1
|
Dipankar P, Salazar D, Dennard E, Mohiyuddin S, Nguyen QC. Artificial intelligence based advancements in nanomedicine for brain disorder management: an updated narrative review. Front Med (Lausanne) 2025; 12:1599340. [PMID: 40432717 PMCID: PMC12106332 DOI: 10.3389/fmed.2025.1599340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Nanomedicines are nanoscale, biocompatible materials that offer promising alternatives to conventional treatment options for brain disorders. The recent technological developments in artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), are transforming the nanomedicine field by improving disease diagnosis, biomarker identification, prognostic assessment and disease monitoring, targeted drug delivery, and therapeutic intervention as well as contributing to computational and methodological developments. These advancements can be achieved by analysis of large clinical datasets and facilitating the design and optimization of nanomaterials for in vivo testing. Such advancement offers exciting possibilities for the improvement in the management of brain disorders, including brain cancer, Alzheimer's disease, Parkinson's disease, and multiple sclerosis, where early diagnosis, targeted delivery, and effective treatment strategies remain a great challenge. This review article provides an overview of recent advances in AI-based nanomedicine development to accelerate effective and quick diagnosis, biomarker identification, prognosis, drug delivery, methodological advancement and patient-specific therapies for managing brain disorders.
Collapse
Affiliation(s)
- Pankaj Dipankar
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Diego Salazar
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Dennard
- School of Public Health, Epidemiology and Biostatistics, University of Maryland, College Park, MD, United States
| | - Shanid Mohiyuddin
- Division of Hematology and Medical Oncology, Department of Medicine, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States
| | - Quynh C. Nguyen
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Zhou X, Parisi L, Huang W, Zhang Y, Huang X, Youseffi M, Javid F, Ma R. A novel integrative multimodal classifier to enhance the diagnosis of Parkinson's disease. Brief Bioinform 2025; 26:bbaf088. [PMID: 40062615 PMCID: PMC11891661 DOI: 10.1093/bib/bbaf088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/30/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Parkinson's disease (PD) is a complex, progressive neurodegenerative disorder with high heterogeneity, making early diagnosis difficult. Early detection and intervention are crucial for slowing PD progression. Understanding PD's diverse pathways and mechanisms is key to advancing knowledge. Recent advances in noninvasive imaging and multi-omics technologies have provided valuable insights into PD's underlying causes and biological processes. However, integrating these diverse data sources remains challenging, especially when deriving meaningful low-level features that can serve as diagnostic indicators. This study developed and validated a novel integrative, multimodal predictive model for detecting PD based on features derived from multimodal data, including hematological information, proteomics, RNA sequencing, metabolomics, and dopamine transporter scan imaging, sourced from the Parkinson's Progression Markers Initiative. Several model architectures were investigated and evaluated, including support vector machine, eXtreme Gradient Boosting, fully connected neural networks with concatenation and joint modeling (FCNN_C and FCNN_JM), and a multimodal encoder-based model with multi-head cross-attention (MMT_CA). The MMT_CA model demonstrated superior predictive performance, achieving a balanced classification accuracy of 97.7%, thus highlighting its ability to capture and leverage cross-modality inter-dependencies to aid predictive analytics. Furthermore, feature importance analysis using SHapley Additive exPlanations not only identified crucial diagnostic biomarkers to inform the predictive models in this study but also holds potential for future research aimed at integrated functional analyses of PD from a multi-omics perspective, ultimately revealing targets required for precision medicine approaches to aid treatment of PD aimed at slowing down its progression.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Biology, Shenzhen MSU-BIT University, Longcheng Street, Shenzhen 518115, Guangdong, China
| | - Luca Parisi
- Department of Computer Science, Tutorantis, 5 South Charlotte Street, Edinburgh EH2 4AN, United Kingdom
| | - Wentao Huang
- Department of Biology, Shenzhen MSU-BIT University, Longcheng Street, Shenzhen 518115, Guangdong, China
| | - Yihan Zhang
- Department of Biology, Shenzhen MSU-BIT University, Longcheng Street, Shenzhen 518115, Guangdong, China
| | - Xiaoqun Huang
- Department of Biology, Shenzhen MSU-BIT University, Longcheng Street, Shenzhen 518115, Guangdong, China
| | - Mansour Youseffi
- Department of Engineering and Informatics, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Farideh Javid
- Department of Pharmacy, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Renfei Ma
- Department of Biology, Shenzhen MSU-BIT University, Longcheng Street, Shenzhen 518115, Guangdong, China
| |
Collapse
|
3
|
