1
|
Oz N, Vayndorf EM, Tsuchiya M, McLean S, Turcios-Hernandez L, Pitt JN, Blue BW, Muir M, Kiflezghi MG, Tyshkovskiy A, Mendenhall A, Kaeberlein M, Kaya A. Evidence that conserved essential genes are enriched for pro-longevity factors. GeroScience 2022; 44:1995-2006. [PMID: 35695982 PMCID: PMC9616985 DOI: 10.1007/s11357-022-00604-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/03/2022] [Indexed: 02/02/2023] Open
Abstract
At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae, Caenorhabdits elegans, and Drosophila melanogaster. Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse genetics, essential genes have often been overlooked as potential modulators of the aging process. By taking the approach of increasing the expression level of a subset of conserved essential genes, we found that 21% of these genes resulted in increased replicative lifespan in S. cerevisiae. This is greater than the ~ 3.5% of genes found to affect lifespan upon deletion, suggesting that activation of essential genes may have a relatively disproportionate effect on increasing lifespan. The results of our experiments demonstrate that essential gene overexpression is a rich, relatively unexplored means of increasing eukaryotic lifespan.
Collapse
Affiliation(s)
- Naci Oz
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Elena M Vayndorf
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Samantha McLean
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | | | - Jason N Pitt
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Benjamin W Blue
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Michael Muir
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Michael G Kiflezghi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Alexander Mendenhall
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
2
|
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
3
|
Guillermo ARR, Chocian K, Gavriilidis G, Vandamme J, Salcini AE, Mellor J, Woollard A. H3K27 modifiers regulate lifespan in C. elegans in a context-dependent manner. BMC Biol 2021; 19:59. [PMID: 33766022 PMCID: PMC7995591 DOI: 10.1186/s12915-021-00984-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background Evidence of global heterochromatin decay and aberrant gene expression in models of physiological and premature ageing have long supported the “heterochromatin loss theory of ageing”, which proposes that ageing is aetiologically linked to, and accompanied by, a progressive, generalised loss of repressive epigenetic signatures. However, the remarkable plasticity of chromatin conformation suggests that the re-establishment of such marks could potentially revert the transcriptomic architecture of animal cells to a “younger” state, promoting longevity and healthspan. To expand our understanding of the ageing process and its connection to chromatin biology, we screened an RNAi library of chromatin-associated factors for increased longevity phenotypes. Results We identified the lysine demethylases jmjd-3.2 and utx-1, as well as the lysine methyltransferase mes-2 as regulators of both lifespan and healthspan in C. elegans. Strikingly, we found that both overexpression and loss of function of jmjd-3.2 and utx-1 are all associated with enhanced longevity. Furthermore, we showed that the catalytic activity of UTX-1, but not JMJD-3.2, is critical for lifespan extension in the context of overexpression. In attempting to reconcile the improved longevity associated with both loss and gain of function of utx-1, we investigated the alternative lifespan pathways and tissue specificity of longevity outcomes. We demonstrated that lifespan extension caused by loss of utx-1 function is daf-16 dependent, while overexpression effects are partially independent of daf-16. In addition, lifespan extension was observed when utx-1 was knocked down or overexpressed in neurons and intestine, whereas in the epidermis, only knockdown of utx-1 conferred improved longevity. Conclusions We show that the regulation of longevity by chromatin modifiers can be the result of the interaction between distinct factors, such as the level and tissue of expression. Overall, we suggest that the heterochromatin loss model of ageing may be too simplistic an explanation of organismal ageing when molecular and tissue-specific effects are taken into account. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00984-8.
