1
|
Ding S, Niu D, Li M, Zhang Z, Li Z. Drug-drug interaction prediction based on graph contrastive learning and dual-view fusion. Comput Biol Chem 2025; 117:108426. [PMID: 40138848 DOI: 10.1016/j.compbiolchem.2025.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Drug-drug interaction (DDI) is important in drug research and are one of the major causes of morbidity and mortality. The deep learning methods can automatically extract drug features from molecular graphs or drug-related networks, which improves the performance of DDI prediction. However, there is noise and incomplete data in existing datasets, and the volume of dataset is limited. In order to fully utilize the knowledge graph network and the molecular structure, we propose a dual-view fusion model GDF-DDI. In one view, the knowledge graph network and drug similarity network are constructed as the global information, and two graph convolution operations are implemented on both networks to extract drug embeddings. Subsequently, layer wise graph contrastive learning is performed to update the drug embeddings to captures richer semantic information. In the other view, the self-supervised learning is utilized to extract more comprehensive embedding of drugs. The embeddings under two views are concatenated to cover the global and local DDI information. The comparative experiments on two datasets show that our model outperforms other recent and state-of-the-art baselines.
Collapse
Affiliation(s)
- Shanyang Ding
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Dongjiang Niu
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Mingxuan Li
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Zhixin Zhang
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
| | - Zhen Li
- College of Computer Science and Technology, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Kim D, Yu J, Bae SH, Lee J. SF-Rx: A Multioutput Deep Neural Network-Based Framework Predicting Drug-Drug Interaction under Realistic Conditions for Safe Prescription. J Chem Inf Model 2025; 65:4442-4457. [PMID: 40310752 DOI: 10.1021/acs.jcim.5c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Drug-drug interaction (DDI) can compromise therapeutic efficacy and cause detrimental effects in polypharmacy. Computational prediction of DDI has emerged as an alternative approach to time-consuming clinical experiments for investigating potential drug interactions, yet reliable prediction remains challenging. We present SF-Rx (Safe Prescription), a DDI predictive framework that incorporates structural similarity profiles with pharmacokinetic (PK) and pharmacodynamic (PD) features to predict severity, types, and directionality. Our study employs a scaffold-based cross-validation strategy for paired drugs and enables a realistic evaluation of model performance while quantifying prediction uncertainty. The implementation of federated learning across multiple DDI data sets improves model generalization and overcomes limited chemical diversity in single-source data sets. Our framework provides a promising approach for developing a reliable DDI prediction model under real-world scenarios, potentially improving patient safety in multidrug treatments.
Collapse
Affiliation(s)
- Daeun Kim
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jaehong Yu
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sang-Hun Bae
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Jihyun Lee
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
3
|
Ahmad MM, Ali Shah ZB, Nies HW. A systematic review of molecular structures, knowledge graphs, and cold-start scenario in drug-drug interaction prediction. Comput Biol Med 2025; 190:110122. [PMID: 40187181 DOI: 10.1016/j.compbiomed.2025.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Drugs are essential chemical substances used to treat, prevent, or diagnose diseases. However, the co-administration or simultaneous use of multiple drugs can lead to complex interactions known as Drug-Drug Interactions (DDIs). Adverse DDIs are a major concern in the pharmaceutical industry, posing significant health risks by potentially causing toxicity or negatively impacting therapeutic efficacy. Identifying all DDIs through clinical trials alone is not feasible, making computational approaches crucial for predicting and understanding these interactions. Molecular structures and biomedical entities represented as knowledge graphs (KGs) have been widely used for DDI prediction. This review first examines diverse molecular representations commonly utilized in DDI prediction. It then highlights KG-based approaches, emphasizing their ability to integrate heterogeneous biomedical data and provide comprehensive structural and relational insights into drugs, proteins, and other biological entities. However, predictive models frequently encounter challenges when dealing with drugs with limited interaction data or unknown structures, resulting in a cold-start scenario that negatively impacts model generalization. Consequently, this review also discusses methods to address the cold-start scenario in DDI prediction. Finally, key findings and potential directions for enhancing DDI prediction are presented.
Collapse
Affiliation(s)
- Mir Mansoor Ahmad
- Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| | | | - Hui Wen Nies
- Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| |
Collapse
|
4
|
Ren Z, Zeng X, Lao Y, You Z, Shang Y, Zou Q, Lin C. Predicting rare drug-drug interaction events with dual-granular structure-adaptive and pair variational representation. Nat Commun 2025; 16:3997. [PMID: 40301328 PMCID: PMC12041321 DOI: 10.1038/s41467-025-59431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025] Open
Abstract
Adverse drug-drug interaction events (DDIEs) pose serious risks to patient safety, yet rare but severe interactions remain challenging to identify due to limited clinical data. Existing computational methods rely heavily on abundant samples, failing to identify rare DDIEs. Here we introduce RareDDIE, a metric-based meta-learning model that employs a dual-granular structure-driven pair variational representation to enhance rare DDIE prediction. To further address the challenge of zero-shot DDIE identification, we develop the Biological Semantic Transferring (BST) module, integrating large-scale sentence embeddings to form the ZetaDDIE variant. Our model outperforms existing methods in few-sample and zero-sample settings. Furthermore, we verify that knowledge transfer from DDIE can improve drug synergy predictions, surpassing existing models. Case studies on antiplatelet activity reduction and non-small cell lung cancer drug synergy further illustrate the practical value of RareDDIE. By analyzing the meta-knowledge construction process, we provide interpretability into the model's decision-making. This work establishes an effective computational framework for rare DDIE prediction, leveraging meta-learning and knowledge transfer to overcome key challenges in data-limited scenarios.
