1
|
Peng L, Wang W, Yang Z, Fu X, Liang W, Cao D. Leveraging explainable multi-scale features for fine-grained circRNA-miRNA interaction prediction. BMC Biol 2025; 23:121. [PMID: 40346538 PMCID: PMC12065178 DOI: 10.1186/s12915-025-02227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) and microRNAs (miRNAs) interactions have essential implications in various biological processes and diseases. Computational science approaches have emerged as powerful tools for studying and predicting these intricate molecular interactions, garnering considerable attention. Current methods face two significant limitations: the lack of precise interpretable models and insufficient representation of homogeneous and heterogeneous molecules. RESULTS We propose a novel method, MFERL, that addresses both limitations through multi-scale representation learning and an explainable fine-grained model for predicting circRNA-miRNA interactions (CMI). MFERL learns multi-scale representations by aggregating homogeneous node features and interacting with heterogeneous node features, as well as through novel dual-convolution attention mechanisms and contrastive learning to enhance features. CONCLUSIONS We utilize a manifold-based method to examine model performance in detail, revealing that MFERL exhibits robust generalization, robustness, and interpretability. Extensive experiments show that MFERL outperforms state-of-the-art models and offers a promising direction for understanding CMI intrinsic mechanisms.
Collapse
Affiliation(s)
- Li Peng
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411100, China.
| | - Wang Wang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411100, China
| | - Zongyi Yang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411100, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410012, Hunan, China.
| | - Wei Liang
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan, 411100, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410003, Hunan, China
| |
Collapse
|
2
|
Li Y, Liu X, Zhou J, Li F, Wang Y, Liu Q. Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling. Front Pharmacol 2025; 16:1541509. [PMID: 40303920 PMCID: PMC12037568 DOI: 10.3389/fphar.2025.1541509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target interventions to address complex diseases, providing advantages over single-target therapies. However, the active metabolites, therapeutic targets, and especially the combination mechanisms remain unclear. The integration of advanced data analysis and nonlinear modeling capabilities of artificial intelligence (AI) is driving the transformation of TCM into precision medicine. This review concentrates on the application of AI in TCM target prediction, including multi-omics techniques, TCM-specialized databases, machine learning (ML), deep learning (DL), and cross-modal fusion strategies. It also critically analyzes persistent challenges such as data heterogeneity, limited model interpretability, causal confounding, and insufficient robustness validation in practical applications. To enhance the reliability and scalability of AI in TCM target prediction, future research should prioritize continuous optimization of the AI algorithms using zero-shot learning, end-to-end architectures, and self-supervised contrastive learning.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Bereczki Z, Benczik B, Balogh OM, Marton S, Puhl E, Pétervári M, Váczy-Földi M, Papp ZT, Makkos A, Glass K, Locquet F, Euler G, Schulz R, Ferdinandy P, Ágg B. Mitigating off-target effects of small RNAs: conventional approaches, network theory and artificial intelligence. Br J Pharmacol 2025; 182:340-379. [PMID: 39293936 DOI: 10.1111/bph.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 09/20/2024] Open
Abstract
Three types of highly promising small RNA therapeutics, namely, small interfering RNAs (siRNAs), microRNAs (miRNAs) and the RNA subtype of antisense oligonucleotides (ASOs), offer advantages over small-molecule drugs. These small RNAs can target any gene product, opening up new avenues of effective and safe therapeutic approaches for a wide range of diseases. In preclinical research, synthetic small RNAs play an essential role in the investigation of physiological and pathological pathways as silencers of specific genes, facilitating discovery and validation of drug targets in different conditions. Off-target effects of small RNAs, however, could make it difficult to interpret experimental results in the preclinical phase and may contribute to adverse events of small RNA therapeutics. Out of the two major types of off-target effects we focused on the hybridization-dependent, especially on the miRNA-like off-target effects. Our main aim was to discuss several approaches, including sequence design, chemical modifications and target prediction, to reduce hybridization-dependent off-target effects that should be considered even at the early development phase of small RNA therapy. Because there is no standard way of predicting hybridization-dependent off-target effects, this review provides an overview of all major state-of-the-art computational methods and proposes new approaches, such as the possible inclusion of network theory and artificial intelligence (AI) in the prediction workflows. Case studies and a concise survey of experimental methods for validating in silico predictions are also presented. These methods could contribute to interpret experimental results, to minimize off-target effects and hopefully to avoid off-target-related adverse events of small RNA therapeutics. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Zoltán Bereczki
