1
|
Feng X, Yang L, Liu X, Liu M, Liu L, Liu J, Luo J. Long non-coding RNA small nucleolar RNA host gene 29 drives chronic myeloid leukemia progression via microRNA-483-3p/Casitas B-lineage Lymphoma axis-mediated activation of the phosphoinositide 3-kinase/Akt pathway. Med Oncol 2024; 41:60. [PMID: 38252204 DOI: 10.1007/s12032-023-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The aberrant expression of the long non-coding RNA (lncRNA) Small Nucleolar RNA Host Gene 29 (SNHG29) has been associated with various human cancers. However, the role of SNHG29 in chronic myeloid leukemia (CML) remains elusive. Therefore, this study aimed to investigate the function of SNHG29 in CML and unveil its potential underlying mechanisms. Herein, peripheral blood samples from 44 CML patients and 17 healthy subjects were collected. The expressions of SNHG29, microRNA-483-3p (miR-483-3p), and Casitas B-lineage Lymphoma (CBL) were measured using quantitative polymerase chain reaction (qPCR) or Western Blot. Cell viability, apoptosis, and cell cycle progression were evaluated using the Cell Counting Kit-8 assay, 5-ethynyl-2'-deoxyuridine incorporation, and flow cytometry, respectively. Western Blot analysis was employed to assess protein expressions related to cellular proliferation, apoptosis, and oncogenesis. RNA immunoprecipitation and dual-luciferase reporter assays were utilized to verify the interactions among SNHG29, miR-483-3p, and CBL. SNHG29 was significantly overexpressed in both blood samples of CML patients and CML cell lines. In CML, increased expression of SNHG29 was positively correlated with clinical staging, and patients with high SNHG29 expression had poorer survival outcomes. Functionally, knocking down SNHG29 effectively inhibited CML cell proliferation and promoted apoptosis. Mechanistically, SNHG29 acted as a competing endogenous RNA for miR-483-3p to modulate CBL expression, thereby activating the Phosphoinositide 3-Kinase/Akt signaling pathway and mediating CML progression. In summary, these findings reveal that SNHG29 promotes tumorigenesis in CML, offering a potential therapeutic strategy for CML treatment.
Collapse
Affiliation(s)
- XueFeng Feng
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Lin Yang
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Xiaojun Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Menghan Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Lu Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - Jing Liu
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China
| | - JianMin Luo
- Department of Second Ward of Hematology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Shijiazhuang City, 050000, Hebei, China.
| |
Collapse
|
2
|
Flores JC, Ito K, Huang CY, Tang Q, Yanase C, Ito K, Dawlaty MM. Comparative analysis of Tet2 catalytic-deficient and knockout bone marrow over time. Exp Hematol 2023; 124:45-55.e2. [PMID: 37225048 PMCID: PMC10524687 DOI: 10.1016/j.exphem.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
TET2 is a member of the Ten-eleven translocation (Tet) family of DNA dioxygenases that regulate gene expression by promoting DNA demethylation (enzymatic activity) and partnering with chromatin regulatory complexes (nonenzymatic functions). TET2 is highly expressed in the hematopoietic lineage, where its molecular functions are the subject of continuous investigations because of the prevalence of TET2 mutations in hematologic malignancies. Previously, we have implicated Tet2 catalytic and noncatalytic functions in the regulation of myeloid and lymphoid lineages, respectively. However, the impact of these functions of Tet2 on hematopoiesis as the bone marrow ages remains unclear. Here, we conducted comparative transplantations and transcriptomic analyses of 3-, 6-, 9-, and 12-month-old Tet2 catalytic mutant (Mut) and knockout (KO) bone marrow. Tet2 Mut bone marrow of all ages exclusively caused hematopoietic disorders of the myeloid lineage. In contrast, young Tet2 KO bone marrow developed both lymphoid and myeloid diseases, whereas older Tet2 KO bone marrow predominantly elicited myeloid disorders with shorter latency than age-matched Tet2 Mut bone marrow. We identified robust gene dysregulation in Tet2 KO Lin- cells at 6 months that involved lymphoma and myelodysplastic syndrome and/or leukemia-causing genes, many of which were hypermethylated early in life. There was a shift from lymphoid to myeloid gene deregulation in Tet2 KO Lin- cells with age, underpinning the higher incidence of myeloid diseases. These findings expand on the dynamic regulation of bone marrow by Tet2 and show that its catalytic-dependent and -independent roles have distinct impacts on myeloid and lymphoid lineages with age.
