1
|
Kryńska K, Kuliś K, Mazurek W, Gudowska-Sawczuk M, Zajkowska M, Mroczko B. The Influence of SARS-CoV-2 Infection on the Development of Selected Neurological Diseases. Int J Mol Sci 2024; 25:8715. [PMID: 39201402 PMCID: PMC11354773 DOI: 10.3390/ijms25168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
In 2024, over 775 million cases of COVID-19 were recorded, including approximately 7 million deaths, indicating its widespread and dangerous nature. The disease is caused by the SARS-CoV-2 virus, which can manifest a wide spectrum of symptoms, from mild infection to respiratory failure and even death. Neurological symptoms, such as headaches, confusion, and impaired consciousness, have also been reported in some COVID-19 patients. These observations suggest the potential of SARS-CoV-2 to invade the central nervous system and induce neuroinflammation during infection. This review specifically explores the relationship between SARS-CoV-2 infection and selected neurological diseases such as multiple sclerosis (MS), ischemic stroke (IS), and Alzheimer's disease (AD). It has been observed that the SARS-CoV-2 virus increases the production of cytokines whose action can cause the destruction of the myelin sheaths of nerve cells. Subsequently, the body may synthesize autoantibodies that attack nerve cells, resulting in damage to the brain's anatomical elements, potentially contributing to the onset of multiple sclerosis. Additionally, SARS-CoV-2 exacerbates inflammation, worsening the clinical condition in individuals already suffering from MS. Moreover, the secretion of pro-inflammatory cytokines may lead to an escalation in blood clot formation, which can result in thrombosis, obstructing blood flow to the brain and precipitating an ischemic stroke. AD is characterized by intense inflammation and heightened oxidative stress, both of which are exacerbated during SARS-CoV-2 infection. It has been observed that the SARS-CoV-2 demonstrates enhanced cell entry in the presence of both the ACE2 receptor, which is already elevated in AD and the ApoE ε4 allele. Consequently, the condition worsens and progresses more rapidly, increasing the mortality rate among AD patients. The above information underscores the numerous connections between SARS-CoV-2 infection and neurological diseases.
Collapse
Affiliation(s)
- Klaudia Kryńska
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Katarzyna Kuliś
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Wiktoria Mazurek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
| | - Monika Zajkowska
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| |
Collapse
|
2
|
Kumar A, Kaushal R, Sharma H, Sharma K, Menon MB, P V. Mapping of long stretches of highly conserved sequences in over 6 million SARS-CoV-2 genomes. Brief Funct Genomics 2024; 23:256-264. [PMID: 37461194 DOI: 10.1093/bfgp/elad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 05/18/2024] Open
Abstract
We identified 11 conserved stretches in over 6.3 million SARS-CoV-2 genomes including all the major variants of concerns. Each conserved stretch is ≥100 nucleotides in length with ≥99.9% conservation at each nucleotide position. Interestingly, six of the eight conserved stretches in ORF1ab overlapped significantly with well-folded experimentally verified RNA secondary structures. Furthermore, two of the conserved stretches were mapped to regions within the S2-subunit that undergo dynamic structural rearrangements during viral fusion. In addition, the conserved stretches were significantly depleted for zinc-finger antiviral protein (ZAP) binding sites, which facilitated the recognition and degradation of viral RNA. These highly conserved stretches in the SARS-CoV-2 genome were poorly conserved at the nucleotide level among closely related β-coronaviruses, thus representing ideal targets for highly specific and discriminatory diagnostic assays. Our findings highlight the role of structural constraints at both RNA and protein levels that contribute to the sequence conservation of specific genomic regions in SARS-CoV-2.
