1
|
Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A, Bozdag S, Chen DZ, Cowen L, Devkota K, Gitter A, Gosline SJC, Gu P, Guzzi PH, Huang H, Jiang M, Kesimoglu ZN, Koyuturk M, Ma J, Pico AR, Pržulj N, Przytycka TM, Raphael BJ, Ritz A, Sharan R, Shen Y, Singh M, Slonim DK, Tong H, Yang XH, Yoon BJ, Yu H, Milenković T. Current and future directions in network biology. BIOINFORMATICS ADVANCES 2024; 4:vbae099. [PMID: 39143982 PMCID: PMC11321866 DOI: 10.1093/bioadv/vbae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024]
Abstract
Summary Network biology is an interdisciplinary field bridging computational and biological sciences that has proved pivotal in advancing the understanding of cellular functions and diseases across biological systems and scales. Although the field has been around for two decades, it remains nascent. It has witnessed rapid evolution, accompanied by emerging challenges. These stem from various factors, notably the growing complexity and volume of data together with the increased diversity of data types describing different tiers of biological organization. We discuss prevailing research directions in network biology, focusing on molecular/cellular networks but also on other biological network types such as biomedical knowledge graphs, patient similarity networks, brain networks, and social/contact networks relevant to disease spread. In more detail, we highlight areas of inference and comparison of biological networks, multimodal data integration and heterogeneous networks, higher-order network analysis, machine learning on networks, and network-based personalized medicine. Following the overview of recent breakthroughs across these five areas, we offer a perspective on future directions of network biology. Additionally, we discuss scientific communities, educational initiatives, and the importance of fostering diversity within the field. This article establishes a roadmap for an immediate and long-term vision for network biology. Availability and implementation Not applicable.
Collapse
Affiliation(s)
- Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Aydin Wells
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Deisy Morselli Gysi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, United States
- Department of Statistics, Federal University of Paraná, Curitiba, Paraná 81530-015, Brazil
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Arjun Krishnan
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA 02115, United States
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Wisconsin Institute for Discovery, Madison, WI 53715, United States
| | - Anaïs Baudot
- Aix Marseille Université, INSERM, MMG, Marseille, France
| | - Serdar Bozdag
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- Department of Mathematics, University of North Texas, Denton, TX 76203, United States
| | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Kapil Devkota
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53715, United States
- Morgridge Institute for Research, Madison, WI 53715, United States
| | - Sara J C Gosline
- Biological Sciences Division, Pacific Northwest National Laboratory, Seattle, WA 98109, United States
| | - Pengfei Gu
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, 88100, Italy
| | - Heng Huang
- Department of Computer Science, University of Maryland College Park, College Park, MD 20742, United States
| | - Meng Jiang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ziynet Nesibe Kesimoglu
- Department of Computer Science and Engineering, University of North Texas, Denton, TX 76203, United States
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Mehmet Koyuturk
- Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Jian Ma
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, United States
| | - Nataša Pržulj
- Department of Computer Science, University College London, London, WC1E 6BT, England
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, 08010, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain
| | - Teresa M Przytycka
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, United States
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
| | - Anna Ritz
- Department of Biology, Reed College, Portland, OR 97202, United States
| | - Roded Sharan
- School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, NJ 08544, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Donna K Slonim
- Department of Computer Science, Tufts University, Medford, MA 02155, United States
| | - Hanghang Tong
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Xinan Holly Yang
- Department of Pediatrics, University of Chicago, Chicago, IL 60637, United States
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Haiyuan Yu
- Department of Computational Biology, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, United States
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, United States
- Lucy Family Institute for Data and Society, University of Notre Dame, Notre Dame, IN 46556, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
2
|
Defilippo A, Veltri P, Lió P, Guzzi PH. Leveraging graph neural networks for supporting automatic triage of patients. Sci Rep 2024; 14:12548. [PMID: 38822012 PMCID: PMC11143315 DOI: 10.1038/s41598-024-63376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Patient triage is crucial in emergency departments, ensuring timely and appropriate care based on correctly evaluating the emergency grade of patient conditions. Triage methods are generally performed by human operator based on her own experience and information that are gathered from the patient management process. Thus, it is a process that can generate errors in emergency-level associations. Recently, Traditional triage methods heavily rely on human decisions, which can be subjective and prone to errors. A growing interest has recently been focused on leveraging artificial intelligence (AI) to develop algorithms to maximize information gathering and minimize errors in patient triage processing. We define and implement an AI-based module to manage patients' emergency code assignments in emergency departments. It uses historical data from the emergency department to train the medical decision-making process. Data containing relevant patient information, such as vital signs, symptoms, and medical history, accurately classify patients into triage categories. Experimental results demonstrate that the proposed algorithm achieved high accuracy outperforming traditional triage methods. By using the proposed method, we claim that healthcare professionals can predict severity index to guide patient management processing and resource allocation.
