1
|
Wei PJ, Jin HW, Gao Z, Su Y, Zheng CH. GAEDGRN: reconstruction of gene regulatory networks based on gravity-inspired graph autoencoders. Brief Bioinform 2025; 26:bbaf232. [PMID: 40415678 DOI: 10.1093/bib/bbaf232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/25/2025] [Accepted: 05/04/2025] [Indexed: 05/27/2025] Open
Abstract
Reconstructing high-resolution gene regulatory networks (GRNs) based on single-cell RNA sequencing data provides an opportunity to gain insight into disease pathogenesis. At present, there are a large number of GRN reconstruction methods based on graph neural networks, and they can obtain excellent performance in GRN inference by extracting network structure features. However, most of these methods fail to fully exploit the directional characteristics or even ignore them when extracting network structural features. To this end, a novel framework called GAEDGRN is proposed based on gravity-inspired graph autoencoder (GIGAE) to infer potential causal relationships between genes. Among them, GIGAE can help us capture the complex directed network topology in GRN. Additionally, due to the uneven distribution of the latent vectors generated by the graph autoencoder, a random walk-based method is used to regularize the latent vectors learnt by the encoder. Furthermore, considering that some genes in GRN usually have a significant impact on biological functions, GAEDGRN designs a gene importance score calculation method and pays attention to genes with high importance in the process of GRN reconstruction. Experimental results on seven cell types of three GRN types show that GAEDGRN achieves high accuracy and strong robustness. Moreover, a case study on human embryonic stem cells demonstrates that GAEDGRN can help identify important genes.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Huai-Wan Jin
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Yansen Su
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| | - Chun-Hou Zheng
- School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei 230601, Anhui, China
| |
Collapse
|
2
|
Chen L, Dautle M, Gao R, Zhang S, Chen Y. Inferring gene regulatory networks from time-series scRNA-seq data via GRANGER causal recurrent autoencoders. Brief Bioinform 2025; 26:bbaf089. [PMID: 40062616 PMCID: PMC11891664 DOI: 10.1093/bib/bbaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The development of single-cell RNA sequencing (scRNA-seq) technology provides valuable data resources for inferring gene regulatory networks (GRNs), enabling deeper insights into cellular mechanisms and diseases. While many methods exist for inferring GRNs from static scRNA-seq data, current approaches face challenges in accurately handling time-series scRNA-seq data due to high noise levels and data sparsity. The temporal dimension introduces additional complexity by requiring models to capture dynamic changes, increasing sensitivity to noise, and exacerbating data sparsity across time points. In this study, we introduce GRANGER, an unsupervised deep learning-based method that integrates multiple advanced techniques, including a recurrent variational autoencoder, GRANGER causality, sparsity-inducing penalties, and negative binomial (NB)-based loss functions, to infer GRNs. GRANGER was evaluated using multiple popular benchmarking datasets, where it demonstrated superior performance compared to eight well-known GRN inference methods. The integration of a NB-based loss function and sparsity-inducing penalties in GRANGER significantly enhanced its capacity to address dropout noise and sparsity in scRNA-seq data. Additionally, GRANGER exhibited robustness against high levels of dropout noise. We applied GRANGER to scRNA-seq data from the whole mouse brain obtained through the BRAIN Initiative project and identified GRNs for five transcription regulators: E2f7, Gbx1, Sox10, Prox1, and Onecut2, which play crucial roles in diverse brain cell types. The inferred GRNs not only recalled many known regulatory relationships but also revealed sets of novel regulatory interactions with functional potential. These findings demonstrate that GRANGER is a highly effective tool for real-world applications in discovering novel gene regulatory relationships.