Bottani S, Thibeau-Sutre E, Maire A, Ströer S, Dormont D, Colliot O, Burgos N. Contrast-enhanced to non-contrast-enhanced image translation to exploit a clinical data warehouse of T1-weighted brain MRI. BMC Med Imaging 2024; 24:67. [PMID: 38504179 PMCID: PMC10953143 DOI: 10.1186/s12880-024-01242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Clinical data warehouses provide access to massive amounts of medical images, but these images are often heterogeneous. They can for instance include images acquired both with or without the injection of a gadolinium-based contrast agent. Harmonizing such data sets is thus fundamental to guarantee unbiased results, for example when performing differential diagnosis. Furthermore, classical neuroimaging software tools for feature extraction are typically applied only to images without gadolinium. The objective of this work is to evaluate how image translation can be useful to exploit a highly heterogeneous data set containing both contrast-enhanced and non-contrast-enhanced images from a clinical data warehouse. METHODS We propose and compare different 3D U-Net and conditional GAN models to convert contrast-enhanced T1-weighted (T1ce) into non-contrast-enhanced (T1nce) brain MRI. These models were trained using 230 image pairs and tested on 77 image pairs from the clinical data warehouse of the Greater Paris area. RESULTS Validation using standard image similarity measures demonstrated that the similarity between real and synthetic T1nce images was higher than between real T1nce and T1ce images for all the models compared. The best performing models were further validated on a segmentation task. We showed that tissue volumes extracted from synthetic T1nce images were closer to those of real T1nce images than volumes extracted from T1ce images. CONCLUSION We showed that deep learning models initially developed with research quality data could synthesize T1nce from T1ce images of clinical quality and that reliable features could be extracted from the synthetic images, thus demonstrating the ability of such methods to help exploit a data set coming from a clinical data warehouse.
Collapse
Affiliation(s)
- Simona Bottani
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Elina Thibeau-Sutre
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Aurélien Maire
- Innovation & Données - Département des Services Numériques, AP-HP, Paris, 75013, France
| | - Sebastian Ströer
- Hôpital Pitié Salpêtrière, Department of Neuroradiology, AP-HP, Paris, 75012, France
| | - Didier Dormont
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, DMU DIAMENT, Paris, 75013, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ninon Burgos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
4
|
Kim MJ, Hong E, Yum MS, Lee YJ, Kim J, Ko TS. Deep learning-based, fully automated, pediatric brain segmentation. Sci Rep 2024; 14:4344. [PMID: 38383725 PMCID: PMC10881508 DOI: 10.1038/s41598-024-54663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
The purpose of this study was to demonstrate the performance of a fully automated, deep learning-based brain segmentation (DLS) method in healthy controls and in patients with neurodevelopmental disorders, SCN1A mutation, under eleven. The whole, cortical, and subcortical volumes of previously enrolled 21 participants, under 11 years of age, with a SCN1A mutation, and 42 healthy controls, were obtained using a DLS method, and compared to volumes measured by Freesurfer with manual correction. Additionally, the volumes which were calculated with the DLS method between the patients and the control group. The volumes of total brain gray and white matter using DLS method were consistent with that volume which were measured by Freesurfer with manual correction in healthy controls. Among 68 cortical parcellated volume analysis, the volumes of only 7 areas measured by DLS methods were significantly different from that measured by Freesurfer with manual correction, and the differences decreased with increasing age in the subgroup analysis. The subcortical volume measured by the DLS method was relatively smaller than that of the Freesurfer volume analysis. Further, the DLS method could perfectly detect the reduced volume identified by the Freesurfer software and manual correction in patients with SCN1A mutations, compared with healthy controls. In a pediatric population, this new, fully automated DLS method is compatible with the classic, volumetric analysis with Freesurfer software and manual correction, and it can also well detect brain morphological changes in children with a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Min-Jee Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| | | | - Mi-Sun Yum
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Yun-Jeong Lee
- Department of Pediatrics, Kyungpook National University Hospital and School of Medicine, Kyungpook National University, Daegu, South Korea
| | | | - Tae-Sung Ko
- Department of Pediatrics, Asan Medical Center Children's Hospital, Ulsan University College of Medicine, 88, Olympic-ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
5
|
Joo Y, Namgung E, Jeong H, Kang I, Kim J, Oh S, Lyoo IK, Yoon S, Hwang J. Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms. Sci Rep 2023; 13:22388. [PMID: 38104173 PMCID: PMC10725434 DOI: 10.1038/s41598-023-49514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023] Open
Abstract
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Eun Namgung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyeonseok Jeong
- Department of Radiology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ilhyang Kang
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jinsol Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Sohyun Oh
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea.
