1
|
Song Z, Feng Z, Wang X, Li J, Zhang D. NFKB1 as a key player in Tumor biology: from mechanisms to therapeutic implications. Cell Biol Toxicol 2025; 41:29. [PMID: 39797972 PMCID: PMC11724797 DOI: 10.1007/s10565-024-09974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
NFKB1, a core transcription factor critical in various biological process (BP), is increasingly studied for its role in tumors. This research combines literature reviews, meta-analyses, and bioinformatics to systematically explore NFKB1's involvement in tumor initiation and progression. A unique focus is placed on the NFKB1-94 ATTG promoter polymorphism, highlighting its association with cancer risk across diverse genetic models and ethnic groups, alongside comprehensive analysis of pan-cancer expression patterns and drug sensitivity. The study reveals the intricate connections between NFKB1 and tumors, highlighting its significant roles in invasion, metastasis, genomic stability, and metabolic changes. Through meta-analysis, it is evidenced that tumor specimens exhibit increased NFKB1 expression when compared to non-tumor specimens, although its association with cancer incidence requires further investigation. Analysis from the Gene Expression Omnibus (GEO) database suggests that high NFKB1 gene expression may not markedly impact tumor patient prognosis. The noticeable correlation between the NFKB1-94 ATTG promoter polymorphic sequence and elevated cancer susceptibility is highlighted across different genetic models. Furthermore, bioinformatics analysis uncovers NFKB1's association with the sensitivity to various anticancer drugs and its central involvement in crucial BP like the cell cycle, cytoskeleton assembly, and cellular senescence. Overall, NFKB1's expression and polymorphisms are significantly linked to tumor risk, prognosis, and treatment response, highlighting its prospect as a forthcoming aim for cancer treatment. This study offers a robust foundation for further exploration of NFKB1's mechanisms and the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Zixuan Song
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China
| | - Zheng Feng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoxue Wang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang , Liaoning Province, China.
| |
Collapse
|
2
|
Schimmel J, van Wezel MD, van Schendel R, Tijsterman M. Chromosomal breaks at the origin of small tandem DNA duplications. Bioessays 2023; 45:e2200168. [PMID: 36385254 DOI: 10.1002/bies.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marloes D van Wezel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Boudry A, Darmon S, Duployez N, Figeac M, Geffroy S, Bucci M, Celli-Lebras K, Duchmann M, Joudinaud R, Fenwarth L, Nibourel O, Goursaud L, Itzykson R, Dombret H, Hunault M, Preudhomme C, Salson M. Frugal alignment-free identification of FLT3-internal tandem duplications with FiLT3r. BMC Bioinformatics 2022; 23:448. [PMID: 36307762 PMCID: PMC9617311 DOI: 10.1186/s12859-022-04983-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Internal tandem duplications in the FLT3 gene, termed FLT3-ITDs, are useful molecular markers in acute myeloid leukemia (AML) for patient risk stratification and follow-up. FLT3-ITDs are increasingly screened through high-throughput sequencing (HTS) raising the need for robust and efficient algorithms. We developed a new algorithm, which performs no alignment and uses little resources, to identify and quantify FLT3-ITDs in HTS data. RESULTS Our algorithm (FiLT3r) focuses on the k-mers from reads covering FLT3 exons 14 and 15. We show that those k-mers bring enough information to accurately detect, determine the length and quantify FLT3-ITD duplications. We compare the performances of FiLT3r to state-of-the-art alternatives and to fragment analysis, the gold standard method, on a cohort of 185 AML patients sequenced with capture-based HTS. On this dataset FiLT3r is more precise (no false positive nor false negative) than the other software evaluated. We also assess the software on public RNA-Seq data, which confirms the previous results and shows that FiLT3r requires little resources compared to other software. CONCLUSION FiLT3r is a free software available at https://gitlab.univ-lille.fr/filt3r/filt3r . The repository also contains a Snakefile to reproduce our experiments. We show that FiLT3r detects FLT3-ITDs better than other software while using less memory and time.
