1
|
Inwood S, Cheng K, Betenbaugh MJ, Shiloach J. Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. Methods Mol Biol 2024; 2810:317-327. [PMID: 38926288 PMCID: PMC12007603 DOI: 10.1007/978-1-0716-3878-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here, we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays, and the validation transfection to identify genes involved with protein expression.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA
| | - Ken Cheng
- Functional Genomics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ahmad M, Weiswald LB, Poulain L, Denoyelle C, Meryet-Figuiere M. Involvement of lncRNAs in cancer cells migration, invasion and metastasis: cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res 2023; 42:173. [PMID: 37464436 PMCID: PMC10353155 DOI: 10.1186/s13046-023-02741-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Cancer is the main cause of death worldwide and metastasis is a major cause of poor prognosis and cancer-associated mortality. Metastatic conversion of cancer cells is a multiplex process, including EMT through cytoskeleton remodeling and interaction with TME. Tens of thousands of putative lncRNAs have been identified, but the biological functions of most are still to be identified. However, lncRNAs have already emerged as key regulators of gene expression at transcriptional and post-transcriptional level to control gene expression in a spatio-temporal fashion. LncRNA-dependent mechanisms can control cell fates during development and their perturbed expression is associated with the onset and progression of many diseases including cancer. LncRNAs have been involved in each step of cancer cells metastasis through different modes of action. The investigation of lncRNAs different roles in cancer metastasis could possibly lead to the identification of new biomarkers and innovative cancer therapeutic options.
Collapse
Affiliation(s)
- Mohammad Ahmad
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
- Biochemistry Division, Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 14000, Egypt
| | - Louis-Bastien Weiswald
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Laurent Poulain
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Christophe Denoyelle
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuiere
- (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Baclesse Cancer Centre, Université de Caen Normandie Inserm Anticipe UMR 1086, Normandie Univ, Research Building, F-14000 François 3 Avenue Général Harris, BP 45026, 14 076, cedex 05, Caen, France.
- Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
3
|
Yue X, Liang Y, Wei Z, Lv J, Cai Y, Fan X, Zhang W, Chen J. Genome-wide in vitro and in vivo RNAi screens reveal Fer3 to be an important regulator of kkv transcription in Drosophila. INSECT SCIENCE 2022; 29:614-630. [PMID: 34351065 DOI: 10.1111/1744-7917.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 07/11/2021] [Indexed: 06/13/2023]
Abstract
Krotzkopf verkehrt (kkv) is a key enzyme that catalyzes the synthesis of chitin, an important component of the Drosophila epidermis, trachea, and other tissues. Here, we report the use of comprehensive RNA interference (RNAi) analyses to search for kkv transcriptional regulators. A cell-based RNAi screen identified 537 candidate kkv regulators on a genome-wide scale. Subsequent use of transgenic Drosophila lines expressing RNAi constructs enabled in vivo validation, and we identified six genes as potential kkv transcriptional regulators. Weakening of the kkvDsRed signal, an in vivo reporter indicating kkv promoter activity, was observed when the expression of Akirin, NFAT, 48 related 3 (Fer3), or Autophagy-related 101(Atg101) was knocked down in Drosophila at the 3rd-instar larval stage; whereas we observed disoriented taenidial folds on larval tracheae when Lines (lin) or Autophagy-related 3 (Atg3) was knocked down in the tracheae. Fer3, in particular, has been shown to be an important factor in the activation of kkv transcription via specific binding with the kkv promoter. The genes involved in the chitin synthesis pathway were widely affected by the downregulation of Fer3. Furthermore, Atg101, Atg3, Akirin, Lin, NFAT, Pnr, and Abd-A showed that the potential complex mechanism of kkv transcription is regulated by an interaction network with bithorax complex components. Our study revealed the hitherto unappreciated diversity of modulators impinging on kkv transcription and opens new avenues in the study of kkv regulation and chitin biosynthesis.