Collapse
Affiliation(s)
- Abigail R R Guillermo
- Department of Biochemistry, University of Oxford, Oxford, UK.,Present Address: Department of Physiology, National University of Singapore, Singapore, Singapore
| | | | | | - Julien Vandamme
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Present Address: Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Elisabetta Salcini
- Present Address: Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Jane Mellor
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Liang ST, Audira G, Juniardi S, Chen JR, Lai YH, Du ZC, Lin DS, Hsiao CD. Zebrafish Carrying pycr1 Gene Deficiency Display Aging and Multiple Behavioral Abnormalities. Cells 2019; 8:cells8050453. [PMID: 31091804 PMCID: PMC6562453 DOI: 10.3390/cells8050453] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Aging is a natural process that internal gene control and external stimuli mediate. Clinical data pointed out that homozygotic or heterozygotic mutation in the pyrroline-5-carboxylate reductase 1 (PYCR1) gene in humans caused cutis laxa (ARCL) disease, with progeroid appearance, lax and wrinkled skin, joint laxity, osteopenia, and mental retardation phenotypes. In this study, we aimed to generate pycr1 knockout (KO) zebrafish and carried out biochemical characterizations and behavior analyses. Marked apoptosis and senescence were detected in pycr1 KO zebrafish, which started from embryos/larvae stage. Biochemical assays showed that adult pycr1 KO fish have significantly reduced proline and extracellular matrix contents, lowered energy, and diminished superoxide dismutase (SOD) and telomerase activity when compared to the wild type fish, which suggested the pycr1 KO fish may have dysfunction in mitochondria. The pycr1 KO fish were viable; however, displayed progeria-like phenotype from the 4 months old and reach 50% mortality around six months old. In adult stage, we found that pycr1 KO fish showed reduced locomotion activity, aggression, predator avoidance, social interaction interest, as well as dysregulated color preference and circadian rhythm. In summary, we have identified multiple behavioral alterations in a novel fish model for aging with pycr1 gene loss-of-function by behavioral tests. This animal model may not only provide a unique vertebrate model to screen potential anti-aging drugs in the future, but also be an excellent in vivo model towards a better understanding of the corresponding behavioral alterations that accompany aging.
Collapse
Affiliation(s)
- Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Jung-Ren Chen
- Department of Biological Science & Technology, College of Medicine, I-Shou University, Kaohsiung 84001, Taiwan.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Zheng-Cai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Dar-Shong Lin
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei 252, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
5
|
Abstract
Numerous approaches have been taken in the hunt for human disease genes. The identification of such genes not only provides a great deal of information about the mechanism of disease development, but also provides potential avenues for better diagnosis and treatment. In this chapter, we review the use of the nonmammalian model organism C. elegans for the identification of human disease genes. Studies utilizing this relatively simple organism offer a good balance between the ability to recapitulate many aspects of human disease, while still offering an abundance of powerful cell biological, genetic, and genomic tools for disease gene discovery. C. elegans and other nonmammalian models have produced, and will continue to produce, key insights into human disease pathogenesis.
Collapse
Affiliation(s)
- Javier Apfeld
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Scott Alper
- Department of Biomedical Research, Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Wilhelm T, Byrne J, Medina R, Kolundžić E, Geisinger J, Hajduskova M, Tursun B, Richly H. Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev 2017; 31:1561-1572. [PMID: 28882853 PMCID: PMC5630021 DOI: 10.1101/gad.301648.117] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
Here, Wilhelm et al. performed an RNAi screen in C. elegans to identify genes mediating post-reproductive longevity. They found that the inhibition of vesicle nucleation in the post-reproductive animal prevents age-associated neuronal degeneration, which leads to increased health and life span. Autophagy is a ubiquitous catabolic process that causes cellular bulk degradation of cytoplasmic components and is generally associated with positive effects on health and longevity. Inactivation of autophagy has been linked with detrimental effects on cells and organisms. The antagonistic pleiotropy theory postulates that some fitness-promoting genes during youth are harmful during aging. On this basis, we examined genes mediating post-reproductive longevity using an RNAi screen. From this screen, we identified 30 novel regulators of post-reproductive longevity, including pha-4. Through downstream analysis of pha-4, we identified that the inactivation of genes governing the early stages of autophagy up until the stage of vesicle nucleation, such as bec-1, strongly extend both life span and health span. Furthermore, our data demonstrate that the improvements in health and longevity are mediated through the neurons, resulting in reduced neurodegeneration and sarcopenia. We propose that autophagy switches from advantageous to harmful in the context of an age-associated dysfunction.