Collapse
Affiliation(s)
- Annamaria Defilippo
- Dept. Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Pierangelo Veltri
- DIMES Department of Informatics, Modeling, Electronics and Systems, UNICAL, Rende, Cosenza, Italy
| | - Pietro Lió
- Department of Computer Science and Technology, Cambridge University, Cambridge, UK
| | - Pietro Hiram Guzzi
- Dept. Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
3
|
Giancotti R, Lomoio U, Puccio B, Tradigo G, Vizza P, Torti C, Veltri P, Guzzi PH. The Omicron XBB.1 Variant and Its Descendants: Genomic Mutations, Rapid Dissemination and Notable Characteristics. BIOLOGY 2024; 13:90. [PMID: 38392308 PMCID: PMC10886209 DOI: 10.3390/biology13020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The SARS-CoV-2 virus, which is a major threat to human health, has undergone many mutations during the replication process due to errors in the replication steps and modifications in the structure of viral proteins. The XBB variant was identified for the first time in Singapore in the fall of 2022. It was then detected in other countries, including the United States, Canada, and the United Kingdom. We study the impact of sequence changes on spike protein structure on the subvariants of XBB, with particular attention to the velocity of variant diffusion and virus activity with respect to its diffusion. We examine the structural and functional distinctions of the variants in three different conformations: (i) spike glycoprotein in complex with ACE2 (1-up state), (ii) spike glycoprotein (closed-1 state), and (iii) S protein (open-1 state). We also estimate the affinity binding between the spike protein and ACE2. The market binding affinity observed in specific variants raises questions about the efficacy of current vaccines in preparing the immune system for virus variant recognition. This work may be useful in devising strategies to manage the ongoing COVID-19 pandemic. To stay ahead of the virus evolution, further research and surveillance should be carried out to adjust public health measures accordingly.
Collapse
Affiliation(s)
- Raffaele Giancotti
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Ugo Lomoio
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Barbara Puccio
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | | | - Patrizia Vizza
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Carlo Torti
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Pierangelo Veltri
- Department of Computer Engineering, Modelling, Electronics and System, University of Calabria, 87036 Rende, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Oraby T, Balogh A. Modeling the effect of observational social learning on parental decision-making for childhood vaccination and diseases spread over household networks. FRONTIERS IN EPIDEMIOLOGY 2024; 3:1177752. [PMID: 38455928 PMCID: PMC10910890 DOI: 10.3389/fepid.2023.1177752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/27/2023] [Indexed: 03/09/2024]
Abstract
In this paper, we introduce a novel model for parental decision-making about vaccinations against a childhood disease that spreads through a contact network. This model considers a bilayer network comprising two overlapping networks, which are either Erdős-Rényi (random) networks or Barabási-Albert networks. The model also employs a Bayesian aggregation rule for observational social learning on a social network. This new model encompasses other decision models, such as voting and DeGroot models, as special cases. Using our model, we demonstrate how certain levels of social learning about vaccination preferences can converge opinions, influencing vaccine uptake and ultimately disease spread. In addition, we explore how two different cultures of social learning affect the establishment of social norms of vaccination and the uptake of vaccines. In every scenario, the interplay between the dynamics of observational social learning and disease spread is influenced by the network's topology, along with vaccine safety and availability.