Collapse
Affiliation(s)
- Julio C Flores
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY
| | - Cheng-Yen Huang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Qin Tang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY; Departments of Oncology and Medicine, Albert Einstein College of Medicine-Montefiore Health System, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY.
| | - Meelad M Dawlaty
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY; Montefiore Einstein Cancer Center, Bronx, NY.
| |
Collapse
|
3
|
Jurgec S, Jezernik G, Gorenjak M, Büdefeld T, Potočnik U. Meta-Analytic Comparison of Global RNA Transcriptomes of Acute and Chronic Myeloid Leukemia Cells Reveals Novel Gene Candidates Governing Myeloid Malignancies. Cancers (Basel) 2022; 14:cancers14194681. [PMID: 36230605 PMCID: PMC9562668 DOI: 10.3390/cancers14194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite advances in the understanding of genetic risk factors and molecular mechanisms underlying acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), clinical outcomes of current therapies in terms of disease relapse and mortality rate pose a great economic and social burden. To overcome this, the identification of new molecular prognostic biomarkers and pharmacological targets is crucial. Recent studies have suggested that AML and CML may share common pathogenic mechanisms and cellular substrates. To this end, in the present study, global transcriptome profiles of AML and CML at the molecular and cellular level were directly compared using a combination of meta-analysis and modern statistics, and novel candidate genes and specific biological processes associated with the pathogenesis of AML and CML were characterized. Our study significantly improves our current understanding of myeloid leukemia and will help develop new therapeutic targets and biomarkers for disease progression, management and treatment response. Abstract Background: Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) represent a group of hematological malignancies characterized by the pathogenic clonal expansion of leukemic myeloid cells. The diagnosis and clinical outcome of AML and CML are complicated by genetic heterogeneity of disease; therefore, the identification of novel molecular biomarkers and pharmacological targets is of paramount importance. Methods: RNA-seq-based transcriptome data from a total of five studies were extracted from NCBI GEO repository and subjected to an in-depth bioinformatics analysis to identify differentially expressed genes (DEGs) between AML and CML. A systemic literature survey and functional gene ontology (GO) enrichment analysis were performed for the top 100 DEGs to identify novel candidate genes and biological processes associated with AML and CML. Results: LINC01554, PTMAP12, LOC644936, RPS27AP20 and FAM133CP were identified as novel risk genes for AML and CML. GO enrichment analysis showed that DEGs were significantly associated with pre-RNA splicing, reactive oxygen species and glycoprotein metabolism, the cellular endomembrane system, neutrophil migration and antimicrobial immune response. Conclusions: Our study revealed novel biomarkers and specific biological processes associated with AML and CML. Further studies are required to evaluate their value as molecular targets for managing and treating the myeloid malignancies.
Collapse
Affiliation(s)
- Staša Jurgec
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Büdefeld
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2345-854
| |
Collapse
|
4
|
Liu Y, Li H, Zhao Y, Li D, Zhang Q, Fu J, Fan S. Knockdown of ADORA2A antisense RNA 1 inhibits cell proliferation and enhances imatinib sensitivity in chronic myeloid leukemia. Bioengineered 2022; 13:2296-2307. [PMID: 35034552 PMCID: PMC8973732 DOI: 10.1080/21655979.2021.2024389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) exert important regulatory roles in chronic myeloid leukemia (CML). In this study, we aimed to investigate the potential role and molecular mechanism of lncRNA ADORA2A antisense RNA 1 (ADORA2A-AS1) in CML. We found that the expression of ADORA2A-AS1 was upregulated in CML. Further, knockdown of ADORA2A-AS1 inhibited the proliferation, induced apoptosis, arrested cell cycle, and enhanced imatinib sensitivity in CML cells. Besides, ADORA2A-AS1 promoted the expression of transforming growth factor-beta receptor 1 (TGFBR1) and ATP binding cassette subfamily C member 2 (ABCC2) via sponging miR-665, thereby exerting a tumor-promoting activity. Collectively, our results confirmed the oncogenic effect of ADORA2A-AS1 in CML, indicating that ADORA2A-AS1 is a promosing therapeutic target for CML.