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea.
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea.
| |
Collapse
|
6
|
Bottani S, Burgos N, Maire A, Saracino D, Ströer S, Dormont D, Colliot O. Evaluation of MRI-based machine learning approaches for computer-aided diagnosis of dementia in a clinical data warehouse. Med Image Anal 2023; 89:102903. [PMID: 37523918 DOI: 10.1016/j.media.2023.102903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
A variety of algorithms have been proposed for computer-aided diagnosis of dementia from anatomical brain MRI. These approaches achieve high accuracy when applied to research data sets but their performance on real-life clinical routine data has not been evaluated yet. The aim of this work was to study the performance of such approaches on clinical routine data, based on a hospital data warehouse, and to compare the results to those obtained on a research data set. The clinical data set was extracted from the hospital data warehouse of the Greater Paris area, which includes 39 different hospitals. The research set was composed of data from the Alzheimer's Disease Neuroimaging Initiative data set. In the clinical set, the population of interest was identified by exploiting the diagnostic codes from the 10th revision of the International Classification of Diseases that are assigned to each patient. We studied how the imbalance of the training sets, in terms of contrast agent injection and image quality, may bias the results. We demonstrated that computer-aided diagnosis performance was strongly biased upwards (over 17 percent points of balanced accuracy) by the confounders of image quality and contrast agent injection, a phenomenon known as the Clever Hans effect or shortcut learning. When these biases were removed, the performance was very poor. In any case, the performance was considerably lower than on the research data set. Our study highlights that there are still considerable challenges for translating dementia computer-aided diagnosis systems to clinical routine.
Collapse
Affiliation(s)
- Simona Bottani
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Ninon Burgos
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | | | - Dario Saracino
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France; IM2A, Reference Centre for Rare or Early-Onset Dementias, Département de Neurologie, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Sebastian Ströer
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Didier Dormont
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, DMU DIAMENT, Paris, 75013, France
| | - Olivier Colliot
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
7
|
Ladefoged CN, Anderberg L, Madsen K, Henriksen OM, Hasselbalch SG, Andersen FL, Højgaard L, Law I. Estimation of brain amyloid accumulation using deep learning in clinical [ 11C]PiB PET imaging. EJNMMI Phys 2023; 10:44. [PMID: 37450069 PMCID: PMC10348957 DOI: 10.1186/s40658-023-00562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
INTRODUCTION Estimation of brain amyloid accumulation is valuable for evaluation of patients with cognitive impairment in both research and clinical routine. The development of high throughput and accurate strategies for the determination of amyloid status could be an important tool in patient selection for clinical trials and amyloid directed treatment. Here, we propose the use of deep learning to quantify amyloid accumulation using standardized uptake value ratio (SUVR) and classify amyloid status based on their PET images. METHODS A total of 1309 patients with cognitive impairment scanned with [11C]PIB PET/CT or PET/MRI were included. Two convolutional neural networks (CNNs) for reading-based amyloid status and SUVR prediction were trained using 75% of the PET/CT data. The remaining PET/CT (n = 300) and all PET/MRI (n = 100) data was used for evaluation. RESULTS The prevalence of amyloid positive patients was 61%. The amyloid status classification model reproduced the expert reader's classification with 99% accuracy. There was a high correlation between reference and predicted SUVR (R2 = 0.96). Both reference and predicted SUVR had an accuracy of 97% compared to expert classification when applying a predetermined SUVR threshold of 1.35 for binary classification of amyloid status. CONCLUSION The proposed CNN models reproduced both the expert classification and quantitative measure of amyloid accumulation in a large local dataset. This method has the potential to replace or simplify existing clinical routines and can facilitate fast and accurate classification well-suited for a high throughput pipeline.