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bettina Benczik
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Olivér M Balogh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szandra Marton
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Eszter Puhl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Mátyás Pétervári
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Sanovigado Kft, Budapest, Hungary
| | - Máté Váczy-Földi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Kimberly Glass
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Fabian Locquet
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Gerhild Euler
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Rainer Schulz
- Physiologisches Institut, Justus-Liebig-Universität Gießen, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
- HUN-REN-SU System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
4
|
Yin R, Zhao H, Li L, Yang Q, Zeng M, Yang C, Bian J, Xie M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. Comput Struct Biotechnol J 2024; 23:3020-3029. [PMID: 39171252 PMCID: PMC11338065 DOI: 10.1016/j.csbj.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 08/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics. The Gra-CRC-miRTar web server can be found at: http://gra-crc-mirtar.com/.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Hongru Zhao
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Qiang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Wei Y, Zhang Q, Liu L. The improved de Bruijn graph for multitask learning: predicting functions, subcellular localization, and interactions of noncoding RNAs. Brief Bioinform 2024; 26:bbae627. [PMID: 39592154 PMCID: PMC11596098 DOI: 10.1093/bib/bbae627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Noncoding RNA refers to RNA that does not encode proteins. The lncRNA and miRNA it contains play crucial regulatory roles in organisms, and their aberrant expression is closely related to various diseases. Traditional experimental methods for validating the interactions of these RNAs have limitations, and existing prediction models exhibit relatively limited functionality, relying on isolated feature extraction and performing poorly in handling various types of small sample tasks. This paper proposes an improved de Bruijn graph that can inject RNA structural information into the graph while preserving sequence information. Furthermore, the improved de Bruijn graph enables graph neural networks to learn broader dependencies and correlations among data by introducing richer edge relationships. Meanwhile, the multitask learning model, DVMnet, proposed in this paper can handle multiple related tasks, and we optimize model parameters by integrating the total loss of three tasks. This enables multitask prediction of RNA interactions, disease associations, and subcellular localization. Compared with the best existing models in this field, DVMnet has achieved the best performance with a 3% improvement in the area under the curve value and demonstrates robust results in predicting diseases and subcellular localization. The improved de Bruijn graph is also applicable to various scenarios and can unify the sequence and structural information of various nucleic acids into a single graph.
Collapse
Affiliation(s)
- Yuxiao Wei
- College of Software, Dalian Jiaotong University,794 Huanghe Road, Dalian 116028, China
| | - Qi Zhang
- College of Science, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China
| | - Liwei Liu
- College of Science, Dalian Jiaotong University, 794 Huanghe Road, Dalian 116028, China
| |
Collapse
|
6
|
He Y, Ning Z, Zhu X, Zhang Y, Liu C, Jiang S, Yuan Z, Zhang H. Plant lncRNA-miRNA Interaction Prediction Based on Counterfactual Heterogeneous Graph Attention Network. Interdiscip Sci 2024:10.1007/s12539-024-00652-9. [PMID: 39382820 DOI: 10.1007/s12539-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024]
Abstract
Identifying interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) provides a new perspective for understanding regulatory relationships in plant life processes. Recently, computational methods based on graph neural networks (GNNs) have been widely employed to predict lncRNA-miRNA interactions (LMIs), which compensate for the inadequacy of biological experiments. However, the low-semantic and noise of graph limit the performance of existing GNN-based methods. In this paper, we develop a novel Counterfactual Heterogeneous Graph Attention Network (CFHAN) to improve the robustness to against the noise and the prediction of plant LMIs. Firstly, we construct a real-world based lncRNA-miRNA (L-M) heterogeneous network. Secondly, CFHAN utilizes the node-level attention, the semantic-level attention, and the counterfactual links to enhance the node embeddings learning. Finally, these embeddings are used as inputs for Multilayer Perceptron (MLP) to predict the interactions between lncRNAs and miRNAs. Evaluating our method on a benchmark dataset of plant LMIs, CFHAN outperforms five state-of-the-art methods, and achieves an average AUC and average ACC of 0.9953 and 0.9733, respectively. This demonstrates CFHAN's ability to predict plant LMIs and exhibits promising cross-species prediction ability, offering valuable insights for experimental LMI researches.