Collapse
Affiliation(s)
- Xiangzhao Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- College of Life Sciences, Shangrao Normal University, Shangrao, Jiangxi Province, China
| | - Yongkang Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhishuang Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongjin Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaobin Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Prokhorova D, Zhukova (Eschenko) N, Lemza A, Sergeeva M, Amirkhanov R, Stepanov G. Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Viruses 2022; 14:v14020437. [PMID: 35216030 PMCID: PMC8879999 DOI: 10.3390/v14020437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) causes a respiratory infection that affects millions of people of different age groups and can lead to acute respiratory distress syndrome. Currently, host genes, receptors, and other cellular components critical for IAV replication are actively studied. One of the most convenient and accessible genome-editing tools to facilitate these studies is the CRISPR/Cas9 system. This tool allows for regulating the expression of both viral and host cell genes to enhance or impair viral entry and replication. This review considers the effect of the genome editing system on specific target genes in cells (human and chicken) in terms of subsequent changes in the influenza virus life cycle and the efficiency of virus particle production.
Collapse
Affiliation(s)
- Daria Prokhorova
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Natalya Zhukova (Eschenko)
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Anna Lemza
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Mariia Sergeeva
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Laboratory of Vector Vaccines, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Rinat Amirkhanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Grigory Stepanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Correspondence: ; Tel.: +7-383-3635189
| |
Collapse
|
5
|
Genome-wide screens identify specific drivers of mutant hTERT promoters. Proc Natl Acad Sci U S A 2022; 119:2105171119. [PMID: 35027447 PMCID: PMC8784157 DOI: 10.1073/pnas.2105171119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
Mutations in hTERT promoter are seen in over 19% of human cancers, irrespective of the cancer type. Understanding the molecular players that regulate Mut-hTERT promoters may help the design of effective targeting strategies to inhibit telomerase reactivation specifically in cancer cells. Our work uses genome-wide functional screens to identify 30 specific regulators of Mut-hTERT promoters. These candidates identified from the screening serve as an excellent resource to understand how telomerase is reactivated and as targets for making inhibitors to telomerase, a key driver of cancer. Cancer-specific hTERT promoter mutations reported in 19% of cancers result in enhanced telomerase activity. Understanding the distinctions between transcriptional regulation of wild-type (WT) and mutant (Mut) hTERT promoters may open up avenues for development of inhibitors which specially block hTERT expression in cancer cells. To comprehensively identify physiological regulators of WT- or Mut-hTERT promoters, we generated several isogenic reporter cells driven by endogenous hTERT loci. Genome-wide CRISPR-Cas9 and small interfering RNA screens using these isogenic reporter lines identified specific regulators of Mut-hTERT promoters. We validate and characterize one of these hits, namely, MED12, a kinase subunit of mediator complex. We demonstrate that MED12 specifically drives expression of hTERT from the Mut-hTERT promoter by mediating long-range chromatin interaction between the proximal Mut-hTERT promoter and T-INT1 distal regulatory region 260 kb upstream. Several hits identified in our screens could serve as potential therapeutic targets, inhibition of which may specifically block Mut-hTERT promoter driven telomerase reactivation in cancers.
Collapse
|
6
|
Roy P, Saha S, Chakraborty J. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Haque S, Cook K, Sahay G, Sun C. RNA-Based Therapeutics: Current Developments in Targeted Molecular Therapy of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:pharmaceutics13101694. [PMID: 34683988 PMCID: PMC8537780 DOI: 10.3390/pharmaceutics13101694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive cancer that has the highest mortality rate out of all breast cancer subtypes. Conventional clinical treatments targeting ER, PR, and HER2 receptors have been unsuccessful in the treatment of TNBC, which has led to various research efforts in developing new strategies to treat TNBC. Targeted molecular therapy of TNBC utilizes knowledge of key molecular signatures of TNBC that can be effectively modulated to produce a positive therapeutic response. Correspondingly, RNA-based therapeutics represent a novel tool in oncology with their ability to alter intrinsic cancer pathways that contribute to poor patient prognosis. Current RNA-based therapeutics exist as two major areas of investigation-RNA interference (RNAi) and RNA nanotherapy, where RNAi utilizes principles of gene silencing, and RNA nanotherapy utilizes RNA-derived nanoparticles to deliver chemotherapeutics to target cells. RNAi can be further classified as therapeutics utilizing either small interfering RNA (siRNA) or microRNA (miRNA). As the broader field of gene therapy has advanced significantly in recent years, so too have efforts in the development of effective RNA-based therapeutic strategies for treating aggressive cancers, including TNBC. This review will summarize key advances in targeted molecular therapy of TNBC, describing current trends in treatment using RNAi, combination therapies, and recent efforts in RNA immunotherapy, utilizing messenger RNA (mRNA) in the development of cancer vaccines.