Collapse
Affiliation(s)
- Zhonghao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yizhen Lao
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Zhuhong You
- China School of Computer Science, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yifan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Chen Lin
- School of Informatics, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361000, China.
- Zhongguancun Academy, Beijing, China.
| |
Collapse
|
5
|
Lu P, Zheng L, Lin J, Cai Z, Dai B, Lin K, Yang F. MSMDL-DDI: Multi-Layer Soft Mask Dual-View Learning for Drug-Drug Interactions. Comput Biol Chem 2025; 115:108355. [PMID: 39993870 DOI: 10.1016/j.compbiolchem.2025.108355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025]
Abstract
Drug-drug interactions (DDIs) occur when multiple medications are co-administered, potentially leading to adverse effects and compromising patient safety. However, existing DDI prediction methods often overlook the intricate interactions among chemical substructures within drugs, resulting in incomplete characterization of molecular properties. To address this limitation, we propose a novel model named Multi-Layer Soft Mask Dual-View Learning for Drug-Drug Interactions (MSMDL-DDI), which integrates dual-view learning with multi-layer soft mask graph neural networks to comprehensively capture intra- and inter-molecular interactions. Specifically, our model first employs a multi-layer soft-masked graph neural network to extract key substructures from drug molecule graphs. Subsequently, our model implements a novel dual-view learning strategy to capture intra- and inter-molecular interactions resulting in enriched drug pair representations. Finally, the model predicts the likelihood of DDIs by utilizing a decoder to compute the shared attention scores of these enhanced representations. In addition, experimental results on three real-world datasets show that MSMDL-DDI outperforms nine state-of-the-art methods in both transductive and inductive DDI prediction tasks. Notably, the model achieves an accuracy of 0.9647 on the Twosides dataset for the transductive task, marking a 10.2% improvement over the second-best-performing method.
Collapse
Affiliation(s)
- Ping Lu
- School of Economics and Management, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Liwei Zheng
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Junpeng Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Zhongqi Cai
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Bin Dai
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Kaibiao Lin
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, 361024, Fujian Province, China.
| | - Fan Yang
- Department of Automation, Xiamen University, Xiamen, 361005, Fujian Province, China.
| |
Collapse
|
6
|
Li Y, Hou LX, Yi HC, You ZH, Chen SH, Zheng J, Yuan Y, Mi CG. MOLGAECL: Molecular Graph Contrastive Learning via Graph Auto-Encoder Pretraining and Fine-Tuning Based on Drug-Drug Interaction Prediction. J Chem Inf Model 2025; 65:3104-3116. [PMID: 40067127 DOI: 10.1021/acs.jcim.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Drug-drug interactions influence drug efficacy and patient prognosis, providing substantial research value. Some existing methods struggle with the challenges posed by sparse networks or lack the capability to integrate data from multiple sources. In this study, we propose MOLGAECL, a novel approach based on graph autoencoder pretraining and molecular graph contrastive learning. Initially, a large number of unlabeled molecular graphs are pretrained using a graph autoencoder, where graph contrastive learning is applied for more accurate representation of the drugs. Subsequently, a full-parameter fine-tuning is performed on different data sets to adapt the model for drug interaction-related prediction tasks. To assess the effectiveness of MOLGAECL, comparison experiments with state-of-the-art methods, fine-tuning comparison experiments, and parameter sensitivity analysis are conducted. Extensive experimental results demonstrate the superior performance of MOLGAECL. Specifically, MOLGAECL achieves an average increase of 6.13% in accuracy, 6.14% in AUROC, and 8.16% in AUPRC across all data sets.
Collapse
Affiliation(s)
- Yu Li
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lin-Xuan Hou
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Hai-Cheng Yi
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhu-Hong You
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shi-Hong Chen
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Jia Zheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yang Yuan
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China
| | - Cheng-Gang Mi
- Foreign Language and Literature Institute, Xi'an International Studies University, Xi'an 710129, China
| |
Collapse
|
7
|
Jung S, Yoo S. Interpretable prediction of drug-drug interactions via text embedding in biomedical literature. Comput Biol Med 2025; 185:109496. [PMID: 39626457 DOI: 10.1016/j.compbiomed.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Polypharmacy is a promising approach for treating diseases, especially those with complex symptoms. However, it can lead to unexpected drug-drug interactions (DDIs), potentially reducing efficacy and triggering adverse drug reactions (ADRs). Predicting the risk of DDIs is crucial for ensuring safe drug use, particularly by identifying the types of DDIs and the mechanisms involved. Therefore, this study used biomedical literature to proposed hierarchical attention-based deep learning models to predict DDIs and their types. The proposed model consists of two components: drug embedding and DDI prediction. The drug embedding module extracts representation vectors that effectively capture drug properties using sentence and sequence embedding methods. For sentence embedding, a pre-trained biomedical language model is used to map drug-related sentences into vector space. For sequence embedding, sentence embedding vectors are sequentially fed into bidirectional long short-term memory with a hierarchical attention network, enabling the analysis of sentences relevant to DDI prediction while accounting for the order of the sentences. Finally, DDI prediction is performed using a deep neural network based on the sequence embedding vectors of a drug pair. Our model achieved high performances in the accuracy (0.85-0.90), AUROC (0.98-0.99), and AUPR (0.63-0.95) performance across 164 DDI types. Additionally, the proposed model showed improvements in up to 11 % in AUROC, and 8 % in AUPR. Furthermore, model interprets predictions by leveraging attention mechanisms and drug similarity. The results indicated that the model considered various factors beyond similarity to predict DDIs. These findings may help prevent unforeseen medical accidents and reduce healthcare costs by predicting detailed drug interaction types.