Collapse
Affiliation(s)
- Claes Nøhr Ladefoged
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Lasse Anderberg
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Karine Madsen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
8
|
Orhanbulucu F, Latifoğlu F, Baydemir R. A New Hybrid Approach Based on Time Frequency Images and Deep Learning Methods for Diagnosis of Migraine Disease and Investigation of Stimulus Effect. Diagnostics (Basel) 2023; 13:diagnostics13111887. [PMID: 37296739 DOI: 10.3390/diagnostics13111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a neurological disorder that is associated with severe headaches and seriously affects the lives of patients. Diagnosing Migraine Disease (MD) can be laborious and time-consuming for specialists. For this reason, systems that can assist specialists in the early diagnosis of MD are important. Although migraine is one of the most common neurological diseases, there are very few studies on the diagnosis of MD, especially electroencephalogram (EEG)-and deep learning (DL)-based studies. For this reason, in this study, a new system has been proposed for the early diagnosis of EEG- and DL-based MD. In the proposed study, EEG signals obtained from the resting state (R), visual stimulus (V), and auditory stimulus (A) from 18 migraine patients and 21 healthy control (HC) groups were used. By applying continuous wavelet transform (CWT) and short-time Fourier transform (STFT) methods to these EEG signals, scalogram-spectrogram images were obtained in the time-frequency (T-F) plane. Then, these images were applied as inputs in three different convolutional neural networks (CNN) architectures (AlexNet, ResNet50, SqueezeNet) that proposed deep convolutional neural network (DCNN) models and classification was performed. The results of the classification process were evaluated, taking into account accuracy (acc.), sensitivity (sens.), specificity (spec.), and performance criteria, and the performances of the preferred methods and models in this study were compared. In this way, the situation, method, and model that showed the most successful performance for the early diagnosis of MD were determined. Although the classification results are close to each other, the resting state, CWT method, and AlexNet classifier showed the most successful performance (Acc: 99.74%, Sens: 99.9%, Spec: 99.52%). We think that the results obtained in this study are promising for the early diagnosis of MD and can be of help to experts.
Collapse
Affiliation(s)
- Fırat Orhanbulucu
- Department of Biomedical Engineering, Inonu University, Battalgazi 44000, Turkey
| | - Fatma Latifoğlu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Recep Baydemir
- Department of Neurology, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
9
|
Huang C, Chen W, Liu B, Yu R, Chen X, Tang F, Liu J, Lu W. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging. Front Immunol 2022; 13:897959. [PMID: 35774780 PMCID: PMC9238435 DOI: 10.3389/fimmu.2022.897959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background Differential diagnosis of demyelinating diseases of the central nervous system is a challenging task that is prone to errors and inconsistent reading, requiring expertise and additional examination approaches. Advancements in deep-learning-based image interpretations allow for prompt and automated analyses of conventional magnetic resonance imaging (MRI), which can be utilized in classifying multi-sequence MRI, and thus may help in subsequent treatment referral. Methods Imaging and clinical data from 290 patients diagnosed with demyelinating diseases from August 2013 to October 2021 were included for analysis, including 67 patients with multiple sclerosis (MS), 162 patients with aquaporin 4 antibody-positive (AQP4+) neuromyelitis optica spectrum disorder (NMOSD), and 61 patients with myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Considering the heterogeneous nature of lesion size and distribution in demyelinating diseases, multi-modal MRI of brain and/or spinal cord were utilized to build the deep-learning model. This novel transformer-based deep-learning model architecture was designed to be versatile in handling with multiple image sequences (coronal T2-weighted and sagittal T2-fluid attenuation inversion recovery) and scanning locations (brain and spinal cord) for differentiating among MS, NMOSD, and MOGAD. Model performances were evaluated using the area under the receiver operating curve (AUC) and the confusion matrices measurements. The classification accuracy between the fusion model and the neuroradiological raters was also compared. Results The fusion model that was trained with combined brain and spinal cord MRI achieved an overall improved performance, with the AUC of 0.933 (95%CI: 0.848, 0.991), 0.942 (95%CI: 0.879, 0.987) and 0.803 (95%CI: 0.629, 0.949) for MS, AQP4+ NMOSD, and MOGAD, respectively. This exceeded the performance using the brain or spinal cord MRI alone for the identification of the AQP4+ NMOSD (AUC of 0.940, brain only and 0.689, spinal cord only) and MOGAD (0.782, brain only and 0.714, spinal cord only). In the multi-category classification, the fusion model had an accuracy of 81.4%, which was significantly higher compared to rater 1 (64.4%, p=0.04<0.05) and comparable to rater 2 (74.6%, p=0.388). Conclusion The proposed novel transformer-based model showed desirable performance in the differentiation of MS, AQP4+ NMOSD, and MOGAD on brain and spinal cord MRI, which is comparable to that of neuroradiologists. Our model is thus applicable for interpretating conventional MRI in the differential diagnosis of demyelinating diseases with overlapping lesions.