Collapse
Affiliation(s)
- Sakib Haque
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
| | - Kiri Cook
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Gaurav Sahay
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
| | - Conroy Sun
- College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA; (S.H.); (G.S.)
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-346-4699
| |
Collapse
|
8
|
Suresh A, Reddy IJ, Mishra A, Mondal S. Suppression of COX-2 mRNA abundance in in vitro cultured goat (Capra hircus) endometrial cells by RNA interference and effect on PGF2-α and PGE2 concentrations. Anim Reprod Sci 2019; 209:106146. [PMID: 31514936 DOI: 10.1016/j.anireprosci.2019.106146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023]
Abstract
Cyclooxygenase-2 (COX-2) has important functions in the synthesis and release of endometrial prostaglandin F2α (PGF2α). Excessive production of COX-2 leads to an increase in endometrial PGF2α synthesis and subsequently causes luteolysis and early embryonic mortality. The aim of this study was to investigate in goats the effects of COX-2 small interference RNA (siRNA) on COX-2 mRNA abundance and the secretion of PGF2α and PGE2 in goat endometrial cells. Endometrial cells isolated from goat uteri were cultured at 38.5 °C and 5% CO2. The cells were treated with different concentrations (0, 10, 25, 50, 100, 250, 500, 750 and 1000 nM per well) of three different COX-2 siRNAs at confluency for 24 h. At 24 h post culture, COX-2 mRNA abundance was quantified using qPCR and PGF2α and PGE2 concentrations were quantified in the culture medium. There was a lesser relative abundance of COX-2 mRNA in endometrial cells at 100 to 1000 nM siRNA. The greatest extent of abundance suppression, however, was observed with 1000 nM siRNA. Transfection of COX-2 siRNA (1000 nM) to endometrial cells suppressed the COX-2 mRNA abundance by 77%, 82%, and 84% with siRNA 1, 2, 3, respectively. Furthermore, with COX-2 siRNA transfected cells, there was a lesser (P < 0.05) PGF2α concentration than in cells not transfected, whereas PGE2 secretion was not affected. The results of the study provide evidence that COX-2 siRNA used in this study suppresses COX-2 mRNA abundance and PGF2α secretion but there was no association between PGE2 concentrations and COX-2 mRNA abundance in goat endometrial epithelial cells.
Collapse
Affiliation(s)
- Arul Suresh
- Animal Physiology Division, ICAR-National Dairy Research Institute, SRS, Bengaluru, Karnataka 560030, India
| | - I J Reddy
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India.