Collapse
Affiliation(s)
- Sunwoo Jung
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Sunyong Yoo
- Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
8
|
Xia Y, Xiong A, Zhang Z, Zou Q, Cui F. A comprehensive review of deep learning-based approaches for drug-drug interaction prediction. Brief Funct Genomics 2025; 24:elae052. [PMID: 39987494 PMCID: PMC11847217 DOI: 10.1093/bfgp/elae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 02/21/2025] [Indexed: 02/25/2025] Open
Abstract
Deep learning models have made significant progress in the biomedical field, particularly in the prediction of drug-drug interactions (DDIs). DDIs are pharmacodynamic reactions between two or more drugs in the body, which may lead to adverse effects and are of great significance for drug development and clinical research. However, predicting DDI through traditional clinical trials and experiments is not only costly but also time-consuming. When utilizing advanced Artificial Intelligence (AI) and deep learning techniques, both developers and users face multiple challenges, including the problem of acquiring and encoding data, as well as the difficulty of designing computational methods. In this paper, we review a variety of DDI prediction methods, including similarity-based, network-based, and integration-based approaches, to provide an up-to-date and easy-to-understand guide for researchers in different fields. Additionally, we provide an in-depth analysis of widely used molecular representations and a systematic exposition of the theoretical framework of models used to extract features from graph data.
Collapse
Affiliation(s)
- Yan Xia
- School of Computer Science and Technology, Hainan University, No. 58, Renmin Avenue, Haidian Island, Haikou, Hainan Province, 570228, China
| | - An Xiong
- School of Computer Science and Technology, Hainan University, No. 58, Renmin Avenue, Haidian Island, Haikou, Hainan Province, 570228, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, No. 58, Renmin Avenue, Haidian Island, Haikou, Hainan Province, 570228, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No. 4, Section 2, Jianshe North Road, Chengdu, Sichuan Province, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, No. 1, Chengdian Road, Kecheng District, Quzhou, Zhejiang Province, 324000, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, No. 58, Renmin Avenue, Haidian Island, Haikou, Hainan Province, 570228, China
| |
Collapse
|
9
|
Chen H, Lu D, Xiao Z, Li S, Zhang W, Luan X, Zhang W, Zheng G. Comprehensive applications of the artificial intelligence technology in new drug research and development. Health Inf Sci Syst 2024; 12:41. [PMID: 39130617 PMCID: PMC11310389 DOI: 10.1007/s13755-024-00300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Target-based strategy is a prevalent means of drug research and development (R&D), since targets provide effector molecules of drug action and offer the foundation of pharmacological investigation. Recently, the artificial intelligence (AI) technology has been utilized in various stages of drug R&D, where AI-assisted experimental methods show higher efficiency than sole experimental ones. It is a critical need to give a comprehensive review of AI applications in drug R &D for biopharmaceutical field. Methods Relevant literatures about AI-assisted drug R&D were collected from the public databases (Including Google Scholar, Web of Science, PubMed, IEEE Xplore Digital Library, Springer, and ScienceDirect) through a keyword searching strategy with the following terms [("Artificial Intelligence" OR "Knowledge Graph" OR "Machine Learning") AND ("Drug Target Identification" OR "New Drug Development")]. Results In this review, we first introduced common strategies and novel trends of drug R&D, followed by characteristic description of AI algorithms widely used in drug R&D. Subsequently, we depicted detailed applications of AI algorithms in target identification, lead compound identification and optimization, drug repurposing, and drug analytical platform construction. Finally, we discussed the challenges and prospects of AI-assisted methods for drug discovery. Conclusion Collectively, this review provides comprehensive overview of AI applications in drug R&D and presents future perspectives for biopharmaceutical field, which may promote the development of drug industry.
Collapse
Affiliation(s)
- Hongyu Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ziyi Xiao
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Shensuo Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangyong Zheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Li Y, You ZH, Yuan Y, Mi CG, Huang YA, Yi HC, Hou LX. Integrated Knowledge Graph and Drug Molecular Graph Fusion via Adversarial Networks for Drug-Drug Interaction Prediction. J Chem Inf Model 2024; 64:8361-8372. [PMID: 39475566 DOI: 10.1021/acs.jcim.4c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
The Co-administration of multiple drugs can enhance the efficacy of disease treatment by reducing drug resistance and side effects. However, it also raises the risk of adverse drug interactions, presenting a challenging problem in healthcare. Various approaches have been developed to predict drug-drug interactions (DDIs) by leveraging both knowledge graphs and drug attribute information. While these methods have shown promise, they often fail to effectively capture correlations between biomedical information in the knowledge graph and drug properties. This work introduces a novel end-to-end DDI predictor framework based on generative adversarial networks. This framework utilizes a message-passing neural network to capture molecular structure information while employing the knowledge-aware graph attention network to capture the representation of drugs in the knowledge graph through considering the importance of different multihop neighbor nodes and relationships. The dual generative adversarial networks employ two generators and two discriminators in knowledge graph embedding and molecular topology embedding for adversarial training to capture the interrelations and complementary knowledge between molecular structure information and semantic information from the knowledge graph. comprehensive experiments have demonstrated that the proposed method outperforms state-of-the-art algorithms in binary classification, with improvements of 1.0% in accuracy, 0.45% in area under the receiver operating characteristic curve (AUC), 0.24% in area under the precision-recall curve (AUPR), and 0.98% in F1 score. Furthermore, for multiclass classification tasks, improvements were observed across various evaluation metrics, including 0.9% in accuracy, 0.25% in macro precision, 0.2% in macro recall, and 0.28% in macro F1. Additionally, ablation studies were conducted to showcase the effectiveness and robustness of our method in DDI prediction tasks.