Collapse
Affiliation(s)
- Akhil Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Rishika Kaushal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshi Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vivekanandan P
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
3
|
Sng CCT, Kallor AA, Simpson BS, Bedran G, Alfaro J, Litchfield K. Untranslated regions (UTRs) are a potential novel source of neoantigens for personalised immunotherapy. Front Immunol 2024; 15:1347542. [PMID: 38558815 PMCID: PMC10978585 DOI: 10.3389/fimmu.2024.1347542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Background Neoantigens, mutated tumour-specific antigens, are key targets of anti-tumour immunity during checkpoint inhibitor (CPI) treatment. Their identification is fundamental to designing neoantigen-directed therapy. Non-canonical neoantigens arising from the untranslated regions (UTR) of the genome are an overlooked source of immunogenic neoantigens. Here, we describe the landscape of UTR-derived neoantigens and release a computational tool, PrimeCUTR, to predict UTR neoantigens generated by start-gain and stop-loss mutations. Methods We applied PrimeCUTR to a whole genome sequencing dataset of pre-treatment tumour samples from CPI-treated patients (n = 341). Cancer immunopeptidomic datasets were interrogated to identify MHC class I presentation of UTR neoantigens. Results Start-gain neoantigens were predicted in 72.7% of patients, while stop-loss mutations were found in 19.3% of patients. While UTR neoantigens only accounted 2.6% of total predicted neoantigen burden, they contributed 12.4% of neoantigens with high dissimilarity to self-proteome. More start-gain neoantigens were found in CPI responders, but this relationship was not significant when correcting for tumour mutational burden. While most UTR neoantigens are private, we identified two recurrent start-gain mutations in melanoma. Using immunopeptidomic datasets, we identify two distinct MHC class I-presented UTR neoantigens: one from a recurrent start-gain mutation in melanoma, and one private to Jurkat cells. Conclusion PrimeCUTR is a novel tool which complements existing neoantigen discovery approaches and has potential to increase the detection yield of neoantigens in personalised therapeutics, particularly for neoantigens with high dissimilarity to self. Further studies are warranted to confirm the expression and immunogenicity of UTR neoantigens.
Collapse
Affiliation(s)
- Christopher C. T. Sng
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Ashwin Adrian Kallor
- International Center for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Benjamin S. Simpson
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Georges Bedran
- International Center for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Javier Alfaro
- International Center for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London (UCL) Cancer Institute, London, United Kingdom
| |
Collapse
|
4
|
Bernal C, How-Volkman C, Spencer M, El-Shamy A, Mohieldin AM. The Role of Extracellular Vesicles in SARS-CoV-2-Induced Acute Kidney Injury: An Overview. Life (Basel) 2024; 14:163. [PMID: 38398672 PMCID: PMC10890680 DOI: 10.3390/life14020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions worldwide since its outbreak in the winter of 2019. While extensive research has primarily focused on the deleterious respiratory effects of SARS-CoV-2 in recent years, its pan-tropism has become evident. Among the vital organs susceptible to SARS-CoV-2 infection is the kidney. Post SARS-CoV-2 infection, patients have developed coronavirus disease 19 (COVID-19), with reported incidences of COVID-19 patients developing acute kidney injury (AKI). Given COVID-19's multisystemic manifestation, our review focuses on the impact of SARS-CoV-2 infection within the renal system with an emphasis on the current hypotheses regarding the role of extracellular vesicles (EVs) in SARS-CoV-2 pathogenesis. Emerging studies have shown that SARS-CoV-2 can directly infect the kidney, whereas EVs are involved in the spreading of SARS-CoV-2 particles to other neighboring cells. Once the viral particles are within the kidney system, many proinflammatory signaling pathways are shown to be activated, resulting in AKI. Hence, clinical investigation of urinary proinflammatory components and total urinary extracellular vesicles (uEVs) with viral particles have been used to assess the severity of AKI in patients with COVID-19. Remarkedly, new emerging studies have shown the potential of mesenchymal stem cell-derived EVs (MSC-EVs) and ACE2-containing EVs as a hopeful therapeutic tool to inhibit SARS-CoV-2 RNA replication and block viral entry, respectively. Overall, understanding EVs' physiological role is crucial and hopefully will rejuvenate our therapeutic approach towards COVID-19 patients with AKI.