| | - Ashish Mishra
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| | - S Mondal
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, Karnataka 560030, India
| |
Collapse
|
9
|
Inwood S, Betenbaugh MJ, Lal M, Shiloach J. Genome-Wide High-Throughput RNAi Screening for Identification of Genes Involved in Protein Production. Methods Mol Biol 2018; 1850:209-219. [PMID: 30242689 PMCID: PMC9563094 DOI: 10.1007/978-1-4939-8730-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
With an increasing number of blockbuster drugs being recombinant mammalian proteins, protein production platforms that focus on mammalian proteins have had a profound impact in many areas of basic and applied research. Many groups, both academic and industrial, have been focusing on developing cost-effective methods to improve the production of mammalian proteins that would support potential therapeutic applications. As it stands, while a wide range of platforms have been successfully developed for laboratory use, the majority of biologicals are still produced in mammalian cell lines due to the requirement for posttranslational modification and the biosynthetic complexity of target proteins. An unbiased high-throughput RNAi screening approach can be an efficient tool to identify target genes involved in recombinant protein production. Here we describe the process of optimizing the transfection conditions, performing the genome-wide siRNA screen, the activity and cell viability assays and the validation transfection to identify genes involved with protein expression.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Madhu Lal
- Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Chen H, Shen J, Choy E, Hornicek FJ, Shan A, Duan Z. Targeting DYRK1B suppresses the proliferation and migration of liposarcoma cells. Oncotarget 2017; 9:13154-13166. [PMID: 29568347 PMCID: PMC5862568 DOI: 10.18632/oncotarget.22743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022] Open
Abstract
Liposarcoma is a common subtype of soft tissue sarcoma and accounts for 20% of all sarcomas. Conventional chemotherapeutic agents have limited efficacy in liposarcoma patients. Expression and activation of serine/threonine-protein kinase dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1B (DYRK1B) is associated with growth and survival of many types of cancer cells. However, the role of DYRK1B in liposarcoma remains unknown. In this study, we investigated the functional and therapeutic relevance of DYRK1B in liposarcoma. Tissue microarray and immunohistochemistry analysis showed that higher expression levels of DYRK1B correlated with a worse prognosis. RNA interference-mediated knockdown of DYRK1B or targeting DYRK1B with the kinase inhibitor AZ191 inhibited liposarcoma cell growth, decreased cell motility, and induced apoptosis. Moreover, combined AZ191 with doxorubicin demonstrated an increased anti-cancer effect on liposarcoma cells. These findings suggest that DYRK1B is critical for the growth of liposarcoma cells. Targeting DYRK1B provides a new rationale for treatment of liposarcoma.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020.,Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| | - Aijun Shan
- Department of Emergency Surgery, ShenZhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China, 518020
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-6902, USA
| |
Collapse
|
11
|
Québatte M, Dehio C. Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi. Curr Opin Microbiol 2017; 39:34-41. [DOI: 10.1016/j.mib.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
|
12
|
Galeev R, Karlsson C, Baudet A, Larsson J. Forward RNAi Screens in Human Hematopoietic Stem Cells. Methods Mol Biol 2017; 1622:29-50. [PMID: 28674799 DOI: 10.1007/978-1-4939-7108-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Identifying the genes and pathways that regulate self-renewal and differentiation in somatic stem cells is a central goal in stem cell and cancer biology. Here, we describe a method for RNA interference (RNAi)-based screens combined with next-generation sequencing (NGS) in primary human hematopoietic stem and progenitor cells (HSPCs). These cells are suitable targets for complex, selection-based screens using pooled lentiviral short hairpin RNA (shRNA) libraries. The screening approach presented in this chapter is a promising tool to dissect regulatory mechanisms in hematopoietic stem cells (HSCs) and somatic stem cells in general, and may be particularly useful to identify gene targets and modifiers that can be further exploited in strategies for ex vivo stem cell expansion.
Collapse
Affiliation(s)
- Roman Galeev
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84, Lund, Sweden
| | - Christine Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84, Lund, Sweden
| | - Aurélie Baudet
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84, Lund, Sweden
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, Sölvegatan 17, 221 84, Lund, Sweden.
| |
Collapse
|
13
|
Nierode G, Kwon PS, Dordick JS, Kwon SJ. Cell-Based Assay Design for High-Content Screening of Drug Candidates. J Microbiol Biotechnol 2016; 26:213-25. [PMID: 26428732 DOI: 10.4014/jmb.1508.08007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.