Collapse
Affiliation(s)
- Yu He
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ZiLan Ning
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - XingHui Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - YinQiong Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ChunHai Liu
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - SiWei Jiang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - ZheMing Yuan
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - HongYan Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
7
|
Xie J, Xu P, Lin Y, Zheng M, Jia J, Tan X, Sun J, Zhao Q. LncRNA-miRNA interactions prediction based on meta-path similarity and Gaussian kernel similarity. J Cell Mol Med 2024; 28:e18590. [PMID: 39347925 PMCID: PMC11441278 DOI: 10.1111/jcmm.18590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 10/01/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are two typical types of non-coding RNAs that interact and play important regulatory roles in many animal organisms. Exploring the unknown interactions between lncRNAs and miRNAs contributes to a better understanding of their functional involvement. Currently, studying the interactions between lncRNAs and miRNAs heavily relies on laborious biological experiments. Therefore, it is necessary to design a computational method for predicting lncRNA-miRNA interactions. In this work, we propose a method called MPGK-LMI, which utilizes a graph attention network (GAT) to predict lncRNA-miRNA interactions in animals. First, we construct a meta-path similarity matrix based on known lncRNA-miRNA interaction information. Then, we use GAT to aggregate the constructed meta-path similarity matrix and the computed Gaussian kernel similarity matrix to update the feature matrix with neighbourhood information. Finally, a scoring module is used for prediction. By comparing with three state-of-the-art algorithms, MPGK-LMI achieves the best results in terms of performance, with AUC value of 0.9077, AUPR of 0.9327, ACC of 0.9080, F1-score of 0.9143 and precision of 0.8739. These results validate the effectiveness and reliability of MPGK-LMI. Additionally, we conduct detailed case studies to demonstrate the effectiveness and feasibility of our approach in practical applications. Through these empirical results, we gain deeper insights into the functional roles and mechanisms of lncRNA-miRNA interactions, providing significant breakthroughs and advancements in this field of research. In summary, our method not only outperforms others in terms of performance but also establishes its practicality and reliability in biological research through real-case analysis, offering strong support and guidance for future studies and applications.