Collapse
Affiliation(s)
- Carter Bernal
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Christiane How-Volkman
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Madison Spencer
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
| | - Ahmed El-Shamy
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| | - Ashraf M. Mohieldin
- College of Graduate Studies, California Northstate University, Elk Grove, CA 95757, USA
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA
| |
Collapse
|
5
|
Rubio A, de Toro M, Pérez-Pulido AJ. The most exposed regions of SARS-CoV-2 structural proteins are subject to strong positive selection and gene overlap may locally modify this behavior. mSystems 2024; 9:e0071323. [PMID: 38095866 PMCID: PMC10804949 DOI: 10.1128/msystems.00713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 12/22/2023] Open
Abstract
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic that emerged in 2019 has been an unprecedented event in international science, as it has been possible to sequence millions of genomes, tracking their evolution very closely. This has enabled various types of secondary analyses of these genomes, including the measurement of their sequence selection pressure. In this work, we have been able to measure the selective pressure of all the described SARS-CoV-2 genes, even analyzed by sequence regions, and we show how this type of analysis allows us to separate the genes between those subject to positive selection (usually those that code for surface proteins or those exposed to the host immune system) and those subject to negative selection because they require greater conservation of their structure and function. We have also seen that when another gene with an overlapping reading frame appears within a gene sequence, the overlapping sequence between the two genes evolves under a stronger purifying selection than the average of the non-overlapping regions of the main gene. We propose this type of analysis as a useful tool for locating and analyzing all the genes of a viral genome when an adequate number of sequences are available.IMPORTANCEWe have analyzed the selection pressure of all severe acute respiratory syndrome coronavirus 2 genes by means of the nonsynonymous (Ka) to synonymous (Ks) substitution rate. We found that protein-coding genes are exposed to strong positive selection, especially in the regions of interaction with other molecules (host receptor and genome of the virus itself). However, overlapping coding regions are more protected and show negative selection. This suggests that this measure could be used to study viral gene function as well as overlapping genes.
Collapse
Affiliation(s)
- Alejandro Rubio
- Faculty of Experimental Sciences, Genetics Area, Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), University Pablo de Olavide, Sevilla, Spain
| | - Maria de Toro
- Genomics and Bioinformatics Core Facility, Center for Biomedical Research of La Rioja, Logroño, Spain
| | - Antonio J. Pérez-Pulido
- Faculty of Experimental Sciences, Genetics Area, Andalusian Centre for Developmental Biology (CABD, UPO-CSIC-JA), University Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
6
|
Biskupek I, Gieldon A. Two-Stage Recognition Mechanism of the SARS-CoV-2 Receptor-Binding Domain to Angiotensin-Converting Enzyme-2 (ACE2). Int J Mol Sci 2024; 25:679. [PMID: 38203850 PMCID: PMC10779479 DOI: 10.3390/ijms25010679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, occurred in 2019. It is a highly contagious illness with effects ranging from mild symptoms to severe illness. It is also one of the best-known pathogens since more than 200,000 scientific papers occurred in the last few years. With the publication of the SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in a complex with human ACE2 (hACE2) (PDB (6LZG)), the molecular analysis of one of the most crucial steps on the infection pathway was possible. The aim of this manuscript is to simulate the most widely spread mutants of SARS-CoV-2, namely Alpha, Beta, Gamma, Delta, Omicron, and the first recognized variant (natural wild type). With the wide search of the hypersurface of the potential energy performed using the UNRES force field, the intermediate state of the ACE2-RBD complex was found. R403, K/N/T417, L455, F486, Y489, F495, Y501, and Y505 played a crucial role in the protein recognition mechanism. The intermediate state cannot be very stable since it will prevent the infection cascade.