Collapse
Affiliation(s)
- Gregory Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul S Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
14
|
Al-Mahdi R, Babteen N, Thillai K, Holt M, Johansen B, Wetting HL, Seternes OM, Wells CM. A novel role for atypical MAPK kinase ERK3 in regulating breast cancer cell morphology and migration. Cell Adh Migr 2016; 9:483-94. [PMID: 26588708 PMCID: PMC4955959 DOI: 10.1080/19336918.2015.1112485] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ERK3 is an atypical Mitogen-activated protein kinase (MAPK6). Despite the fact that the Erk3 gene was originally identified in 1991, its function is still unknown. MK5 (MAP kinase- activated protein kinase 5) also called PRAK is the only known substrate for ERK3. Recently, it was found that group I p21 protein activated kinases (PAKs) are critical effectors of ERK3. PAKs link Rho family of GTPases to actin cytoskeletal dynamics and are known to be involved in the regulation of cell adhesion and migration. In this study we demonstrate that ERK3 protein levels are elevated as MDA-MB-231 breast cancer cells adhere to collagen I which is concomitant with changes in cellular morphology where cells become less well spread following nascent adhesion formation. During this early cellular adhesion event we observe that the cells retain protrusive activity while reducing overall cellular area. Interestingly exogenous expression of ERK3 delivers a comparable reduction in cell spread area, while depletion of ERK3 expression increases cell spread area. Importantly, we have detected a novel specific endogenous ERK3 localization at the cell periphery. Furthermore we find that ERK3 overexpressing cells exhibit a rounded morphology and increased cell migration speed. Surprisingly, exogenous expression of a kinase inactive mutant of ERK3 phenocopies ERK3 overexpression, suggesting a novel kinase independent function for ERK3. Taken together our data suggest that as cells initiate adhesion to matrix increasing levels of ERK3 at the cell periphery are required to orchestrate cell morphology changes which can then drive migratory behavior.
Collapse
Affiliation(s)
- Rania Al-Mahdi
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Nouf Babteen
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Kiruthikah Thillai
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| | - Mark Holt
- c Randall Division for Cell and Molecular Biophysics and Cardiovascular Division; King's College London ; London , UK
| | - Bjarne Johansen
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Hilde Ljones Wetting
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Ole-Morten Seternes
- a Department of Pharmacy ; UiT The Arctic University of Norway ; Tromsø , Norway
| | - Claire M Wells
- b Division of Cancer Studies; New Hunts House ; Guy's Campus; King's College London ; London , UK
| |
Collapse
|
15
|
Miles LA, Garippa RJ, Poirier JT. Design, execution, and analysis of pooled in vitro CRISPR/Cas9 screens. FEBS J 2016; 283:3170-80. [PMID: 27250066 DOI: 10.1111/febs.13770] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
Abstract
The recently described clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology has proven to be an exquisitely powerful and invaluable method of genetic manipulation and/or modification. As such, many researchers have realized the potential of using the CRISPR/Cas9 system as a novel screening method for the identification of important proteins in biological processes and have designed short guide RNA libraries for an in vitro screening. The seminal papers describing these libraries offer valuable information regarding methods for generating the short guide RNA libraries, creating cell lines containing these libraries, and specific details regarding the screening workflow. However, certain considerations are often overlooked that may be important when planning and performing a screen, including which CRISPR library to use and how to best analyze the resulting screen data. In this review, we offer suggestions to answer some of these questions that are not covered as deeply in the papers describing the available CRISPR libraries for an in vitro screening.
Collapse
Affiliation(s)
- Linde A Miles
- Pharmacology Graduate Training Program, Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph J Garippa
- RNAi Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
16
|
Abstract
Deciphering the many interactions that occur between a virus and host cell over the course of infection is paramount to understanding mechanisms of pathogenesis and to the future development of antiviral therapies. Over the past decade, researchers have started to understand these complicated relationships through the development of methodologies, including advances in RNA interference, proteomics, and the development of genetic tools such as haploid cell lines, allowing high-throughput screening to identify critical contact points between virus and host. These advances have produced a wealth of data regarding host factors hijacked by viruses to promote infection, as well as antiviral factors responsible for subverting viral infection. This review highlights findings from virus-host screens and discusses our thoughts on the direction of screening strategies moving forward.