Collapse
Affiliation(s)
- Jingxuan Xie
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Peng Xu
- School of Electronic and Information Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Ye Lin
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Manyu Zheng
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Jixuan Jia
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| | - Xinru Tan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jianqiang Sun
- School of Information Science and Engineering, Linyi University, Linyi, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
| |
Collapse
|
8
|
Yi X, Liu S, Wu Y, McCloskey D, Meng Z. BPP: a platform for automatic biochemical pathway prediction. Brief Bioinform 2024; 25:bbae355. [PMID: 39082653 PMCID: PMC11289738 DOI: 10.1093/bib/bbae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/16/2024] [Accepted: 07/09/2024] [Indexed: 08/03/2024] Open
Abstract
A biochemical pathway consists of a series of interconnected biochemical reactions to accomplish specific life activities. The participating reactants and resultant products of a pathway, including gene fragments, proteins, and small molecules, coalesce to form a complex reaction network. Biochemical pathways play a critical role in the biochemical domain as they can reveal the flow of biochemical reactions in living organisms, making them essential for understanding life processes. Existing studies of biochemical pathway networks are mainly based on experimentation and pathway database analysis methods, which are plagued by substantial cost constraints. Inspired by the success of representation learning approaches in biomedicine, we develop the biochemical pathway prediction (BPP) platform, which is an automatic BPP platform to identify potential links or attributes within biochemical pathway networks. Our BPP platform incorporates a variety of representation learning models, including the latest hypergraph neural networks technology to model biochemical reactions in pathways. In particular, BPP contains the latest biochemical pathway-based datasets and enables the prediction of potential participants or products of biochemical reactions in biochemical pathways. Additionally, BPP is equipped with an SHAP explainer to explain the predicted results and to calculate the contributions of each participating element. We conduct extensive experiments on our collected biochemical pathway dataset to benchmark the effectiveness of all models available on BPP. Furthermore, our detailed case studies based on the chronological pattern of our dataset demonstrate the effectiveness of our platform. Our BPP web portal, source code and datasets are freely accessible at https://github.com/Glasgow-AI4BioMed/BPP.
Collapse
Affiliation(s)
- Xinhao Yi
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom
| | - Siwei Liu
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Building 1B, Masdar City, Abu Dhabi 000000, United Arab Emirates
| | - Yu Wu
- School of Mathematical Sciences, Fudan University, 220 Handan Rd, Yangpu District, Shanghai 200438, China
| | - Douglas McCloskey
- Artificial Intelligence, BioMed X Institute, Im Neuenheimer Feld 515, Heidelberg 69120, Germany
| | - Zaiqiao Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom
| |
Collapse
|
9
|
Meng Z, Liu S, Liang S, Jani B, Meng Z. Heterogeneous biomedical entity representation learning for gene-disease association prediction. Brief Bioinform 2024; 25:bbae380. [PMID: 39154194 PMCID: PMC11330343 DOI: 10.1093/bib/bbae380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Understanding the genetic basis of disease is a fundamental aspect of medical research, as genes are the classic units of heredity and play a crucial role in biological function. Identifying associations between genes and diseases is critical for diagnosis, prevention, prognosis, and drug development. Genes that encode proteins with similar sequences are often implicated in related diseases, as proteins causing identical or similar diseases tend to show limited variation in their sequences. Predicting gene-disease association (GDA) requires time-consuming and expensive experiments on a large number of potential candidate genes. Although methods have been proposed to predict associations between genes and diseases using traditional machine learning algorithms and graph neural networks, these approaches struggle to capture the deep semantic information within the genes and diseases and are dependent on training data. To alleviate this issue, we propose a novel GDA prediction model named FusionGDA, which utilizes a pre-training phase with a fusion module to enrich the gene and disease semantic representations encoded by pre-trained language models. Multi-modal representations are generated by the fusion module, which includes rich semantic information about two heterogeneous biomedical entities: protein sequences and disease descriptions. Subsequently, the pooling aggregation strategy is adopted to compress the dimensions of the multi-modal representation. In addition, FusionGDA employs a pre-training phase leveraging a contrastive learning loss to extract potential gene and disease features by training on a large public GDA dataset. To rigorously evaluate the effectiveness of the FusionGDA model, we conduct comprehensive experiments on five datasets and compare our proposed model with five competitive baseline models on the DisGeNet-Eval dataset. Notably, our case study further demonstrates the ability of FusionGDA to discover hidden associations effectively. The complete code and datasets of our experiments are available at https://github.com/ZhaohanM/FusionGDA.