Collapse
Affiliation(s)
- Yu Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Yang Yuan
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou213164, China
| | - Cheng-Gang Mi
- Foreign Language and Literature Institute, Xi'an International Studies University, Xi'an710129, China
| | - Yu-An Huang
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Hai-Cheng Yi
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| | - Lin-Xuan Hou
- School of Computer Science, Northwestern Polytechnical University, Xi'an710129, China
| |
Collapse
|
11
|
Hauben M, Rafi M, Abdelaziz I, Hassanzadeh O. Knowledge Graphs in Pharmacovigilance: A Scoping Review. Clin Ther 2024; 46:544-554. [PMID: 38981792 DOI: 10.1016/j.clinthera.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE To critically assess the role and added value of knowledge graphs in pharmacovigilance, focusing on their ability to predict adverse drug reactions. METHODS A systematic scoping review was conducted in which detailed information, including objectives, technology, data sources, methodology, and performance metrics, were extracted from a set of peer-reviewed publications reporting the use of knowledge graphs to support pharmacovigilance signal detection. FINDINGS The review, which included 47 peer-reviewed articles, found knowledge graphs were utilized for detecting/predicting single-drug adverse reactions and drug-drug interactions, with variable reported performance and sparse comparisons to legacy methods. IMPLICATIONS Research to date suggests that knowledge graphs have the potential to augment predictive signal detection in pharmacovigilance, but further research using more reliable reference sets of adverse drug reactions and comparison with legacy pharmacovigilance methods are needed to more clearly define best practices and to establish their place in holistic pharmacovigilance systems.
Collapse
Affiliation(s)
- Manfred Hauben
- Department of Family and Community Medicine, New York Medical College, Valhalla, New York; Truliant Consulting, Baltimore, Maryland
| | - Mazin Rafi
- Department of Statistics, Rutgers University, Piscataway, New Jersey.
| | | | | |
Collapse
|
12
|
Cheng N, Wang L, Liu Y, Song B, Ding C. HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction. J Chem Inf Model 2024; 64:4334-4347. [PMID: 38709204 PMCID: PMC11135324 DOI: 10.1021/acs.jcim.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Drug synergy therapy is a promising strategy for cancer treatment. However, the extensive variety of available drugs and the time-intensive process of determining effective drug combinations through clinical trials pose significant challenges. It requires a reliable method for the rapid and precise selection of drug synergies. In response, various computational strategies have been developed for predicting drug synergies, yet the exploitation of heterogeneous biological network features remains underexplored. In this study, we construct a heterogeneous graph that encompasses diverse biological entities and interactions, utilizing rich data sets from sources, such as DrugCombDB, PubChem, UniProt, and cancer cell line encyclopedia (CCLE). We initialize node feature representations and introduce a novel virtual node to enhance drug representation. Our proposed method, the heterogeneous graph attention network for drug-drug synergy prediction (HANSynergy), has been experimentally validated to demonstrate that the heterogeneous graph attention network can extract key node features, efficiently harness the diversity of information, and further enhance network functionality through the incorporation of a multihead attention mechanism. In the comparative experiment, the highest accuracy (Acc) and area under the curve (AUC) are 0.877 and 0.947, respectively, in DrugCombDB_early data set, demonstrating the superiority of HANSynergy over the competing methods. Moreover, protein-protein interactions are important in understanding the mechanism of action of drugs. The heterogeneous attention mechanism facilitates protein-protein interaction analysis. By analyzing the changes of attention weight before and after heterogeneous network training, we investigated proteins that may be associated with drug combinations. Additionally, case studies align our findings with existing research, underscoring the potential of HANSynergy in drug synergy prediction. This advancement not only contributes to the burgeoning field of drug synergy prediction but also holds the potential to provide valuable insights and uncover new drug synergies for combating cancer.