Collapse
Affiliation(s)
- Yabo Liu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huibo Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dandan Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qian Zhang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinyue Fu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Abdulmawjood B, Costa B, Roma-Rodrigues C, Baptista PV, Fernandes AR. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int J Mol Sci 2021; 22:12516. [PMID: 34830398 PMCID: PMC8626020 DOI: 10.3390/ijms222212516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic Myeloid Leukemia (CML) is a rare malignant proliferative disease of the hematopoietic system, whose molecular hallmark is the Philadelphia chromosome (Ph). The Ph chromosome originates an aberrant fusion gene with abnormal kinase activity, leading to the buildup of reactive oxygen species and genetic instability of relevance in disease progression. Several genetic abnormalities have been correlated with CML in the blast phase, including chromosomal aberrations and common altered genes. Some of these genes are involved in the regulation of cell apoptosis and proliferation, such as the epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), or Schmidt-Ruppin A-2 proto-oncogene (SRC); cell adhesion, e.g., catenin beta 1 (CTNNB1); or genes associated to TGF-β, such as SKI like proto-oncogene (SKIL), transforming growth factor beta 1 (TGFB1) or transforming growth factor beta 2 (TGFB2); and TNF-α pathways, such as Tumor necrosis factor (TNFA) or Nuclear factor kappa B subunit 1 (NFKB1). The involvement of miRNAs in CML is also gaining momentum, where dysregulation of some critical miRNAs, such as miRNA-451 and miRNA-21, which have been associated to the molecular modulation of pathogenesis, progression of disease states, and response to therapeutics. In this review, the most relevant genomic alterations found in CML will be addressed.
Collapse
Affiliation(s)
- Bilal Abdulmawjood
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Beatriz Costa
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V. Baptista
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (B.A.); (B.C.); (C.R.-R.)
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
6
|
Wong NK, Luo S, Chow EYD, Meng F, Adesanya A, Sun J, Ma HMH, Jin W, Li WC, Yip SP, Huang CL. The Tyrosine Kinase-Driven Networks of Novel Long Non-coding RNAs and Their Molecular Targets in Myeloproliferative Neoplasms. Front Cell Dev Biol 2021; 9:643043. [PMID: 34414175 PMCID: PMC8369571 DOI: 10.3389/fcell.2021.643043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 01/16/2023] Open
Abstract
Recent research has focused on the mechanisms by which long non-coding RNAs (lncRNAs) modulate diverse cellular processes such as tumorigenesis. However, the functional characteristics of these non-coding elements in the genome are poorly understood at present. In this study, we have explored several mechanisms that involve the novel lncRNA and microRNA (miRNA) axis participating in modulation of drug response and the tumor microenvironment of myeloproliferative neoplasms (MPNs). We identified novel lncRNAs via mRNA sequencing that was applied to leukemic cell lines derived from BCR-ABL1-positive and JAK2-mutant MPNs under treatment with therapeutic tyrosine kinase inhibitors (TKI). The expression and sequence of novel LNC000093 were further validated in both leukemic cells and normal primary and pluripotent cells isolated from human blood, including samples from patients with chronic myelogenous leukemia (CML). Downregulation of LNC000093 was validated in TKI-resistant CML while a converse expression pattern was observed in blood cells isolated from TKI-sensitive CML cases. In addition to BCR-ABL1-positive CML cells, the driver mutation JAK2-V617F-regulated lncRNA BANCR axis was further identified in BCR-ABL1-negative MPNs. Further genome-wide validation using MPN patient specimens identified 23 unique copy number variants including the 7 differentially expressed lncRNAs from our database. The newly identified LNC000093 served as a competitive endogenous RNA for miR-675-5p and reversed the imatinib resistance in CML cells through regulating RUNX1 expression. The extrinsic function of LNC000093 in exosomal H19/miR-675-induced modulation for the microenvironment was also determined with significant effect on VEGF expression.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shumeng Luo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Eudora Y D Chow
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Adenike Adesanya
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jiahong Sun
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Herman M H Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
7
|
Pehlivan M, Soyoz M, Cerci B, Coven HIK, Yuce Z, Sercan HO. sFRP1 Expression Induces miRNAs That Modulate Wnt Signaling in Chronic Myeloid Leukemia Cells. Mol Biol 2020. [DOI: 10.1134/s0026893320040135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol 2020; 39:27-40. [PMID: 32621547 DOI: 10.1002/hon.2776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023]
Abstract
