-2.768), tumor hypofractionation (HR = 1.453, 95% CI: 1.034-2.857), presence of lymph node metastasis (HR = 1.499, 95% CI: 1.025-2.851), and DACH1 methylation (HR = 1.718, 95% CI: 1.067-2.596) may increase the risk of insensitivity to radiotherapy in patients with esophageal cancer (P < 0.05). The rate of DACH1 methylation in esophageal cancer tissues was increased, and the methylation status of DACH1 was related to radiotherapy sensitivity and survival of esophageal cancer patients, which is expected to be a new target for diagnosis and treatment of esophageal cancer patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Yingying Xu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Lei Jiang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Zhenlin Gu
- Department of Vascular Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| |
Collapse
|
13
|
Ramasamy D, Rao AKDM, Rajkumar T, Mani S. Experimental and Computational Approaches for Non-CpG Methylation Analysis. EPIGENOMES 2022; 6:epigenomes6030024. [PMID: 35997370 PMCID: PMC9397002 DOI: 10.3390/epigenomes6030024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Cytosine methylation adjacent to adenine, thymine, and cytosine residues but not guanine of the DNA is distinctively known as non-CpG methylation. This CA/CT/CC methylation accounts for 15% of the total cytosine methylation and varies among different cell and tissue types. The abundance of CpG methylation has largely concealed the role of non-CpG methylation. Limitations in the early detection methods could not distinguish CpG methylation from non-CpG methylation. Recent advancements in enrichment strategies and high throughput sequencing technologies have enabled the detection of non-CpG methylation. This review discusses the advanced experimental and computational approaches to detect and describe the genomic distribution and function of non-CpG methylation. We present different approaches such as enzyme-based and antibody-based enrichment, which, when coupled, can also improve the sensitivity and specificity of non-CpG detection. We also describe the current bioinformatics pipelines and their specific application in computing and visualizing the imbalance of CpG and non-CpG methylation. Enrichment modes and the computational suites need to be further developed to ease the challenges of understanding the functional role of non-CpG methylation.
Collapse
Affiliation(s)
| | | | | | - Samson Mani
- Correspondence: ; Tel.: +91-44-22350131 (ext. 196)
| |
Collapse
|
14
|
MGMT and Whole-Genome DNA Methylation Impacts on Diagnosis, Prognosis and Therapy of Glioblastoma Multiforme. Int J Mol Sci 2022; 23:ijms23137148. [PMID: 35806153 PMCID: PMC9266959 DOI: 10.3390/ijms23137148] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Epigenetic changes in DNA methylation contribute to the development of many diseases, including cancer. In glioblastoma multiforme, the most prevalent primary brain cancer and an incurable tumor with a median survival time of 15 months, a single epigenetic modification, the methylation of the O6-Methylguanine-DNA Methyltransferase (MGMT) gene, is a valid biomarker for predicting response to therapy with alkylating agents and also, independently, prognosis. More recently, the progress from single gene to whole-genome analysis of DNA methylation has allowed a better subclassification of glioblastomas. Here, we review the clinically relevant information that can be obtained by studying MGMT gene and whole-genome DNA methylation changes in glioblastomas, also highlighting benefits, including those of liquid biopsy, and pitfalls of the different detection methods. Finally, we discuss how changes in DNA methylation, especially in glioblastomas bearing mutations in the Isocitrate Dehydrogenase (IDH) 1 and 2 genes, can be exploited as targets for tailoring therapy.
Collapse
|
15
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
16
|
Romano R, Cillo F, Moracas C, Pignata L, Nannola C, Toriello E, De Rosa A, Cirillo E, Coppola E, Giardino G, Brunetti-Pierri N, Riccio A, Pignata C. Epigenetic Alterations in Inborn Errors of Immunity. J Clin Med 2022; 11:1261. [PMID: 35268351 PMCID: PMC8910960 DOI: 10.3390/jcm11051261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Francesca Cillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Cristina Moracas
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Elisabetta Toriello
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Antonio De Rosa
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emilia Cirillo
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Emma Coppola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Giuliana Giardino
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Nicola Brunetti-Pierri
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Claudio Pignata
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy; (R.R.); (F.C.); (C.M.); (C.N.); (E.T.); (A.D.R.); (E.C.); (E.C.); (G.G.); (N.B.-P.)
| |
Collapse
|