Collapse
Affiliation(s)
- Tamer Oraby
- School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | | |
Collapse
|
5
|
Tradigo G, Das JK, Vizza P, Roy S, Guzzi PH, Veltri P. Strategies and Trends in COVID-19 Vaccination Delivery: What We Learn and What We May Use for the Future. Vaccines (Basel) 2023; 11:1496. [PMID: 37766172 PMCID: PMC10535057 DOI: 10.3390/vaccines11091496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Vaccination has been the most effective way to control the outbreak of the COVID-19 pandemic. The numbers and types of vaccines have reached considerable proportions, even if the question of vaccine procedures and frequency still needs to be resolved. We have come to learn the necessity of defining vaccination distribution strategies with regard to COVID-19 that could be used for any future pandemics of similar gravity. In fact, vaccine monitoring implies the existence of a strategy that should be measurable in terms of input and output, based on a mathematical model, including death rates, the spread of infections, symptoms, hospitalization, and so on. This paper addresses the issue of vaccine diffusion and strategies for monitoring the pandemic. It provides a description of the importance and take up of vaccines and the links between procedures and the containment of COVID-19 variants, as well as the long-term effects. Finally, the paper focuses on the global scenario in a world undergoing profound social and political change, with particular attention on current and future health provision. This contribution would represent an example of vaccination experiences, which can be useful in other pandemic or epidemiological contexts.
Collapse
Affiliation(s)
- Giuseppe Tradigo
- Department of Computer Science, eCampus University, 22060 Novedrate, Italy;
| | - Jayanta Kumar Das
- Longitudinal Studies Section, Translation Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Patrizia Vizza
- Department of Surgical and Medical Science, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Swarup Roy
- Network Reconstruction & Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University, Gangtok 737102, India;
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Science, Magna Græcia University, 88100 Catanzaro, Italy;
| | - Pierangelo Veltri
- Department of Computer Science, Modelling, Electronics and Systems, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
6
|
Shukla N, Srivastava N, Gupta R, Srivastava P, Narayan J. COVID Variants, Villain and Victory: A Bioinformatics Perspective. Microorganisms 2023; 11:2039. [PMID: 37630599 PMCID: PMC10459809 DOI: 10.3390/microorganisms11082039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The SARS-CoV-2 virus, a novel member of the Coronaviridae family, is responsible for the viral infection known as Coronavirus Disease 2019 (COVID-19). In response to the urgent and critical need for rapid detection, diagnosis, analysis, interpretation, and treatment of COVID-19, a wide variety of bioinformatics tools have been developed. Given the virulence of SARS-CoV-2, it is crucial to explore the pathophysiology of the virus. We intend to examine how bioinformatics, in conjunction with next-generation sequencing techniques, can be leveraged to improve current diagnostic tools and streamline vaccine development for emerging SARS-CoV-2 variants. We also emphasize how bioinformatics, in general, can contribute to critical areas of biomedicine, including clinical diagnostics, SARS-CoV-2 genomic surveillance and its evolution, identification of potential drug targets, and development of therapeutic strategies. Currently, state-of-the-art bioinformatics tools have helped overcome technical obstacles with respect to genomic surveillance and have assisted in rapid detection, diagnosis, and delivering precise treatment to individuals on time.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Neha Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Rohit Gupta
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow 226010, India; (N.S.); (P.S.)
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India; (N.S.); (R.G.)
| |
Collapse
|
7
|
Zhang J, Zheng N, Liu M, Yao D, Wang Y, Wang J, Xin J. Multi-weight susceptible-infected model for predicting COVID-19 in China. Neurocomputing 2023; 534:161-170. [PMID: 36923265 PMCID: PMC9993734 DOI: 10.1016/j.neucom.2023.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
The mutant strains of COVID-19 caused a global explosion of infections, including many cities of China. In 2020, a hybrid AI model was proposed by Zheng et al., which accurately predicted the epidemic in Wuhan. As the main part of the hybrid AI model, ISI method makes two important assumptions to avoid over-fitting. However, the assumptions cannot be effectively applied to new mutant strains. In this paper, a more general method, named the multi-weight susceptible-infected model (MSI) is proposed to predict COVID-19 in Chinese Mainland. First, a Gaussian pre-processing method is proposed to solve the problem of data fluctuation based on the quantity consistency of cumulative infection number and the trend consistency of daily infection number. Then, we improve the model from two aspects: changing the grouped multi-parameter strategy to the multi-weight strategy, and removing the restriction of weight distribution of viral infectivity. Experiments on the outbreaks in many places in China from the end of 2021 to May 2022 show that, in China, an individual infected by Delta or Omicron strains of SARS-CoV-2 can infect others within 3-4 days after he/she got infected. Especially, the proposed method effectively predicts the trend of the epidemics in Xi'an, Tianjin, Henan, and Shanghai from December 2021 to May 2022.