Collapse
Affiliation(s)
- Ning Cheng
- School
of Informatics, Hunan University of Chinese
Medicine, Changsha, Hunan 410208, China
| | - Li Wang
- Degree
Programs in Systems and information Engineering, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yiping Liu
- College
of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Bosheng Song
- College
of Information Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Changsong Ding
- School
of Informatics, Hunan University of Chinese
Medicine, Changsha, Hunan 410208, China
- Big
Data Analysis Laboratory of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
13
|
Luo H, Yin W, Wang J, Zhang G, Liang W, Luo J, Yan C. Drug-drug interactions prediction based on deep learning and knowledge graph: A review. iScience 2024; 27:109148. [PMID: 38405609 PMCID: PMC10884936 DOI: 10.1016/j.isci.2024.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Drug-drug interactions (DDIs) can produce unpredictable pharmacological effects and lead to adverse events that have the potential to cause irreversible damage to the organism. Traditional methods to detect DDIs through biological or pharmacological analysis are time-consuming and expensive, therefore, there is an urgent need to develop computational methods to effectively predict drug-drug interactions. Currently, deep learning and knowledge graph techniques which can effectively extract features of entities have been widely utilized to develop DDI prediction methods. In this research, we aim to systematically review DDI prediction researches applying deep learning and graph knowledge. The available biomedical data and public databases related to drugs are firstly summarized in this review. Then, we discuss the existing drug-drug interactions prediction methods which have utilized deep learning and knowledge graph techniques and group them into three main classes: deep learning-based methods, knowledge graph-based methods, and methods that combine deep learning with knowledge graph. We comprehensively analyze the commonly used drug related data and various DDI prediction methods, and compare these prediction methods on benchmark datasets. Finally, we briefly discuss the challenges related to drug-drug interactions prediction, including asymmetric DDIs prediction and high-order DDI prediction.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Weijie Yin
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Wenjuan Liang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Junwei Luo
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Zhengzhou, China
| |
Collapse
|
14
|
Ren ZH, Yu CQ, Li LP, You ZH, Li ZW, Zhang SW, Zeng X, Shang YF. SiSGC: A Drug Repositioning Prediction Model Based on Heterogeneous Simplifying Graph Convolution. J Chem Inf Model 2024; 64:238-249. [PMID: 38103039 DOI: 10.1021/acs.jcim.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Drug repositioning plays a key role in disease treatment. With the large-scale chemical data increasing, many computational methods are utilized for drug-disease association prediction. However, most of the existing models neglect the positive influence of non-Euclidean data and multisource information, and there is still a critical issue for graph neural networks regarding how to set the feature diffuse distance. To solve the problems, we proposed SiSGC, which makes full use of the biological knowledge information as initial features and learns the structure information from the constructed heterogeneous graph with the adaptive selection of the information diffuse distance. Then, the structural features are fused with the denoised similarity information and fed to the advanced classifier of CatBoost to make predictions. Three different data sets are used to confirm the robustness and generalization of SiSGC under two splitting strategies. Experiment results demonstrate that the proposed model achieves superior performance compared with the six leading methods and four variants. Our case study on breast neoplasms further indicates that SiSGC is trustworthy and robust yet simple. We also present four drugs for breast cancer treatment with high confidence and further give an explanation for demonstrating the rationality. There is no doubt that SiSGC can be used as a beneficial supplement for drug repositioning.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Li-Ping Li
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shan-Wen Zhang
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Yi-Fan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Shen X, Li Z, Liu Y, Song B, Zeng X. PEB-DDI: A Task-Specific Dual-View Substructural Learning Framework for Drug-Drug Interaction Prediction. IEEE J Biomed Health Inform 2024; 28:569-579. [PMID: 37991904 DOI: 10.1109/jbhi.2023.3335402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Adverse drug-drug interactions (DDIs) pose potential risks in polypharmacy due to unknown physicochemical incompatibilities between co-administered drugs. Recent studies have utilized multi-layer graph neural network architectures to model hierarchical molecular substructures of drugs, achieving excellent DDI prediction performance. While extant substructural frameworks effectively encode interactions from atom-level features, they overlook valuable chemical bond representations within molecular graphs. More critically, given the multifaceted nature of DDI prediction tasks involving both known and novel drug combinations, previous methods lack tailored strategies to address these distinct scenarios. The resulting lack of adaptability impedes further improvements to model performance. To tackle these challenges, we propose PEB-DDI, a DDI prediction learning framework with enhanced substructure extraction. First, the information of chemical bonds is integrated and synchronously updated with the atomic nodes. Then, different dual-view strategies are selected based on whether novel drugs are present in the prediction task. Particularly, we constructed Molecular fingerprint-Molecular graph view for transductive task, and Bipartite graph-Molecular graph view for inductive task. Rigorous evaluations on benchmark datasets underscore PEB-DDI's superior performance. Notably, on DrugBank, it achieves an outstanding accuracy rate of 98.18% when predicting previously unknown interactions among approved drugs. Even when faced with novel drugs, PEB-DDI consistently exhibits outstanding generalization capabilities with an accuracy rate of 88.06%, attributing to the proper migrating of molecular basic structure learning.
Collapse
|
16
|
Galluzzo Y. A comprehensive review of the data and knowledge graphs approaches in bioinformatics. COMPUTER SCIENCE AND INFORMATION SYSTEMS 2024; 21:1055-1075. [DOI: 10.2298/csis230530027g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The scientific community is currently showing strong interest in constructing knowledge graphs from heterogeneous domains (genomic, pharmaceutical, clinical etc.). The main goal here is to support researchers in gaining an immediate overview of the biomedical and clinical data that can be utilized to construct and extend KGs. A in-depth overview of the available biomedical data and the latest applications of knowledge graphs, from the biological to the clinical context, is provided showing the most recent methods of representing biomedical knowledge with embeddings (KGEs). Furthermore, this review, differentiates biomedical databases based on their construction process (whether manually curated by experts or not), aiming to offer a detailed overview and guide researchers in selecting the appropriate database for their research considering to the specific project needs, available resources, and data complexity. In conclusion, the review highlights current challenges: integration of different knowledge graphs and the interpretability of predictions of new relations.