Collapse
Affiliation(s)
- Liang Chen
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Madison Dautle
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Ruoying Gao
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| |
Collapse
|
3
|
Weng G, Martin P, Kim H, Won KJ. Integrating Prior Knowledge Using Transformer for Gene Regulatory Network Inference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409990. [PMID: 39605181 PMCID: PMC11744656 DOI: 10.1002/advs.202409990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Gene regulatory network (GRN) inference, a process of reconstructing gene regulatory rules from experimental data, has the potential to discover new regulatory rules. However, existing methods often struggle to generalize across diverse cell types and account for unseen regulators. Here, this work presents GRNPT, a novel Transformer-based framework that integrates large language model (LLM) embeddings from publicly accessible biological data and a temporal convolutional network (TCN) autoencoder to capture regulatory patterns from single-cell RNA sequencing (scRNA-seq) trajectories. GRNPT significantly outperforms both supervised and unsupervised methods in inferring GRNs, particularly when training data is limited. Notably, GRNPT exhibits exceptional generalizability, accurately predicting regulatory relationships in previously unseen cell types and even regulators. By combining LLMs ability to distillate biological knowledge from text and deep learning methodologies capturing complex patterns in gene expression data, GRNPT overcomes the limitations of traditional GRN inference methods and enables more accurate and comprehensive understanding of gene regulatory dynamics.
Collapse
Affiliation(s)
- Guangzheng Weng
- Biotech Research and Innovation Centre (BRIC)University of CopenhagenOle Maaløes Vej 5Copenhagen2200Denmark
| | - Patrick Martin
- Department of Computational BiomedicineCedars‐Sinai Medical CenterLos AngelesCA90069USA
| | - Hyobin Kim
- Department of Computational BiomedicineCedars‐Sinai Medical CenterLos AngelesCA90069USA
| | - Kyoung Jae Won
- Department of Computational BiomedicineCedars‐Sinai Medical CenterLos AngelesCA90069USA
| |
Collapse
|
4
|
Dong J, Li J, Wang F. Deep Learning in Gene Regulatory Network Inference: A Survey. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2089-2101. [PMID: 39137088 DOI: 10.1109/tcbb.2024.3442536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Understanding the intricate regulatory relationships among genes is crucial for comprehending the development, differentiation, and cellular response in living systems. Consequently, inferring gene regulatory networks (GRNs) based on observed data has gained significant attention as a fundamental goal in biological applications. The proliferation and diversification of available data present both opportunities and challenges in accurately inferring GRNs. Deep learning, a highly successful technique in various domains, holds promise in aiding GRN inference. Several GRN inference methods employing deep learning models have been proposed; however, the selection of an appropriate method remains a challenge for life scientists. In this survey, we provide a comprehensive analysis of 12 GRN inference methods that leverage deep learning models. We trace the evolution of these major methods and categorize them based on the types of applicable data. We delve into the core concepts and specific steps of each method, offering a detailed evaluation of their effectiveness and scalability across different scenarios. These insights enable us to make informed recommendations. Moreover, we explore the challenges faced by GRN inference methods utilizing deep learning and discuss future directions, providing valuable suggestions for the advancement of data scientists in this field.
Collapse
|
5
|
Zhou X, Pan J, Chen L, Zhang S, Chen Y. DeepIMAGER: Deeply Analyzing Gene Regulatory Networks from scRNA-seq Data. Biomolecules 2024; 14:766. [PMID: 39062480 PMCID: PMC11274664 DOI: 10.3390/biom14070766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding the dynamics of gene regulatory networks (GRNs) across diverse cell types poses a challenge yet holds immense value in unraveling the molecular mechanisms governing cellular processes. Current computational methods, which rely solely on expression changes from bulk RNA-seq and/or scRNA-seq data, often result in high rates of false positives and low precision. Here, we introduce an advanced computational tool, DeepIMAGER, for inferring cell-specific GRNs through deep learning and data integration. DeepIMAGER employs a supervised approach that transforms the co-expression patterns of gene pairs into image-like representations and leverages transcription factor (TF) binding information for model training. It is trained using comprehensive datasets that encompass scRNA-seq profiles and ChIP-seq data, capturing TF-gene pair information across various cell types. Comprehensive validations on six cell lines show DeepIMAGER exhibits superior performance in ten popular GRN inference tools and has remarkable robustness against dropout-zero events. DeepIMAGER was applied to scRNA-seq datasets of multiple myeloma (MM) and detected potential GRNs for TFs of RORC, MITF, and FOXD2 in MM dendritic cells. This technical innovation, combined with its capability to accurately decode GRNs from scRNA-seq, establishes DeepIMAGER as a valuable tool for unraveling complex regulatory networks in various cell types.