Collapse
Affiliation(s)
- Thomas Wilhelm
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Jonathan Byrne
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Rebeca Medina
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Ena Kolundžić
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Johannes Geisinger
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.,Faculty of Biology, Johannes Gutenberg University, 55099 Mainz, Germany
| | - Martina Hajduskova
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Baris Tursun
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center (MDC), 13125 Berlin, Germany
| | - Holger Richly
- Laboratory of Molecular Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
7
|
Xiao S, Chen YC, Buehler E, Mandal S, Mandal A, Betenbaugh M, Park MH, Martin S, Shiloach J. Genome-scale RNA interference screen identifies antizyme 1 (OAZ1) as a target for improvement of recombinant protein production in mammalian cells. Biotechnol Bioeng 2016; 113:2403-15. [PMID: 27215166 DOI: 10.1002/bit.26017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022]
Abstract
For the purpose of improving recombinant protein production from mammalian cells, an unbiased, high-throughput whole-genome RNA interference screen was conducted using human embryonic kidney 293 (HEK 293) cells expressing firefly luciferase. A 21,585 human genes were individually silenced with three different siRNAs for each gene. The screen identified 56 genes that led to the greatest improvement in luciferase expression. These genes were found to be included in several pathways involved in spliceosome formation and mRNA processing, transcription, metabolic processes, transport, and protein folding. The 10 genes that most enhanced protein expression when downregulated, were further confirmed by measuring the effect of their silencing on the expression of three additional recombinant proteins. Among the confirmed genes, OAZ1-the gene encoding the ornithine decarboxylase antizyme1-was selected for detailed investigation, since its silencing improved the reporter protein production without affecting cell viability. Silencing OAZ1 caused an increase of the ornithine decarboxylase enzyme and the cellular levels of putrescine and spermidine; an indication that increased cellular polyamines enhances luciferase expression without affecting its transcription. The study shows that OAZ1 is a novel target for improving expression of recombinant proteins. The genome-scale screening performed in this work can establish the foundation for targeted design of an efficient mammalian cell platform for various biotechnological applications. Biotechnol. Bioeng. 2016;113: 2403-2415. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Su Xiao
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yu Chi Chen
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, 20850
| | - Eugen Buehler
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, 20850
| | - Swati Mandal
- Molecular and Cellular Biochemistry Section, NIDCR, NIH, Bethesda, Maryland
| | - Ajeet Mandal
- Molecular and Cellular Biochemistry Section, NIDCR, NIH, Bethesda, Maryland
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Myung Hee Park
- Molecular and Cellular Biochemistry Section, NIDCR, NIH, Bethesda, Maryland
| | - Scott Martin
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, Maryland, 20850.
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892.
| |
Collapse
|
8
|
C. elegans screening strategies to identify pro-longevity interventions. Mech Ageing Dev 2016; 157:60-9. [PMID: 27473404 DOI: 10.1016/j.mad.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023]
Abstract
Drugs screenings in search of enhancers or suppressors of selected readout(s) are nowadays mainly carried out in single cells systems. These approaches are however limited when searching for compounds with effects at the organismal level. To overcome this drawback the use of different model organisms to carry out modifier screenings has exponentially grown in the past decade. Unique characteristics such as easy manageability, low cost, fast reproductive cycle, short lifespan, simple anatomy and genetic amenability, make the nematode Caenorhabditis elegans especially suitable for this purpose. Here we briefly review the different high-throughput and high-content screenings which exploited the nematode to identify new compounds extending healthy lifespan. In this context, we describe our recently developed screening strategy to search for pro-longevity interventions taking advantage of the very reproducible phenotypes observed in C. elegans upon different degrees of mitochondrial stress. Indeed, in Mitochondrial mutants, the processes induced to cope with mild mitochondrial alterations during development, and ultimately extending animal lifespan, lead to reduced size and induction of specific stress responses. Instead, upon strong mitochondrial dysfunction, worms arrest their development. Exploiting these automatically quantifiable phenotypic readouts, we developed a new screening approach using the Cellomics ArrayScanVTI-HCS Reader and identified a new pro-longevity drug.