Collapse
|
17
|
Su C, Hou Y, Levin M, Zhang R, Wang F. Protocol to implement a computational pipeline for biomedical discovery based on a biomedical knowledge graph. STAR Protoc 2023; 4:102666. [PMID: 37883224 PMCID: PMC10630678 DOI: 10.1016/j.xpro.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
Biomedical knowledge graphs (BKGs) provide a new paradigm for managing abundant biomedical knowledge efficiently. Today's artificial intelligence techniques enable mining BKGs to discover new knowledge. Here, we present a protocol for implementing a computational pipeline for biomedical knowledge discovery (BKD) based on a BKG. We describe steps of the pipeline including data processing, implementing BKD based on knowledge graph embeddings, and prediction result interpretation. We detail how our pipeline can be used for drug repurposing hypothesis generation for Parkinson's disease. For complete details on the use and execution of this protocol, please refer to Su et al.1.
Collapse
Affiliation(s)
- Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Yu Hou
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Levin
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Rui Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
18
|
Zhao Y, Yin J, Zhang L, Zhang Y, Chen X. Drug-drug interaction prediction: databases, web servers and computational models. Brief Bioinform 2023; 25:bbad445. [PMID: 38113076 PMCID: PMC10782925 DOI: 10.1093/bib/bbad445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
In clinical treatment, two or more drugs (i.e. drug combination) are simultaneously or successively used for therapy with the purpose of primarily enhancing the therapeutic efficacy or reducing drug side effects. However, inappropriate drug combination may not only fail to improve efficacy, but even lead to adverse reactions. Therefore, according to the basic principle of improving the efficacy and/or reducing adverse reactions, we should study drug-drug interactions (DDIs) comprehensively and thoroughly so as to reasonably use drug combination. In this review, we first introduced the basic conception and classification of DDIs. Further, some important publicly available databases and web servers about experimentally verified or predicted DDIs were briefly described. As an effective auxiliary tool, computational models for predicting DDIs can not only save the cost of biological experiments, but also provide relevant guidance for combination therapy to some extent. Therefore, we summarized three types of prediction models (including traditional machine learning-based models, deep learning-based models and score function-based models) proposed during recent years and discussed the advantages as well as limitations of them. Besides, we pointed out the problems that need to be solved in the future research of DDIs prediction and provided corresponding suggestions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Pan J, You Z, You W, Zhao T, Feng C, Zhang X, Ren F, Ma S, Wu F, Wang S, Sun Y. PTBGRP: predicting phage-bacteria interactions with graph representation learning on microbial heterogeneous information network. Brief Bioinform 2023; 24:bbad328. [PMID: 37742053 DOI: 10.1093/bib/bbad328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
Identifying the potential bacteriophages (phage) candidate to treat bacterial infections plays an essential role in the research of human pathogens. Computational approaches are recognized as a valid way to predict bacteria and target phages. However, most of the current methods only utilize lower-order biological information without considering the higher-order connectivity patterns, which helps to improve the predictive accuracy. Therefore, we developed a novel microbial heterogeneous interaction network (MHIN)-based model called PTBGRP to predict new phages for bacterial hosts. Specifically, PTBGRP first constructs an MHIN by integrating phage-bacteria interaction (PBI) and six bacteria-bacteria interaction networks with their biological attributes. Then, different representation learning methods are deployed to extract higher-level biological features and lower-level topological features from MHIN. Finally, PTBGRP employs a deep neural network as the classifier to predict unknown PBI pairs based on the fused biological information. Experiment results demonstrated that PTBGRP achieves the best performance on the corresponding ESKAPE pathogens and PBI dataset when compared with state-of-art methods. In addition, case studies of Klebsiella pneumoniae and Staphylococcus aureus further indicate that the consideration of rich heterogeneous information enables PTBGRP to accurately predict PBI from a more comprehensive perspective. The webserver of the PTBGRP predictor is freely available at http://120.77.11.78/PTBGRP/.
Collapse
Affiliation(s)
- Jie Pan
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhuhong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Wencai You
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tian Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Chenlu Feng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuexia Zhang
- North China Pharmaceutical Group, Shijiazhuang 050015, Hebei, China
- National Microbial Medicine Engineering & Research Center, Shijiazhuang 050015, Hebei, China
| | - Fengzhi Ren
- North China Pharmaceutical Group, Shijiazhuang 050015, Hebei, China
- National Microbial Medicine Engineering & Research Center, Shijiazhuang 050015, Hebei, China
| | - Sanxing Ma
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Fan Wu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
20
|
Lin X, Dai L, Zhou Y, Yu ZG, Zhang W, Shi JY, Cao DS, Zeng L, Chen H, Song B, Yu PS, Zeng X. Comprehensive evaluation of deep and graph learning on drug-drug interactions prediction. Brief Bioinform 2023:bbad235. [PMID: 37401373 DOI: 10.1093/bib/bbad235] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/05/2023] Open
Abstract
Recent advances and achievements of artificial intelligence (AI) as well as deep and graph learning models have established their usefulness in biomedical applications, especially in drug-drug interactions (DDIs). DDIs refer to a change in the effect of one drug to the presence of another drug in the human body, which plays an essential role in drug discovery and clinical research. DDIs prediction through traditional clinical trials and experiments is an expensive and time-consuming process. To correctly apply the advanced AI and deep learning, the developer and user meet various challenges such as the availability and encoding of data resources, and the design of computational methods. This review summarizes chemical structure based, network based, natural language processing based and hybrid methods, providing an updated and accessible guide to the broad researchers and development community with different domain knowledge. We introduce widely used molecular representation and describe the theoretical frameworks of graph neural network models for representing molecular structures. We present the advantages and disadvantages of deep and graph learning methods by performing comparative experiments. We discuss the potential technical challenges and highlight future directions of deep and graph learning models for accelerating DDIs prediction.