Collapse
Affiliation(s)
- Holly Ramage
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; ,
| |
Collapse
|
17
|
RNA interference screening to detect targetable molecules in hematopoietic stem cells. Curr Opin Hematol 2014; 21:283-8. [DOI: 10.1097/moh.0000000000000053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Tripp RA, Mark Tompkins S. Antiviral effects of inhibiting host gene expression. Curr Top Microbiol Immunol 2014; 386:459-77. [PMID: 25007848 DOI: 10.1007/82_2014_409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA interference (RNAi) has been used to probe the virus-host interface to understand the requirements for host-gene expression needed for virus replication. The availability of arrayed siRNA libraries has enabled a genome-scale, high-throughput analysis of gene pathways usurped for virus replication. Results from these and related screens have led to the discovery of new host factors that regulate virus replication. While effective delivery continues to limit development of RNAi-based drugs, RNAi-based genome discovery has led to identification of druggable targets. These validated targets enable rational development of novel antiviral drugs, including the rescue and repurposing of existing, approved drugs. Existing drugs with known cytotoxicity and mechanisms of action can potentially be re-targeted to regulate host genes and gene products needed by influenza to replicate. Drug repositioning is more cost-effective, less time-consuming, and more effective for anti-influenza virus drug discovery than traditional methods. In this chapter, a general overview of RNAi screening methods, host-gene discovery, and drug repurposing is examined with emphasis on utilizing RNAi to identify druggable genes that can be targeted for drug development or repurposing.
Collapse
Affiliation(s)
- Ralph A Tripp
- Department of Infectious Disease, University of Georgia, Athens, GA, 30602, USA,
| | | |
Collapse
|
19
|
Bordignon V, El-Beirouthi N, Gasperin BG, Albornoz MS, Martinez-Diaz MA, Schneider C, Laurin D, Zadworny D, Agellon LB. Production of cloned pigs with targeted attenuation of gene expression. PLoS One 2013; 8:e64613. [PMID: 23737990 PMCID: PMC3667777 DOI: 10.1371/journal.pone.0064613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/16/2013] [Indexed: 12/20/2022] Open
Abstract
The objective of this study was to demonstrate that RNA interference (RNAi) and somatic cell nuclear transfer (SCNT) technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE), a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA) targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA) expression vector under the control of RNA polymerase III (U6) promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denyse Laurin
- Department of Animal Science, McGill University, Quebec, Canada
| | - David Zadworny
- Department of Animal Science, McGill University, Quebec, Canada
| | - Luis B. Agellon
- School of Dietetics and Human Nutrition, McGill University, Quebec, Canada
| |
Collapse
|
20
|
Zhang S, Teng Y. Powering mammalian genetic screens with mouse haploid embryonic stem cells. Mutat Res 2013; 741-742:44-50. [PMID: 23369773 DOI: 10.1016/j.mrfmmm.2013.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/14/2022]
Abstract
Generating homozygous mutants in mammalian cells has been complicated by their diploid genome. If one allele of an autosomal gene was disrupted, the resulting heterozygous mutant is unlikely to display a phenotype due to the existence of the other allele. Although embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are excellent cellular models for analyzing developmental events or disease phenotypes in vitro, a direct analysis of recessive phenotypes has been limited by their diploidy. Recently, four independent research groups reported successful derivation of haploid mouse embryonic stem cells which provide an effective platform for studying mammalian gene function. The aim of this review is to describe the strategies for deriving haploid ESCs and compare their characteristics with diploid ESCs, and further discuss the potential application of haploid ESCs in genetic screening and homozygous mutant animal production.
Collapse
Affiliation(s)
- Shiqiang Zhang
- Department of Animal Biotechnology, Northwest A&F University, China.
| | | |
Collapse
|