Collapse
Affiliation(s)
- Augustin Boudry
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Sasha Darmon
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France ,grid.15140.310000 0001 2175 9188ENS Lyon, Lyon, France
| | - Nicolas Duployez
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Martin Figeac
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, F-59000 Lille, France
| | - Sandrine Geffroy
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Maxime Bucci
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Karine Celli-Lebras
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Matthieu Duchmann
- grid.508487.60000 0004 7885 7602INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
| | - Romane Joudinaud
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Laurène Fenwarth
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Olivier Nibourel
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Laure Goursaud
- grid.410463.40000 0004 0471 8845Hematology Department, CHU LILLE, Lille, France
| | - Raphael Itzykson
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France ,grid.508487.60000 0004 7885 7602INSERM/CNRS UMR 944/7212, Saint-Louis Research Institute, Paris Diderot University, Paris, France
| | - Hervé Dombret
- grid.413328.f0000 0001 2300 6614Department of Hematology, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Mathilde Hunault
- grid.7252.20000 0001 2248 3363Univ Angers, Université de Nantes, CHU Angers, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000 Angers, France
| | - Claude Preudhomme
- grid.410463.40000 0004 0471 8845Hematology Laboratory, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France ,grid.503422.20000 0001 2242 6780U1277 Cancer Heterogeneity Plasticity and Resistance to Therapies (CANTHER), University of Lille, INSERM, Lille, France
| | - Mikaël Salson
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
| |
Collapse
|
4
|
Fu W, Huang A, Xu L, Peng Y, Gao L, Chen L, Chen J, Tang G, Yang J, Ni X. Cytogenetic abnormalities in NPM1-mutated acute myeloid leukemia. Leuk Lymphoma 2022; 63:1956-1963. [PMID: 35227153 DOI: 10.1080/10428194.2022.2045600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
NPM1mut acute myeloid leukemia (AML) has been identified as a distinct entity of myeloid neoplasms according to the 2017 European LeukemiaNet (ELN) guidelines. It confers a favorable prognosis regardless of cytogenetic abnormalities. We evaluated 418 newly diagnosed AML patients to test the validity of this hypothesis. Seventy-four patients with NPM1mut AML showed a good response to induction and a relatively favorable prognosis. Abnormal karyotypes were observed in 15 patients. Chromosomal abnormalities were significantly associated with a worse prognosis in NPM1mut AML patients (5-year overall survival (OS): 38.9 ± 12.9%, p = .037; event-free survival (EFS): 33.3 ± 12.2%, p = .043, respectively). Four patients with abnormal karyotypes who underwent allogeneic hematopoietic stem cell transplantation (alloHSCT) during CR1 had longer survival than those who received chemotherapy only. Multivariable analysis revealed abnormal karyotypes independently predicted OS and EFS among NPM1mut AML patients. In summary, cytogenetic abnormalities are strong prognostic indicators in NPM1mut AML. Therefore, they should be classified accordingly, and alloHSCT should be performed on selected patients during CR1.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Lili Xu
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Yanni Peng
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital 200433, Shanghai, China
| |
Collapse
|
5
|
Kim JJ, Lee KS, Lee TG, Lee S, Shin S, Lee ST. A comparative study of next-generation sequencing and fragment analysis for the detection and allelic ratio determination of FLT3 internal tandem duplication. Diagn Pathol 2022; 17:14. [PMID: 35081962 PMCID: PMC8790841 DOI: 10.1186/s13000-022-01202-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, FLT3 internal tandem duplication (ITD) is tested by fragment analysis. With next-generation sequencing (NGS), however, not only FLT3 ITD but also other mutations can be detected, which can provide more genetic information on disease. METHODS We retrospectively reviewed the results of two tests-fragment analysis and a custom-designed, hybridization capture-based, targeted NGS panel-performed simultaneously. We used the Pindel algorithm to detect FLT3 ITD mutations. RESULTS Among 277 bone marrow aspirate samples tested by NGS and fragment analysis, the results revealed 99.6% concordance in FLT3 ITD detection. Overall, the allele frequency (AF) attained by NGS positively correlated with the standard allelic ratio (AR) attained by fragment analysis, with a Spearman correlation coefficient (r) of 0.757 (95% confidence interval: 0.627-0.846; p < 0.001). It was concluded that an AF of 0.11 attained by NGS is the most appropriate cutoff value (with 85.3% sensitivity and 86.7% specificity) for high mutation burden criterion presented by guidelines. CONCLUSION Sensitive FLT3 ITD detection with comprehensive information of other mutation offered by NGS could be a useful tool in clinical laboratories. Future studies will be needed to evaluate and standardize NGS AF cutoff to predict actual clinical outcomes.
Collapse
Affiliation(s)
- Jin Ju Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kwang Seob Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taek Gyu Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Seungjae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
6
|
Tung JK, Suarez CJ, Chiang T, Zehnder JL, Stehr H. Accurate Detection and Quantification of FLT3 Internal Tandem Duplications in Clinical Hybrid Capture Next-Generation Sequencing Data. J Mol Diagn 2021; 23:1404-1413. [PMID: 34363960 DOI: 10.1016/j.jmoldx.2021.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/13/2023] Open
Abstract
FLT3 internal tandem duplications (ITDs) are found in approximately one-third of patients with acute myeloid leukemia and have important prognostic and therapeutic implications that have supported their assessment in routine clinical practice. Conventional methods for assessing FLT3-ITD status and allele burden have been primarily limited to PCR fragment size analysis because of the inherent difficulty in detecting large ITD variants by next-generation sequencing (NGS). In this study, we assess the performance of publicly available bioinformatic tools for the detection and quantification of FLT3-ITDs in clinical hybridization-capture NGS data. We found that FLT3_ITD_ext had the highest overall accuracy for detecting FLT3-ITDs and was able to accurately quantify allele burden. Although all other tools evaluated were able to detect FLT3-ITDs reasonably well, allele burden was consistently underestimated. We were able to significantly improve quantification of FLT3-ITD allelic burden independent of the detection method by utilizing soft-clipped reads and/or ITD junctional sequences. In addition, we show that identifying mutant reads by previously identified junctional sequences further improves the sensitivity of detecting FLT3-ITDs in post-treatment samples. Our results demonstrate that FLT3-ITDs can be reliably detected in clinical NGS data using available bioinformatic tools. We further describe how accurate quantification of FLT3-ITD allele burden can be added on to existing clinical NGS pipelines for routine assessment of FLT3-ITD status in patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Jack K Tung
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Carlos J Suarez
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Tsoyu Chiang
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Henning Stehr
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|