Collapse
|
9
|
Metabolome and proteome changes with aging in Caenorhabditis elegans. Exp Gerontol 2015; 72:67-84. [PMID: 26390854 DOI: 10.1016/j.exger.2015.09.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 01/13/2023]
Abstract
To expand the understanding of aging in the model organism Caenorhabditis elegans, global quantification of metabolite and protein levels in young and aged nematodes was performed using mass spectrometry. With age, there was a decreased abundance of proteins functioning in transcription termination, mRNA degradation, mRNA stability, protein synthesis, and proteasomal function. Furthermore, there was altered S-adenosyl methionine metabolism as well as a decreased abundance of the S-adenosyl methionine synthetase (SAMS-1) protein. Other aging-related changes included alterations in free fatty acid levels and composition, decreased levels of ribosomal proteins, decreased levels of NADP-dependent isocitrate dehydrogenase (IDH1), a shift in the cellular redox state, an increase in sorbitol content, alterations in free amino acid levels, and indications of altered muscle function and sarcoplasmic reticulum Ca(2+) homeostasis. There were also decreases in pyrimidine and purine metabolite levels, most markedly nitrogenous bases. Supplementing the culture medium with cytidine (a pyrimidine nucleoside) or hypoxanthine (a purine base) increased lifespan slightly, suggesting that aging-induced alterations in ribonucleotide metabolism affect lifespan. An age-related increase in body size, lipotoxicity from ectopic yolk lipoprotein accumulation, a decline in NAD(+) levels, and mitochondrial electron transport chain dysfunction may explain many of these changes. In addition, dietary restriction in aged worms resulting from sarcopenia of the pharyngeal pump likely decreases the abundance of SAMS-1, possibly leading to decreased phosphatidylcholine levels, larger lipid droplets, and ER and mitochondrial stress. The complementary use of proteomics and metabolomics yielded unique insights into the molecular processes altered with age in C. elegans.
Collapse
|
10
|
Maglioni S, Arsalan N, Franchi L, Hurd A, Opipari AW, Glick GD, Ventura N. An automated phenotype-based microscopy screen to identify pro-longevity interventions acting through mitochondria in C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1469-78. [PMID: 25979236 DOI: 10.1016/j.bbabio.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 01/22/2023]
Abstract
Mitochondria are multifunctional organelles that play a central role in cellular homeostasis. Severe mitochondrial dysfunction leads to life-threatening diseases in humans and accelerates the aging process. Surprisingly, moderate reduction of mitochondrial function in different species has anti-aging effects. High-throughput screenings in the nematode Caenorhabditis elegans lead to the identification of several pro-longevity genetic and pharmacological interventions. Large-scale screens, however, are manual, subjective, time consuming and costly. These limitations could be reduced by the identification of automatically quantifiable biomarkers of healthy aging. In this study we exploit the distinct and reproducible phenotypes described in C. elegans upon different levels of mitochondrial alteration to develop an automated high-content strategy to identify new potential pro-longevity interventions. Utilizing the microscopy platform Cellomics ArrayScan Reader, we optimize a workflow to automatically and reliably quantify the discrete phenotypic readouts associated with different degrees of silencing of mitochondrial respiratory chain regulatory proteins, and validate the approach with mitochondrial-targeting drugs known to extend lifespan in C. elegans. Finally, we report that a new mitochondrial ATPase modulator matches our screening phenotypic criteria and extends nematode's lifespan thus providing the proof of principle that our strategy could be exploited to identify novel mitochondrial-targeted drugs with pro-longevity activity. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
- Silvia Maglioni
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Nayna Arsalan
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | | | | | | | - Natascia Ventura
- Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty of the Heinrich Heine University, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany.
| |
Collapse
|
11
|
Zhuang Z, Lv T, Li M, Zhang Y, Xue T, Yang L, Liu H, Zhang W. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2014; 69:304-309. [PMID: 25367047 DOI: 10.1007/s11130-014-0448-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.