Collapse
Affiliation(s)
- Xuan Lin
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Lichang Dai
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Yafang Zhou
- College of Computer Science, Xiangtan University, Xiangtan, China
| | - Zu-Guo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan, China
| | - Wen Zhang
- College of Informatics, Huazhong Agricultural University, China
| | - Jian-Yu Shi
- Northwestern Polytechnical University, Xian, China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, China
| | - Li Zeng
- AIDD department of Yuyao Biotech, Shanghai, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, 410013 Changsha, P. R. China
| | - Bosheng Song
- College of Information Science and Engineering, Hunan University, Changsha, China
| | - Philip S Yu
- University of Illinois at Chicago and also holds the Wexler Chair in Information Technology
| | - Xiangxiang Zeng
- College of Information Science and Engineering, Hunan University, Changsha, China
| |
Collapse
|
21
|
Wang N, Zhang Y, Wang W, Ye Z, Chen H, Hu G, Ouyang D. How can machine learning and multiscale modeling benefit ocular drug development? Adv Drug Deliv Rev 2023; 196:114772. [PMID: 36906232 DOI: 10.1016/j.addr.2023.114772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
The eyes possess sophisticated physiological structures, diverse disease targets, limited drug delivery space, distinctive barriers, and complicated biomechanical processes, requiring a more in-depth understanding of the interactions between drug delivery systems and biological systems for ocular formulation development. However, the tiny size of the eyes makes sampling difficult and invasive studies costly and ethically constrained. Developing ocular formulations following conventional trial-and-error formulation and manufacturing process screening procedures is inefficient. Along with the popularity of computational pharmaceutics, non-invasive in silico modeling & simulation offer new opportunities for the paradigm shift of ocular formulation development. The current work first systematically reviews the theoretical underpinnings, advanced applications, and unique advantages of data-driven machine learning and multiscale simulation approaches represented by molecular simulation, mathematical modeling, and pharmacokinetic (PK)/pharmacodynamic (PD) modeling for ocular drug development. Following this, a new computer-driven framework for rational pharmaceutical formulation design is proposed, inspired by the potential of in silico explorations in understanding drug delivery details and facilitating drug formulation design. Lastly, to promote the paradigm shift, integrated in silico methodologies were highlighted, and discussions on data challenges, model practicality, personalized modeling, regulatory science, interdisciplinary collaboration, and talent training were conducted in detail with a view to achieving more efficient objective-oriented pharmaceutical formulation design.
Collapse
Affiliation(s)
- Nannan Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Hongyu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Guanghui Hu
- Faculty of Science and Technology (FST), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences (FHS), University of Macau, Macau, China.
| |
Collapse
|
22
|
Hong E, Jeon J, Kim HU. Recent development of machine learning models for the prediction of drug-drug interactions. KOREAN J CHEM ENG 2023; 40:276-285. [PMID: 36748027 PMCID: PMC9894510 DOI: 10.1007/s11814-023-1377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 02/05/2023]
Abstract
Polypharmacy, the co-administration of multiple drugs, has become an area of concern as the elderly population grows and an unexpected infection, such as COVID-19 pandemic, keeps emerging. However, it is very costly and time-consuming to experimentally examine the pharmacological effects of polypharmacy. To address this challenge, machine learning models that predict drug-drug interactions (DDIs) have actively been developed in recent years. In particular, the growing volume of drug datasets and the advances in machine learning have facilitated the model development. In this regard, this review discusses the DDI-predicting machine learning models that have been developed since 2018. Our discussion focuses on dataset sources used to develop the models, featurization approaches of molecular structures and biological information, and types of DDI prediction outcomes from the models. Finally, we make suggestions for research opportunities in this field.