Collapse
Affiliation(s)
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
7
|
Cheng X, Wu X, Fang R. The minus strand of positive-sense RNA viruses encodes small proteins. Trends Microbiol 2024; 32:6-7. [PMID: 37951770 DOI: 10.1016/j.tim.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
It is widely accepted that the minus strands of positive single-strand RNA (+ssRNA) viruses function as replication templates only. Gong et al. revealed that the minus strand of two unrelated +ssRNA viruses encodes proteins. This textbook-changing discovery calls for the reconsideration of the molecular mechanisms underlying the infection cycle of +ssRNA viruses.
Collapse
Affiliation(s)
- Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030 Harbin, Heilongjiang, China.
| | - Xiaoyun Wu
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, 150030 Harbin, Heilongjiang, China
| | - Rongxiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Shehzadi K, Yu M, Liang J. De Novo Potent Peptide Nucleic Acid Antisense Oligomer Inhibitors Targeting SARS-CoV-2 RNA-Dependent RNA Polymerase via Structure-Guided Drug Design. Int J Mol Sci 2023; 24:17473. [PMID: 38139312 PMCID: PMC10744289 DOI: 10.3390/ijms242417473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Global reports of novel SARS-CoV-2 variants and recurrence cases continue despite substantial vaccination campaigns, raising severe concerns about COVID-19. While repurposed drugs offer some treatment options for COVID-19, notably, nucleoside inhibitors like Remdesivir stand out as curative therapies for COVID-19 that are approved by the US Food and Drug Administration (FDA). The emergence of highly contagious SARS-CoV-2 variants underscores the imperative for antiviral drugs adaptable to evolving viral mutations. RNA-dependent RNA polymerase (RdRp) plays a key role in viral genome replication. Currently, inhibiting viral RdRp function remains a pivotal strategy to tackle the notorious virus. Peptide nucleic acid (PNA) therapy shows promise by effectively targeting specific genome regions, reducing viral replication, and inhibiting infection. In our study, we designed PNA antisense oligomers conjugated with cell-penetrating peptides (CPP) aiming to evaluate their antiviral effects against RdRp target using structure-guided drug design, which involves molecular docking simulations, drug likeliness and pharmacokinetic evaluations, molecular dynamics simulations, and computing binding free energy. The in silico analysis predicts that chemically modified PNAs might act as antisense molecules in order to disrupt ribosome assembly at RdRp's translation start site, and their chemically stable and neutral backbone might enhance sequence-specific RNA binding interaction. Notably, our findings demonstrate that PNA-peptide conjugates might be the most promising inhibitors of SARS-CoV-2 RdRp, with superior binding free energy compared to Remdesivir in the current COVID-19 medication. Specifically, PNA-CPP-1 could bind simultaneously to the active site residues of RdRp protein and sequence-specific RdRp-RNA target in order to control viral replication.
Collapse
Affiliation(s)
| | - Mingjia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| | - Jianhua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100811, China;
| |
Collapse
|
9
|
Gong P, Shen Q, Zhang M, Qiao R, Jiang J, Su L, Zhao S, Fu S, Ma Y, Ge L, Wang Y, Lozano-Durán R, Wang A, Li F, Zhou X. Plant and animal positive-sense single-stranded RNA viruses encode small proteins important for viral infection in their negative-sense strand. MOLECULAR PLANT 2023; 16:1794-1810. [PMID: 37777826 DOI: 10.1016/j.molp.2023.09.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Positive-sense single-stranded RNA (+ssRNA) viruses, the most abundant viruses of eukaryotes in nature, require the synthesis of negative-sense RNA (-RNA) using their genomic (positive-sense) RNA (+RNA) as a template for replication. Based on current evidence, viral proteins are translated via viral +RNAs, whereas -RNA is considered to be a viral replication intermediate without coding capacity. Here, we report that plant and animal +ssRNA viruses contain small open reading frames (ORFs) in their -RNA (reverse ORFs [rORFs]). Using turnip mosaic virus (TuMV) as a model for plant +ssRNA viruses, we demonstrate that small proteins encoded by rORFs display specific subcellular localizations, and confirm the presence of rORF2 in infected cells through mass spectrometry analysis. The protein encoded by TuMV rORF2 forms punctuate granules that are localized in the perinuclear region and co-localized with viral replication complexes. The rORF2 protein can directly interact with the viral RNA-dependent RNA polymerase, and mutation of rORF2 completely abolishes virus infection, whereas ectopic expression of rORF2 rescues the mutant virus. Furthermore, we show that several rORFs in the -RNA of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have the ability to suppress type I interferon production and facilitate the infection of vesicular stomatitis virus. In addition, we provide evidence that TuMV might utilize internal ribosome entry sites to translate these small rORFs. Taken together, these findings indicate that the -RNA of +ssRNA viruses can also have the coding capacity and that small proteins encoded therein play critical roles in viral infection, revealing a viral proteome larger than previously thought.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingtang Shen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Mingzhen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lili Su