Collapse
Affiliation(s)
- Jun Zhang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- School of Software Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Nanning Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Mingyu Liu
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Dingyi Yao
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- Qian Xuesen College, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yusong Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jianji Wang
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jingmin Xin
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
8
|
Guzzi PH, di Paola L, Puccio B, Lomoio U, Giuliani A, Veltri P. Computational analysis of the sequence-structure relation in SARS-CoV-2 spike protein using protein contact networks. Sci Rep 2023; 13:2837. [PMID: 36808182 PMCID: PMC9936485 DOI: 10.1038/s41598-023-30052-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
The structure of proteins impacts directly on the function they perform. Mutations in the primary sequence can provoke structural changes with consequent modification of functional properties. SARS-CoV-2 proteins have been extensively studied during the pandemic. This wide dataset, related to sequence and structure, has enabled joint sequence-structure analysis. In this work, we focus on the SARS-CoV-2 S (Spike) protein and the relations between sequence mutations and structure variations, in order to shed light on the structural changes stemming from the position of mutated amino acid residues in three different SARS-CoV-2 strains. We propose the use of protein contact network (PCN) formalism to: (i) obtain a global metric space and compare various molecular entities, (ii) give a structural explanation of the observed phenotype, and (iii) provide context dependent descriptors of single mutations. PCNs have been used to compare sequence and structure of the Alpha, Delta, and Omicron SARS-CoV-2 variants, and we found that omicron has a unique mutational pattern leading to different structural consequences from mutations of other strains. The non-random distribution of changes in network centrality along the chain has allowed to shed light on the structural (and functional) consequences of mutations.
Collapse
Affiliation(s)
- Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.
| | - Luisa di Paola
- grid.9657.d0000 0004 1757 5329Unit of Chemical-Physics Fundamentals in Chemical Engineering, Department of Engineering, Universita Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Barbara Puccio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ugo Lomoio
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Alessandro Giuliani
- grid.416651.10000 0000 9120 6856Environment and Health Department, Istituto Superiore di Sanita, Rome, Italy
| | - Pierangelo Veltri
- grid.411489.10000 0001 2168 2547Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy ,grid.7778.f0000 0004 1937 0319Department of Computer, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| |
Collapse
|
9
|
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China.,School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Huang
- The Future Laboratory, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Hosseinzadeh MM, Cannataro M, Guzzi PH, Dondi R. Temporal networks in biology and medicine: a survey on models, algorithms, and tools. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS 2022; 12:10. [PMID: 36618274 PMCID: PMC9803903 DOI: 10.1007/s13721-022-00406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/01/2023]
Abstract
The use of static graphs for modelling and analysis of biological and biomedical data plays a key role in biomedical research. However, many real-world scenarios present dynamic behaviours resulting in both node and edges modification as well as feature evolution. Consequently, ad-hoc models for capturing these evolutions along the time have been introduced, also referred to as dynamic, temporal, time-varying graphs. Here, we focus on temporal graphs, i.e., graphs whose evolution is represented by a sequence of time-ordered snapshots. Each snapshot represents a graph active in a particular timestamp. We survey temporal graph models and related algorithms, presenting fundamentals aspects and the recent advances. We formally define temporal graphs, focusing on the problem setting and we present their main applications in biology and medicine. We also present temporal graph embedding and the application to recent problems such as epidemic modelling. Finally, we further state some promising research directions in the area. Main results of this study include a systematic review of fundamental temporal network problems and their algorithmic solutions considered in the literature, in particular those having application in computational biology and medicine. We also include the main software developed in this context.