Collapse
Affiliation(s)
- Chuxin Huang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Weidao Chen
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Baiyun Liu
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Ruize Yu
- Infervision Medical Technology Co., Ltd., Ocean International Center, Beijing, China
| | - Xiqian Chen
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fei Tang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
- *Correspondence: Jun Liu, ; Wei Lu,
| | - Wei Lu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Jun Liu, ; Wei Lu,
| |
Collapse
|
10
|
Crema C, Attardi G, Sartiano D, Redolfi A. Natural language processing in clinical neuroscience and psychiatry: A review. Front Psychiatry 2022; 13:946387. [PMID: 36186874 PMCID: PMC9515453 DOI: 10.3389/fpsyt.2022.946387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Natural language processing (NLP) is rapidly becoming an important topic in the medical community. The ability to automatically analyze any type of medical document could be the key factor to fully exploit the data it contains. Cutting-edge artificial intelligence (AI) architectures, particularly machine learning and deep learning, have begun to be applied to this topic and have yielded promising results. We conducted a literature search for 1,024 papers that used NLP technology in neuroscience and psychiatry from 2010 to early 2022. After a selection process, 115 papers were evaluated. Each publication was classified into one of three categories: information extraction, classification, and data inference. Automated understanding of clinical reports in electronic health records has the potential to improve healthcare delivery. Overall, the performance of NLP applications is high, with an average F1-score and AUC above 85%. We also derived a composite measure in the form of Z-scores to better compare the performance of NLP models and their different classes as a whole. No statistical differences were found in the unbiased comparison. Strong asymmetry between English and non-English models, difficulty in obtaining high-quality annotated data, and train biases causing low generalizability are the main limitations. This review suggests that NLP could be an effective tool to help clinicians gain insights from medical reports, clinical research forms, and more, making NLP an effective tool to improve the quality of healthcare services.
Collapse
Affiliation(s)
- Claudio Crema
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Daniele Sartiano
- Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alberto Redolfi
- Laboratory of Neuroinformatics, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
11
|
Bottani S, Burgos N, Maire A, Wild A, Ströer S, Dormont D, Colliot O. Automatic quality control of brain T1-weighted magnetic resonance images for a clinical data warehouse. Med Image Anal 2021; 75:102219. [PMID: 34773767 DOI: 10.1016/j.media.2021.102219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Many studies on machine learning (ML) for computer-aided diagnosis have so far been mostly restricted to high-quality research data. Clinical data warehouses, gathering routine examinations from hospitals, offer great promises for training and validation of ML models in a realistic setting. However, the use of such clinical data warehouses requires quality control (QC) tools. Visual QC by experts is time-consuming and does not scale to large datasets. In this paper, we propose a convolutional neural network (CNN) for the automatic QC of 3D T1-weighted brain MRI for a large heterogeneous clinical data warehouse. To that purpose, we used the data warehouse of the hospitals of the Greater Paris area (Assistance Publique-Hôpitaux de Paris [AP-HP]). Specifically, the objectives were: 1) to identify images which are not proper T1-weighted brain MRIs; 2) to identify acquisitions for which gadolinium was injected; 3) to rate the overall image quality. We used 5000 images for training and validation and a separate set of 500 images for testing. In order to train/validate the CNN, the data were annotated by two trained raters according to a visual QC protocol that we specifically designed for application in the setting of a data warehouse. For objectives 1 and 2, our approach achieved excellent accuracy (balanced accuracy and F1-score >90%), similar to the human raters. For objective 3, the performance was good but substantially lower than that of human raters. Nevertheless, the automatic approach accurately identified (balanced accuracy and F1-score >80%) low quality images, which would typically need to be excluded. Overall, our approach shall be useful for exploiting hospital data warehouses in medical image computing.
Collapse
Affiliation(s)
- Simona Bottani
- Inria, Aramis project-team, Paris, 75013, France; Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Ninon Burgos
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France
| | | | - Adam Wild
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France
| | - Sebastian Ströer
- AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Didier Dormont
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Department of Neuroradiology, Paris, 75013, France
| | - Olivier Colliot
- Sorbonne Université, Paris, 75013, France; Institut du Cerveau - Paris Brain Institute-ICM, Paris, 75013, France; Inserm, Paris, 75013, France; CNRS, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France; Inria, Aramis project-team, Paris, 75013, France.
| | | |
Collapse
|