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- University of the Chinese Academy of Sciences, Beijing, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, 72076 Tübingen, Germany
| | - Aiming Wang
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Murari A, Gelfusa M, Craciunescu T, Gelfusa C, Gaudio P, Bovesecchi G, Rossi R. Effects of environmental conditions on COVID-19 morbidity as an example of multicausality: a multi-city case study in Italy. Front Public Health 2023; 11:1222389. [PMID: 37965519 PMCID: PMC10642182 DOI: 10.3389/fpubh.2023.1222389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan city, in the Hubei province of China. Since then, it has spread practically all over the world, disrupting many human activities. In temperate climates overwhelming evidence indicates that its incidence increases significantly during the cold season. Italy was one of the first nations, in which COVID-19 reached epidemic proportions, already at the beginning of 2020. There is therefore enough data to perform a systematic investigation of the correlation between the spread of the virus and the environmental conditions. The objective of this study is the investigation of the relationship between the virus diffusion and the weather, including temperature, wind, humidity and air quality, before the rollout of any vaccine and including rapid variation of the pollutants (not only their long term effects as reported in the literature). Regarding them methodology, given the complexity of the problem and the sparse data, robust statistical tools based on ranking (Spearman and Kendall correlation coefficients) and innovative dynamical system analysis techniques (recurrence plots) have been deployed to disentangle the different influences. In terms of results, the evidence indicates that, even if temperature plays a fundamental role, the morbidity of COVID-19 depends also on other factors. At the aggregate level of major cities, air pollution and the environmental quantities affecting it, particularly the wind intensity, have no negligible effect. This evidence should motivate a rethinking of the public policies related to the containment of this type of airborne infectious diseases, particularly information gathering and traffic management.
Collapse
Affiliation(s)
- Andrea Murari
- Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padua, Italy
- Istituto per la Scienza e la Tecnologia dei Plasmi, CNR, Padua, Italy
| | - Michela Gelfusa
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Teddy Craciunescu
- National Institute for Laser, Plasma and Radiation Physics, Măgurele, Romania
| | - Claudio Gelfusa
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Pasquale Gaudio
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Gianluigi Bovesecchi
- Department of Enterprise Engineering, University of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Rossi
- Department of Industrial Engineering, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
11
|
Skittrall JP, Irigoyen N, Brierley I, Gog JR. A novel approach to finding conserved features in low-variability gene alignments characterises RNA motifs in SARS-CoV and SARS-CoV-2. Sci Rep 2023; 13:12079. [PMID: 37495730 PMCID: PMC10372003 DOI: 10.1038/s41598-023-39207-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Collections of genetic sequences belonging to related organisms contain information on the evolutionary constraints to which the organisms have been subjected. Heavily constrained regions can be investigated to understand their roles in an organism's life cycle, and drugs can be sought to disrupt these roles. In organisms with low genetic diversity, such as newly-emerged pathogens, it is key to obtain this information early to develop new treatments. Here, we present methods that ensure we can leverage all the information available in a low-signal, low-noise set of sequences, to find contiguous regions of relatively conserved nucleic acid. We demonstrate the application of these methods by analysing over 5 million genome sequences of the recently-emerged RNA virus SARS-CoV-2 and correlating these results with an analysis of 119 genome sequences of SARS-CoV. We propose the precise location of a previously described packaging signal, and discuss explanations for other regions of high conservation.