The study of long non-coding RNAs (lncRNA) is a newly established field and our knowledge about them is rapidly growing. These kinds of RNAs are unchanged parts of the genome throughout evolution, that modulate cell growth, differentiation, and apoptosis during diverse physiological and pathological processes including leukemia development. They have the capability to be useful biomarkers for the diagnosis, clinical typing, prognosis, as well as potential therapeutic targets. In this study, we summarized the role of lncRNAs in the expression and function of white blood cells and oncogenic transformation into four main types of leukemia.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, Elfaki I, Kulinski M, Kuttikrishnan S, Prabhu KS, Khan AQ, Yadav SK, El-Rifai W, Zargar MA, Zayed H, Haris M, Uddin S. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer 2020; 19:57. [PMID: 32164715 PMCID: PMC7069174 DOI: 10.1186/s12943-020-01175-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Early-stage detection of leukemia is a critical determinant for successful treatment of the disease and can increase the survival rate of leukemia patients. The factors limiting the current screening approaches to leukemia include low sensitivity and specificity, high costs, and a low participation rate. An approach based on novel and innovative biomarkers with high accuracy from peripheral blood offers a comfortable and appealing alternative to patients, potentially leading to a higher participation rate.Recently, non-coding RNAs due to their involvement in vital oncogenic processes such as differentiation, proliferation, migration, angiogenesis and apoptosis have attracted much attention as potential diagnostic and prognostic biomarkers in leukemia. Emerging lines of evidence have shown that the mutational spectrum and dysregulated expression of non-coding RNA genes are closely associated with the development and progression of various cancers, including leukemia. In this review, we highlight the expression and functional roles of different types of non-coding RNAs in leukemia and discuss their potential clinical applications as diagnostic or prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Salma N Younes
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Syed Shadab Raza
- Laboratory for Stem Cell & Restorative Neurology, Era's Lucknow Medical College and Hospital, Lucknow, Uttar Pradesh, India
| | - Lubna Zarif
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Sabah Nisar
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ikhlak Ahmed
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Surender K Sharawat
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sheema Hashem
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Santosh K Yadav
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, Florida, USA
| | - Mohammad A Zargar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, India
| | - Hatem Zayed
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammad Haris
- Translational Medicine, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| |
Collapse
|
10
|
Wang X, Yang J, Guo G, Feng R, Chen K, Liao Y, Zhang L, Sun L, Huang S, Chen JL. Novel lncRNA-IUR suppresses Bcr-Abl-induced tumorigenesis through regulation of STAT5-CD71 pathway. Mol Cancer 2019; 18:84. [PMID: 30961617 PMCID: PMC6454664 DOI: 10.1186/s12943-019-1013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs), defined as the transcripts longer than 200 nt without protein-coding capacity, have been found to be aberrantly expressed in diverse human diseases including cancer. A reciprocal translocation between chromosome 9 and 22 generates the chimeric Bcr-Abl oncogene, which is associated with several hematological malignancies. However, the functional relevance between aberrantly expressed lncRNAs and Bcr-Abl-mediated leukemia remains obscure. Methods LncRNA cDNA microarray was used to identify novel lncRNAs involved in Bcr-Abl-mediated cellular transformation. To study the functional relevance of novel imatinib-upregulated lncRNA (IUR) family in Abl-induced tumorigenesis, Abl-transformed cell survival and xenografted tumor growth in mice was evaluated. Primary bone marrow transformation and in vivo leukemia transplant using lncRNA-IUR knockdown (KD) transgenic mice were further conducted to corroborate the role of lncRNA-IUR in Abl-induced tumorigenesis. Transcriptome RNA-seq, Western blot, RNA pull down and RNA Immunoprecipitation (RIP) were employed to determine the mechanisms by which lncRNA-IUR-5 regulates Bcr-Abl-mediated tumorigenesis. Results We identified a conserved lncRNA-IUR family as a key negative regulator of Bcr-Abl-induced tumorigenesis. Increased expression of lncRNA-IUR was detected in both human and mouse Abl-transformed cells upon imatinib treatment. In contrast, reduced expression of lncRNA-IUR was observed in the peripheral blood lymphocytes derived from Bcr-Abl-positive acute lymphoblastic leukemia (ALL) patients compared to normal subjects. Knockdown of lncRNA-IUR remarkably promoted Abl-transformed leukemic cell survival and xenografted tumor growth in mice, whereas overexpression of lncRNA-IUR had opposite effects. Also, silencing murine lncRNA-IUR promoted Bcr-Abl-mediated primary bone marrow transformation and Abl-transformed leukemia cell survival in vivo. Besides, knockdown of murine lncRNA-IUR in transgenic mice provided a favorable microenvironment for development of Abl-mediated leukemia. Finally, we demonstrated that lncRNA-IUR-5 suppressed Bcr-Abl-mediated tumorigenesis by negatively regulating STAT5-mediated expression of CD71. Conclusions The results suggest that lncRNA-IUR may act as a critical tumor suppressor in Bcr-Abl-mediated tumorigenesis by suppressing the STAT5-CD71 pathway. This study provides new insights into functional involvement of lncRNAs in leukemogenesis. Electronic supplementary material The online version of this article (10.1186/s12943-019-1013-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianling Yang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Riyue Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Liping Sun