Collapse
Affiliation(s)
- Eujin Hong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141 Korea
| |
Collapse
|
23
|
Ren ZH, You ZH, Zou Q, Yu CQ, Ma YF, Guan YJ, You HR, Wang XF, Pan J. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis. J Transl Med 2023; 21:48. [PMID: 36698208 PMCID: PMC9876420 DOI: 10.1186/s12967-023-03876-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, plenty of computational methods are conducted to effectively complement biological experiments and narrow the search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider association behavior semantic information based on several schemas to represent complex the structure of heterogeneous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand for prediction accuracy. METHODS We propose a multi-modal representation framework of 'DeepMPF' based on meta-path semantic analysis, which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein-drug-disease heterogeneous networks composed of three entities. Then the feature information is obtained under three views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature descriptors and calculates the probability of interaction through joint learning. RESULTS To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the different feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug repositioning experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates predicted by DeepMPF. CONCLUSIONS All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of the DeepMPF predictor is freely available at http://120.77.11.78/DeepMPF/ , which can help relevant researchers to further study.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Zhu-Hong You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Quan Zou
- grid.54549.390000 0004 0369 4060Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
| | - Chang-Qing Yu
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Yan-Fang Ma
- grid.417234.70000 0004 1808 3203Department of Galactophore, The Third People’s Hospital of Gansu Province, Lanzhou, 730020 China
| | - Yong-Jian Guan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Hai-Ru You
- grid.440588.50000 0001 0307 1240School of Computer Science, Northwestern Polytechnical University, Xi’an, 710129 China
| | - Xin-Fei Wang
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| | - Jie Pan
- grid.460132.20000 0004 1758 0275School of Information Engineering, Xijing University, Xi’an, 710100 China
| |
Collapse
|
24
|
Ren ZH, You ZH, Yu CQ, Li LP, Guan YJ, Guo LX, Pan J. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Brief Bioinform 2022; 23:6692550. [PMID: 36070624 DOI: 10.1093/bib/bbac363] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
Drug-drug interactions (DDIs) prediction is a challenging task in drug development and clinical application. Due to the extremely large complete set of all possible DDIs, computer-aided DDIs prediction methods are getting lots of attention in the pharmaceutical industry and academia. However, most existing computational methods only use single perspective information and few of them conduct the task based on the biomedical knowledge graph (BKG), which can provide more detailed and comprehensive drug lateral side information flow. To this end, a deep learning framework, namely DeepLGF, is proposed to fully exploit BKG fusing local-global information to improve the performance of DDIs prediction. More specifically, DeepLGF first obtains chemical local information on drug sequence semantics through a natural language processing algorithm. Then a model of BFGNN based on graph neural network is proposed to extract biological local information on drug through learning embedding vector from different biological functional spaces. The global feature information is extracted from the BKG by our knowledge graph embedding method. In DeepLGF, for fusing local-global features well, we designed four aggregating methods to explore the most suitable ones. Finally, the advanced fusing feature vectors are fed into deep neural network to train and predict. To evaluate the prediction performance of DeepLGF, we tested our method in three prediction tasks and compared it with state-of-the-art models. In addition, case studies of three cancer-related and COVID-19-related drugs further demonstrated DeepLGF's superior ability for potential DDIs prediction. The webserver of the DeepLGF predictor is freely available at http://120.77.11.78/DeepLGF/.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi'an 710100, China.,School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Li-Ping Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Lu-Xiang Guo
- School of Information Engineering, Xijing University, Xi'an 710100, China
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi'an 710100, China
| |
Collapse
|
25
|
Ren ZH, Yu CQ, Li LP, You ZH, Pan J, Guan YJ, Guo LX. BioChemDDI: Predicting Drug-Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism. BIOLOGY 2022; 11:biology11050758. [PMID: 35625486 PMCID: PMC9138786 DOI: 10.3390/biology11050758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary Throughout history, combining drugs has been a common method in the fight against complex diseases. However, potential drug–drug interactions could give rise to unknown toxicity issues, which requires the urgent proposal of efficient methods to identify potential interactions.We use computer technology and machine learning techniques to propose a novel computational framework to calculate scores of drug–drug interaction probability for simplifying the screening process. Additionally, we built an online prescreening tool for biological researchers to further verify possible interactions in the fields of biomedicine and pharmacology. Overall, our study can provide new insights and approaches for rapidly identifying potential drug–drug interactions. Abstract During the development of drug and clinical applications, due to the co-administration of different drugs that have a high risk of interfering with each other’s mechanisms of action, correctly identifying potential drug–drug interactions (DDIs) is important to avoid a reduction in drug therapeutic activities and serious injuries to the organism. Therefore, to explore potential DDIs, we develop a computational method of integrating multi-level information. Firstly, the information of chemical sequence is fully captured by the Natural Language Processing (NLP) algorithm, and multiple biological function similarity information is fused by Similarity Network Fusion (SNF). Secondly, we extract deep network structure information through Hierarchical Representation Learning for Networks (HARP). Then, a highly representative comprehensive feature descriptor is constructed through the self-attention module that efficiently integrates biochemical and network features. Finally, a deep neural network (DNN) is employed to generate the prediction results. Contrasted with the previous supervision model, BioChemDDI innovatively introduced graph collapse for extracting a network structure and utilized the biochemical information during the pre-training process. The prediction results of the benchmark dataset indicate that BioChemDDI outperforms other existing models. Moreover, the case studies related to three cancer diseases, including breast cancer, hepatocellular carcinoma and malignancies, were analyzed using BioChemDDI. As a result, 24, 18 and 20 out of the top 30 predicted cancer-related drugs were confirmed by the databases. These experimental results demonstrate that BioChemDDI is a useful model to predict DDIs and can provide reliable candidates for biological experiments. The web server of BioChemDDI predictor is freely available to conduct further studies.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
- Correspondence: (C.-Q.Y.); (L.-P.L.); Tel.: +86-189-9118-5758 (C.-Q.Y.); +86-173-9276-3836 (L.-P.L.)
| | - Li-Ping Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China
- Correspondence: (C.-Q.Y.); (L.-P.L.); Tel.: +86-189-9118-5758 (C.-Q.Y.); +86-173-9276-3836 (L.-P.L.)
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China;
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| | - Lu-Xiang Guo
- School of Information Engineering, Xijing University, Xi’an 710123, China; (Z.-H.R.); (Y.-J.G.); (L.-X.G.); (J.P.)
| |
Collapse
|