Collapse
Affiliation(s)
- Jordan P Skittrall
- Department of Pathology, Division of Virology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Nerea Irigoyen
- Department of Pathology, Division of Virology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Ian Brierley
- Department of Pathology, Division of Virology, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
| | - Julia R Gog
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| |
Collapse
|
12
|
Zhirnov OP. The Unique Genome of the Virus and Alternative Strategies for its Realization. Acta Naturae 2023; 15:14-19. [PMID: 37538802 PMCID: PMC10395775 DOI: 10.32607/actanaturae.11904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/11/2023] [Indexed: 08/05/2023] Open
Abstract
Dedicated to the 130th anniversary of Dmitry Ivanovsky's discovery of the virus kingdom as a new form of biological life. The genome of some RNA-containing viruses comprises ambipolar genes that are arranged in stacks (one above the other) encoding proteins in opposite directions. Ambipolar genes provide a new approach for developing viral diversity when virions possessing an identical genome may differ in its expression scheme (strategy) and have distinct types of progeny virions varying in the genomic RNA polarity and the composition of proteins expressed by positive- or negative-sense genes, the so-called ambipolar virions. So far, this pathway of viral genome expression remains hypothetical and hidden from us, like the dark side of the Moon, and deserves a detailed study.
Collapse
Affiliation(s)
- O. P. Zhirnov
- The N.F.Gamaleya Research Center of epidemiology and microbiology, The D.I. Ivanovsky Institute of Virology, Moscow, 123098 Russian Federation
- The Russian-German Academy of medico-social and biotechnological sciences; The Innovation Center of Skolkovo, Moscow, 121205 Russian Federation
| |
Collapse
|
13
|
Yang Y, Cao L, Yan M, Zhou J, Yang S, Xu T, Huang S, Li K, Zhou Q, Li G, Zhu Y, Cong F, Zhang H, Guo D, Li Y, Zhang X. Synthesis of deuterated S-217622 (Ensitrelvir) with antiviral activity against coronaviruses including SARS-CoV-2. Antiviral Res 2023; 213:105586. [PMID: 36997073 PMCID: PMC10043954 DOI: 10.1016/j.antiviral.2023.105586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
S-217622 (Ensitrelvir) is a reversible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3-chymotrypsin-like protease (3CLpro) inhibitor which obtained emergency regulatory approval in Japan for the treatment of SARS-CoV-2 infection on Nov 22, 2022. Herein, analogs of S-271622 with deuterium-for-hydrogen replacement were synthesized for comparison of the antiviral activities and pharmacokinetic (PK) profiles. Compared to the parent compound, C11-d2-S-217622 compound YY-278 retained in vitro activity against 3CLpro and SARS-CoV-2. X-ray crystal structural studies showed similar interactions of SARS-CoV-2 3CLpro with YY-278 and S-271622. The PK profiling revealed the relatively favorable bioavailability and plasma exposure of YY-278. In addition, YY-278, as well as S-217622, displayed broadly anti-coronaviral activities against 6 other coronaviruses that infect humans and animals. These results laid the foundation for further research on the therapeutic potential of YY-278 against COVID-19 and other coronaviral diseases.