Collapse
Affiliation(s)
| | - Mario Cannataro
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences and Data Analytics Research Center, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Riccardo Dondi
- Department of Literature, Philosophy, Communication Studies, University of Bergamo, Bergamo, Italy
| |
Collapse
|
11
|
Singh P, Sharma K, Shaw D, Bhargava A, Negi SS. Mosaic Recombination Inflicted Various SARS-CoV-2 Lineages to Emerge into Novel Virus Variants: a Review Update. Indian J Clin Biochem 2022; 38:1-8. [PMID: 36569378 PMCID: PMC9759274 DOI: 10.1007/s12291-022-01109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Human Coronaviruses (hCoVs) belongs to the enormous and dissimilar family of positive-sense, non-segmented, single-stranded RNA viruses. The RNA viruses are prone to high rates of mutational recombination resulting in emergence of evolutionary variant to alter various features including transmissibility and severity. The evolutionary changes affect the immune escape and reduce effectiveness of diagnostic and therapeutic measures by becoming undetectable by the currently available diagnostics and refractory to therapeutics and vaccines. Whole genome sequencing studies from various countries have adequately reported mosaic recombination between different lineage strain of SARS-CoV-2 whereby RNA dependent RNA polymerase (RdRp) gene reconnects with a homologous RNA strand at diverse position. This all lead to evolutionary emergence of new variant/ lineage as evident with the emergence of XBB in India at the time of writing this review. The continuous periodical genomic surveillance is utmost required for understanding the various lineages involved in recombination to emerge into hybrid variant. This may further help in assessing virus transmission dynamics, virulence and severity factor to help health authorities take appropriate timely action for prevention and control of any future COVID-19 outbreak.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Kuldeep Sharma
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Dipika Shaw
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Anudita Bhargava
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| | - Sanjay Singh Negi
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh India
| |
Collapse
|
12
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
13
|
Milano M, Guzzi PH, Cannataro M. Design and Implementation of a New Local Alignment Algorithm for Multilayer Networks. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1272. [PMID: 36141158 PMCID: PMC9497667 DOI: 10.3390/e24091272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Network alignment (NA) is a popular research field that aims to develop algorithms for comparing networks. Applications of network alignment span many fields, from biology to social network analysis. NA comes in two forms: global network alignment (GNA), which aims to find a global similarity, and LNA, which aims to find local regions of similarity. Recently, there has been an increasing interest in introducing complex network models such as multilayer networks. Multilayer networks are common in many application scenarios, such as modelling of relations among people in a social network or representing the interplay of different molecules in a cell or different cells in the brain. Consequently, the need to introduce algorithms for the comparison of such multilayer networks, i.e., local network alignment, arises. Existing algorithms for LNA do not perform well on multilayer networks since they cannot consider inter-layer edges. Thus, we propose local alignment of multilayer networks (MultiLoAl), a novel algorithm for the local alignment of multilayer networks. We define the local alignment of multilayer networks and propose a heuristic for solving it. We present an extensive assessment indicating the strength of the algorithm. Furthermore, we implemented a synthetic multilayer network generator to build the data for the algorithm's evaluation.
Collapse
|
14
|
Wang Y, Wang P, Zhang S, Pan H. Uncertainty Modeling of a Modified SEIR Epidemic Model for COVID-19. BIOLOGY 2022; 11:biology11081157. [PMID: 36009784 PMCID: PMC9404969 DOI: 10.3390/biology11081157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 06/01/2023]
Abstract
Based on SEIR (susceptible-exposed-infectious-removed) epidemic model, we propose a modified epidemic mathematical model to describe the spread of the coronavirus disease 2019 (COVID-19) epidemic in Wuhan, China. Using public data, the uncertainty parameters of the proposed model for COVID-19 in Wuhan were calibrated. The uncertainty of the control basic reproduction number was studied with the posterior probability density function of the uncertainty model parameters. The mathematical model was used to inverse deduce the earliest start date of COVID-19 infection in Wuhan with consideration of the lack of information for the initial conditions of the model. The result of the uncertainty analysis of the model is in line with the observed data for COVID-19 in Wuhan, China. The numerical results show that the modified mathematical model could model the spread of COVID-19 epidemics.
Collapse
|