Collapse
Affiliation(s)
- Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, Condò I, Bei R, Rea SL, Braeckman BP, Tavernarakis N, Testi R, Ventura N. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201. [PMID: 23247094 PMCID: PMC3572394 DOI: 10.1016/j.exger.2012.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023]
Abstract
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alessandro Torgovnick
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alison Kell
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Evgenia Megalou
- IMBB, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | | | - Ilaria Guccini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sara Gelino
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Malene Hansen
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Bei
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Shane L. Rea
- Sam and Ann Barshop Institute for Longevity and Aging Studies and the Department of Physiology, UTHSCSA, San Antonio, TX, USA
| | | | | | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Natascia Ventura
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| |
Collapse
|
13
|
Lapierre LR, Hansen M. Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 2012; 23:637-44. [PMID: 22939742 PMCID: PMC3502657 DOI: 10.1016/j.tem.2012.07.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/21/2012] [Accepted: 07/24/2012] [Indexed: 11/25/2022]
Abstract
Recent research using model organisms such as the nematode Caenorhabditis elegans has highlighted a crucial role for several conserved signaling pathways in longevity determination. Here, we review three major endocrine- and nutrient-sensing signaling pathways with influence on lifespan, the insulin/insulin-like growth factor (IGF), target of rapamycin (TOR), and germline signaling pathways. Although these pathways engage distinct sets of transcription factors, the three pathways appear to modulate aging in C. elegans through partially overlapping effector mechanisms, including lipid metabolism and autophagy. This review highlights the latest advances in our understanding of how the insulin/IGF-1, TOR, and germline signaling pathways utilize different transcription factors to modulate aging in C. elegans with special emphasis on the role of lipid metabolism and autophagy.
Collapse
Affiliation(s)
- Louis R Lapierre
- Sanford-Burnham Medical Research Institute, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA 92037, USA
| | | |
Collapse
|
14
|
Ni Z, Ebata A, Alipanahiramandi E, Lee SS. Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 2012; 11:315-25. [PMID: 22212395 DOI: 10.1111/j.1474-9726.2011.00785.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Changes in epigenetic status and chromatin structure have been shown to associate with aging in many organisms. Here, we report an RNAi screen of putative histone methyltransferases and demethylases in wild-type Caenorhabditis elegans using reproduction inhibitor. We identified six genes that when inactivated by RNAi, consistently extend lifespan. Five of these genes do not require germline proliferation to affect lifespan. We further characterized two of these genes, the highly homologous SET domain containing genes, set-9 and set-26. They share redundant functions in maintaining normal lifespan, while exhibiting differential tissue expression patterns. Furthermore, we found that set-9 and set-26 partially act through the Forkhead box O (FOXO) transcription factor, DAF-16, to modulate lifespan. Interestingly, inactivation of somatic SET-26 alone results in a robust lifespan extension and alters the levels of histone H3 protein and the repressive histone marks, H3K9me3 and H3K27me3, in an age-dependent manner. We hypothesize that inactivation of SET-26 triggers compensation mechanisms to restore repressive chromatin structure and hence affects chromatin stability to promote longevity.
Collapse
Affiliation(s)
- Zhuoyu Ni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
15
|
Mohr SE, Perrimon N. RNAi screening: new approaches, understandings, and organisms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:145-58. [PMID: 21953743 DOI: 10.1002/wrna.110] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA interference (RNAi) leads to sequence-specific knockdown of gene function. The approach can be used in large-scale screens to interrogate function in various model organisms and an increasing number of other species. Genome-scale RNAi screens are routinely performed in cultured or primary cells or in vivo in organisms such as C. elegans. High-throughput RNAi screening is benefitting from the development of sophisticated new instrumentation and software tools for collecting and analyzing data, including high-content image data. The results of large-scale RNAi screens have already proved useful, leading to new understandings of gene function relevant to topics such as infection, cancer, obesity, and aging. Nevertheless, important caveats apply and should be taken into consideration when developing or interpreting RNAi screens. Some level of false discovery is inherent to high-throughput approaches and specific to RNAi screens, false discovery due to off-target effects (OTEs) of RNAi reagents remains a problem. The need to improve our ability to use RNAi to elucidate gene function at large scale and in additional systems continues to be addressed through improved RNAi library design, development of innovative computational and analysis tools and other approaches.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
16
|