Collapse
Affiliation(s)
- Yujian Yang
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ming Yan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Jun Zhou
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Sidi Yang
- Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, 510320, China
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Siyao Huang
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kun Li
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Qifan Zhou
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Guanguan Li
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China
| | - Yujun Zhu
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, 510663, China
| | - Feng Cong
- Guangdong Province Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, Guangdong, 510663, China
| | - Hongmin Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China; Guangzhou Laboratory, Bio-island, Guangzhou, Guangdong, 510320, China.
| | - Yingjun Li
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
| | - Xumu Zhang
- Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
14
|
Lvov DK, Alkhovsky SV, Zhirnov OP. [130th anniversary of virology]. Vopr Virusol 2022; 67:357-384. [PMID: 36515283 DOI: 10.36233/0507-4088-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/17/2023]
Abstract
130 years ago, in 1892, our great compatriot Dmitry Iosifovich Ivanovsky (18641920) discovered a new type of pathogen viruses. Viruses have existed since the birth of life on Earth and for more than three billion years, as the biosphere evolved, they are included in interpopulation interactions with representatives of all kingdoms of life: archaea, bacteria, protozoa, algae, fungi, plants, invertebrates, and vertebrates, including the Homo sapiens (Hominidae, Homininae). Discovery of D.I. Ivanovsky laid the foundation for a new science virology. The rapid development of virology in the 20th century was associated with the fight against emerging and reemerging infections, epidemics (epizootics) and pandemics (panzootics) of which posed a threat to national and global biosecurity (tick-borne and other encephalitis, hemorrhagic fevers, influenza, smallpox, poliomyelitis, HIV, parenteral hepatitis, coronaviral and other infections). Fundamental research on viruses created the basis for the development of effective methods of diagnostics, vaccine prophylaxis, and antiviral drugs. Russian virologists continue to occupy leading positions in some priority areas of modern virology in vaccinology, environmental studies oz zoonotic viruses, studies of viral evolution in various ecosystems, and several other areas. A meaningful combination of theoretical approaches to studying the evolution of viruses with innovative methods for studying their molecular genetic properties and the creation of new generations of vaccines and antiviral drugs on this basis will significantly reduce the consequences of future pandemics or panzootics. The review presents the main stages in the formation and development of virology as a science in Russia with an emphasis on the most significant achievements of soviet and Russian virologists in the fight against viral infectious diseases.
Collapse
Affiliation(s)
- D K Lvov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - S V Alkhovsky
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| | - O P Zhirnov
- D.I. Ivanovsky Institute of Virology of N.F Gamaleya National Research Center of Epidemiology and Microbiology of Ministry of Health of the Russian Federation
| |
Collapse
|
15
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
16
|
Onisiforou A, Spyrou GM. Systems Bioinformatics Reveals Possible Relationship between COVID-19 and the Development of Neurological Diseases and Neuropsychiatric Disorders. Viruses 2022; 14:2270. [PMID: 36298824 PMCID: PMC9611753 DOI: 10.3390/v14102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) is associated with increased incidence of neurological diseases and neuropsychiatric disorders after infection, but how it contributes to their development remains under investigation. Here, we investigate the possible relationship between COVID-19 and the development of ten neurological disorders and three neuropsychiatric disorders by exploring two pathological mechanisms: (i) dysregulation of host biological processes via virus-host protein-protein interactions (PPIs), and (ii) autoreactivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epitopes with host "self" proteins via molecular mimicry. We also identify potential genetic risk factors which in combination with SARS-CoV-2 infection might lead to disease development. Our analysis indicated that neurodegenerative diseases (NDs) have a higher number of disease-associated biological processes that can be modulated by SARS-CoV-2 via virus-host PPIs than neuropsychiatric disorders. The sequence similarity analysis indicated the presence of several matching 5-mer and/or 6-mer linear motifs between SARS-CoV-2 epitopes with autoreactive epitopes found in Alzheimer's Disease (AD), Parkinson's Disease (PD), Myasthenia Gravis (MG) and Multiple Sclerosis (MS). The results include autoreactive epitopes that recognize amyloid-beta precursor protein (APP), microtubule-associated protein tau (MAPT), acetylcholine receptors, glial fibrillary acidic protein (GFAP), neurofilament light polypeptide (NfL) and major myelin proteins. Altogether, our results suggest that there might be an increased risk for the development of NDs after COVID-19 both via autoreactivity and virus-host PPIs.
Collapse
Affiliation(s)
| | - George M. Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2370, Cyprus
| |
Collapse
|