Collapse
Affiliation(s)
- Xiguo Zhou
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China; (X.Z.); (J.P.); (L.C.)
| | - Jingyi Pan
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China; (X.Z.); (J.P.); (L.C.)
| | - Liang Chen
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China; (X.Z.); (J.P.); (L.C.)
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China; (X.Z.); (J.P.); (L.C.)
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
6
|
Li S, Liu Y, Shen LC, Yan H, Song J, Yu DJ. GMFGRN: a matrix factorization and graph neural network approach for gene regulatory network inference. Brief Bioinform 2024; 25:bbad529. [PMID: 38261340 PMCID: PMC10805180 DOI: 10.1093/bib/bbad529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The recent advances of single-cell RNA sequencing (scRNA-seq) have enabled reliable profiling of gene expression at the single-cell level, providing opportunities for accurate inference of gene regulatory networks (GRNs) on scRNA-seq data. Most methods for inferring GRNs suffer from the inability to eliminate transitive interactions or necessitate expensive computational resources. To address these, we present a novel method, termed GMFGRN, for accurate graph neural network (GNN)-based GRN inference from scRNA-seq data. GMFGRN employs GNN for matrix factorization and learns representative embeddings for genes. For transcription factor-gene pairs, it utilizes the learned embeddings to determine whether they interact with each other. The extensive suite of benchmarking experiments encompassing eight static scRNA-seq datasets alongside several state-of-the-art methods demonstrated mean improvements of 1.9 and 2.5% over the runner-up in area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, across four time-series datasets, maximum enhancements of 2.4 and 1.3% in AUROC and AUPRC were observed in comparison to the runner-up. Moreover, GMFGRN requires significantly less training time and memory consumption, with time and memory consumed <10% compared to the second-best method. These findings underscore the substantial potential of GMFGRN in the inference of GRNs. It is publicly available at https://github.com/Lishuoyy/GMFGRN.
Collapse
Affiliation(s)
- Shuo Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yan Liu
- School of information Engineering, Yangzhou University, 196 West Huayang, Yangzhou, 225000, China
| | - Long-Chen Shen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - He Yan
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China
| |
Collapse
|
7
|
Procopio A, Cesarelli G, Donisi L, Merola A, Amato F, Cosentino C. Combined mechanistic modeling and machine-learning approaches in systems biology - A systematic literature review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107681. [PMID: 37385142 DOI: 10.1016/j.cmpb.2023.107681] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Mechanistic-based Model simulations (MM) are an effective approach commonly employed, for research and learning purposes, to better investigate and understand the inherent behavior of biological systems. Recent advancements in modern technologies and the large availability of omics data allowed the application of Machine Learning (ML) techniques to different research fields, including systems biology. However, the availability of information regarding the analyzed biological context, sufficient experimental data, as well as the degree of computational complexity, represent some of the issues that both MMs and ML techniques could present individually. For this reason, recently, several studies suggest overcoming or significantly reducing these drawbacks by combining the above-mentioned two methods. In the wake of the growing interest in this hybrid analysis approach, with the present review, we want to systematically investigate the studies available in the scientific literature in which both MMs and ML have been combined to explain biological processes at genomics, proteomics, and metabolomics levels, or the behavior of entire cellular populations. METHODS Elsevier Scopus®, Clarivate Web of Science™ and National Library of Medicine PubMed® databases were enquired using the queries reported in Table 1, resulting in 350 scientific articles. RESULTS Only 14 of the 350 documents returned by the comprehensive search conducted on the three major online databases met our search criteria, i.e. present a hybrid approach consisting of the synergistic combination of MMs and ML to treat a particular aspect of systems biology. CONCLUSIONS Despite the recent interest in this methodology, from a careful analysis of the selected papers, it emerged how examples of integration between MMs and ML are already present in systems biology, highlighting the great potential of this hybrid approach to both at micro and macro biological scales.