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
11
|
Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis 2019; 75:41-47. [DOI: 10.1016/j.bcmd.2018.12.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 02/08/2023]
|
12
|
Chen S, Liang H, Hu G, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Differently expressed long noncoding RNAs and mRNAs in TK6 cells exposed to low dose hydroquinone. Oncotarget 2017; 8:95554-95567. [PMID: 29221148 PMCID: PMC5707042 DOI: 10.18632/oncotarget.21481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that long noncoding RNAs (lncRNAs) were related to human carcinogenesis and might be designated as diagnosis and prognosis biomarkers. Hydroquinone (HQ), as one of the metabolites of benzene, was closely relevant to occupational benzene poisoning and occupational leukemia. Using high-throughput sequencing technology, we investigated differences in lncRNA and mRNA expression profiles between experimental group (HQ 20 μmol/L) and control group (PBS). Compared to control group, a total of 65 lncRNAs and 186 mRNAs were previously identified to be aberrantly expressed more than two fold change in experimental group. To validate the sequencing results, we selected 10 lncRNAs and 10 mRNAs for quantitative real-time PCR (qRT-PCR). Through GO annotation and KEGG pathway analysis, we obtained 3 mainly signaling pathways, including P53 signaling pathway, which plays an important role in tumorigenesis and progression. After that, 25 lncRNAs and 32 mRNAs formed the lncRNA-mRNA co-expression network were implemented to play biological functions of the dysregulated lncRNAs transcripts by regulating gene expression. The lncRNAs target genes prediction provided a new idea for the study of lncRNAs. Finally, we have another important discovery, which is screened out 11 new lncRNAs without annotated. All these results uncovered that lncRNA and mRNA expression profiles in TK6 cells exposed to low dose HQ were different from control group, helping to further study the toxicity mechanisms of HQ and providing a new direction for the therapy of leukemia.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Gonghua Hu
- Department of Preventive Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
13
|
Chen S, Liang H, Yang H, Zhou K, Xu L, Liu J, Lai B, Song L, Luo H, Peng J, Liu Z, Xiao Y, Chen W, Tang H. Long non-coding RNAs: The novel diagnostic biomarkers for leukemia. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 55:81-86. [PMID: 28841440 DOI: 10.1016/j.etap.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Long non-coding RNAs (LncRNAs) are a category of non-coding RNAs (ncRNAs) with a length of 200nt-100kb lacking a significant open reading frame. The study of lncRNAs is a newly established field, due in part to their capability to act as the novel biomarkers in disease. A growing body of research shows that lncRNAs may not only useful as biomarkers for the diagnosis and clinical typing and prognosis of cancers, but also as potential targets for novel therapies. Differential expression of lncRNAs has been found in leukemia in the last two years, however, the majority of the lncRNAs described here are transcripts of unknown function and their role in leukemogenesis is still unclear. Here, we summarize the lncRNAs associated with leukemia in order to find a potential classification tool for leukemia, and a new field of research is being explored.
Collapse
Affiliation(s)
- Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, 516000, China.
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
14
|
Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16:2. [PMID: 28137304 PMCID: PMC5282926 DOI: 10.1186/s12943-016-0574-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Since leukemic stem cells (LSCs) or cancer stem cells (CSCs) were found in acute myeloid leukemia (AML) in 1997, extensive studies have been contributed to identification and characterization of such cell populations in various tissues. LSCs are now generally recognized as a heterogeneous cell population that possesses the capacities of self-renewal, proliferation and differentiation. It has been shown that LSCs are regulated by critical surface antigens, microenvironment, intrinsic signaling pathways, and novel molecules such as some ncRNAs. To date, significant progress has been made in understanding of LSCs, leading to the development of numerous LSCs-targeted therapies. Moreover, various novel therapeutic agents targeting LSCs are undergoing clinical trials. Here, we review current knowledge of LSCs, and discuss the potential therapies and their challenges that are being tested in clinical trials for evaluation of their effects on leukemias.
Collapse
Affiliation(s)
- Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, China. .,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|