The homeobox protein CEH-23 mediates prolonged longevity in response to impaired mitochondrial electron transport chain in C. elegans. PLoS Biol 2011; 9:e1001084. [PMID: 21713031 PMCID: PMC3119657 DOI: 10.1371/journal.pbio.1001084] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 05/06/2011] [Indexed: 11/20/2022] Open
Abstract
Recent findings indicate that perturbations of the mitochondrial electron transport chain (METC) can cause extended longevity in evolutionarily diverse organisms. To uncover the molecular basis of how altered METC increases lifespan in C. elegans, we performed an RNAi screen and revealed that three predicted transcription factors are specifically required for the extended longevity of mitochondrial mutants. In particular, we demonstrated that the nuclear homeobox protein CEH-23 uniquely mediates the longevity but not the slow development, reduced brood size, or resistance to oxidative stress associated with mitochondrial mutations. Furthermore, we showed that ceh-23 expression levels are responsive to altered METC, and enforced overexpression of ceh-23 is sufficient to extend lifespan in wild-type background. Our data point to mitochondria-to-nucleus communications to be key for longevity determination and highlight CEH-23 as a novel longevity factor capable of responding to mitochondrial perturbations. These findings provide a new paradigm for how mitochondria impact aging and age-dependent diseases. Mitochondria have long been associated with aging and age-related diseases. Recent research has shown that a slight dampening of mitochondrial function can dramatically increase the lifespan of a wide range of organisms, suggesting that a similar mechanism likely operates in humans. The molecular basis of this observation is largely unknown, however. Uncovering the genes that allow altered mitochondrial function to impact longevity will give us important new insights into how mitochondria affect the aging process and will pave the way for future therapeutic developments aiming to improve healthy aging and to treat age-related diseases. Here, we used an RNAi screen in the genetic model organism C. elegans, a nematode worm, to uncover how altered mitochondrial function can modulate longevity. We found that in order for mitochondria to affect lifespan, they must communicate with several unique transcription factors in the nucleus. Notably, we discovered that the putative homeobox transcription factor CEH-23, which has not previously been implicated in longevity determination, is able to respond to changes in mitochondrial function and in turn causes an extension in lifespan.
Collapse
|
17
|
Honjoh S, Nishida E. Two sides of lifespan regulating genes: pro-longevity or anti-longevity? J Biochem 2011; 149:381-8. [PMID: 21372089 DOI: 10.1093/jb/mvr026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Traditionally, ageing has been considered a passive and entropic process, in which damages accumulate on biological macromolecules over time and the accumulated damages lead to a decline in overall physiological functions. However, the discovery of a longevity mutant in the nematode Caenorhabditis elegans has challenged this view. A longevity mutant is a mutant organism, in which a reduction-of-function of a certain gene prolongs the lifespan. Thus, the discovery of longevity mutants has shown the existence of genes, which function to shorten lifespan in wild-type organisms, promoting extensive hunting for longevity-regulating genes in short-lived model organisms, such as yeast, worms and flies. These studies have revealed remarkable conservation of longevity-regulating genes and their networks among species. Decreased insulin/IGF-like signalling and decreased target of rapamycin (TOR) signalling are both shown to extend lifespan in evolutionarily divergent species, from unicellular organisms to mammals. Intriguingly, most of these longevity-regulating pathways reveal pro-longevity and anti-longevity effects on lifespan, depending on biological and environmental contexts. This review summarizes pleiotropic functions of the conserved longevity-regulating genes or pathways, focusing on studies in C. elegans.
Collapse
Affiliation(s)
- Sakiko Honjoh
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
18
|
Soltow QA, Jones DP, Promislow DEL. A network perspective on metabolism and aging. Integr Comp Biol 2010; 50:844-54. [PMID: 21031036 DOI: 10.1093/icb/icq094] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aging affects a myriad of genetic, biochemical, and metabolic processes, and efforts to understand the underlying molecular basis of aging are often thwarted by the complexity of the aging process. By taking a systems biology approach, network analysis is well-suited to study the decline in function with age. Network analysis has already been utilized in describing other complex processes such as development, evolution, and robustness. Networks of gene expression and protein-protein interaction have provided valuable insight into the loss of connectivity and network structure throughout lifespan. Here, we advocate the use of metabolic networks to expand the work from genomics and proteomics. As metabolism is the final fingerprint of functionality and has been implicated in multiple theories of aging, metabolomic methods combined with metabolite network analyses should pave the way to investigate how relationships of metabolites change with age and how these interactions affect phenotype and function of the aging individual. The metabolomic network approaches highlighted in this review are fundamental for an understanding of systematic declines and of failure to function with age.
Collapse
Affiliation(s)
- Quinlyn A Soltow
- Department of Medicine, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|