Collapse
Affiliation(s)
- Anna Procopio
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italia
| | - Giuseppe Cesarelli
- Department of Electrical Engineering and Information Technology, Università degli Studi di Napoli Federico II, Napoli, 80125, Italy
| | - Leandro Donisi
- Department of Advanced Medical and Surgical Sciences, Università della Campania Luigi Vanvitelli, Napoli, 80138, Italy
| | - Alessio Merola
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italia
| | - Francesco Amato
- Department of Electrical Engineering and Information Technology, Università degli Studi di Napoli Federico II, Napoli, 80125, Italy.
| | - Carlo Cosentino
- Department of Experimental and Clinical Medicine, Università degli Studi Magna Græcia, Catanzaro, 88100, Italia.
| |
Collapse
|
8
|
Li L, Sun L, Chen G, Wong CW, Ching WK, Liu ZP. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data. Bioinformatics 2023; 39:btad256. [PMID: 37079737 PMCID: PMC10172039 DOI: 10.1093/bioinformatics/btad256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
MOTIVATION From a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe the updated logic rules of regulation in GRNs to obtain their dynamics. Moreover, some inference methods also fail to deal with the over-fitting problem caused by the noise in time series data. RESULTS In this article, we propose a novel embedded Boolean threshold network method called LogBTF, which effectively infers GRN by integrating regularized logistic regression and Boolean threshold function. First, the continuous gene expression values are converted into Boolean values and the elastic net regression model is adopted to fit the binarized time series data. Then, the estimated regression coefficients are applied to represent the unknown Boolean threshold function of the candidate Boolean threshold network as the dynamical equations. To overcome the multi-collinearity and over-fitting problems, a new and effective approach is designed to optimize the network topology by adding a perturbation design matrix to the input data and thereafter setting sufficiently small elements of the output coefficient vector to zeros. In addition, the cross-validation procedure is implemented into the Boolean threshold network model framework to strengthen the inference capability. Finally, extensive experiments on one simulated Boolean value dataset, dozens of simulation datasets, and three real single-cell RNA sequencing datasets demonstrate that the LogBTF method can infer GRNs from time series data more accurately than some other alternative methods for GRN inference. AVAILABILITY AND IMPLEMENTATION The source data and code are available at https://github.com/zpliulab/LogBTF.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Liangjie Sun
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Guangyi Chen
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Chi-Wing Wong
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Wai-Ki Ching
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
9
|
Xu J, Zhang A, Liu F, Zhang X. STGRNS: an interpretable transformer-based method for inferring gene regulatory networks from single-cell transcriptomic data. Bioinformatics 2023; 39:btad165. [PMID: 37004161 PMCID: PMC10085635 DOI: 10.1093/bioinformatics/btad165] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
MOTIVATION Single-cell RNA-sequencing (scRNA-seq) technologies provide an opportunity to infer cell-specific gene regulatory networks (GRNs), which is an important challenge in systems biology. Although numerous methods have been developed for inferring GRNs from scRNA-seq data, it is still a challenge to deal with cellular heterogeneity. RESULTS To address this challenge, we developed an interpretable transformer-based method namely STGRNS for inferring GRNs from scRNA-seq data. In this algorithm, gene expression motif technique was proposed to convert gene pairs into contiguous sub-vectors, which can be used as input for the transformer encoder. By avoiding missing phase-specific regulations in a network, gene expression motif can improve the accuracy of GRN inference for different types of scRNA-seq data. To assess the performance of STGRNS, we implemented the comparative experiments with some popular methods on extensive benchmark datasets including 21 static and 27 time-series scRNA-seq dataset. All the results show that STGRNS is superior to other comparative methods. In addition, STGRNS was also proved to be more interpretable than "black box" deep learning methods, which are well-known for the difficulty to explain the predictions clearly. AVAILABILITY AND IMPLEMENTATION The source code and data are available at https://github.com/zhanglab-wbgcas/STGRNS.
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fang Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|