Collapse
Affiliation(s)
- Zhaohan Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| | - Siwei Liu
- School of Natural and Computing Science, University of Aberdeen King’s College, Aberdeen, AB24 3FX, UK
| | - Shangsong Liang
- Machine Learning Department, Mohamed bin Zayed University of Artificial Intelligence, Building 1B, Masdar City, Abu Dhabi 000000, UAE
| | - Bhautesh Jani
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| | - Zaiqiao Meng
- School of Computing Science, University of Glasgow, 18 Lilybank Gardens, Glasgow G12 8RZ, UK
| |
Collapse
|
10
|
Diao B, Luo J, Guo Y. A comprehensive survey on deep learning-based identification and predicting the interaction mechanism of long non-coding RNAs. Brief Funct Genomics 2024; 23:314-324. [PMID: 38576205 DOI: 10.1093/bfgp/elae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/25/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) have been discovered to be extensively involved in eukaryotic epigenetic, transcriptional, and post-transcriptional regulatory processes with the advancements in sequencing technology and genomics research. Therefore, they play crucial roles in the body's normal physiology and various disease outcomes. Presently, numerous unknown lncRNA sequencing data require exploration. Establishing deep learning-based prediction models for lncRNAs provides valuable insights for researchers, substantially reducing time and costs associated with trial and error and facilitating the disease-relevant lncRNA identification for prognosis analysis and targeted drug development as the era of artificial intelligence progresses. However, most lncRNA-related researchers lack awareness of the latest advancements in deep learning models and model selection and application in functional research on lncRNAs. Thus, we elucidate the concept of deep learning models, explore several prevalent deep learning algorithms and their data preferences, conduct a comprehensive review of recent literature studies with exemplary predictive performance over the past 5 years in conjunction with diverse prediction functions, critically analyze and discuss the merits and limitations of current deep learning models and solutions, while also proposing prospects based on cutting-edge advancements in lncRNA research.
Collapse
Affiliation(s)
- Biyu Diao
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Jin Luo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| | - Yu Guo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, No. 59, Liuting Street, Haishu District, Ningbo 315000, China
| |
Collapse
|
11
|
Yin R, Zhao H, Li L, Yang Q, Zeng M, Yang C, Bian J, Xie M. Gra-CRC-miRTar: The pre-trained nucleotide-to-graph neural networks to identify potential miRNA targets in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589599. [PMID: 38659732 PMCID: PMC11042274 DOI: 10.1101/2024.04.15.589599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second deadliest cancer worldwide representing a major public health problem. In recent years, increasing evidence has shown that microRNA (miRNA) can control the expression of targeted human messenger RNA (mRNA) by reducing their abundance or translation, acting as oncogenes or tumor suppressors in various cancers, including CRC. Due to the significant up-regulation of oncogenic miRNAs in CRC, elucidating the underlying mechanism and identifying dysregulated miRNA targets may provide a basis for improving current therapeutic interventions. In this paper, we proposed Gra-CRC-miRTar, a pre-trained nucleotide-to-graph neural network framework, for identifying potential miRNA targets in CRC. Different from previous studies, we constructed two pre-trained models to encode RNA sequences and transformed them into de Bruijn graphs. We employed different graph neural networks to learn the latent representations. The embeddings generated from de Bruijn graphs were then fed into a Multilayer Perceptron (MLP) to perform the prediction tasks. Our extensive experiments show that Gra-CRC-miRTar achieves better performance than other deep learning algorithms and existing predictors. In addition, our analyses also successfully revealed 172 out of 201 functional interactions through experimentally validated miRNA-mRNA pairs in CRC. Collectively, our effort provides an accurate and efficient framework to identify potential miRNA targets in CRC, which can also be used to reveal miRNA target interactions in other malignancies, facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Hongru Zhao
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
- These authors contributed equally
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Qiang Yang
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Hu X, Liu D, Zhang J, Fan Y, Ouyang T, Luo Y, Zhang Y, Deng L. A comprehensive review and evaluation of graph neural networks for non-coding RNA and complex disease associations. Brief Bioinform 2023; 24:bbad410. [PMID: 37985451 DOI: 10.1093/bib/bbad410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the occurrence and development of numerous human diseases. Consequently, studying the associations between ncRNAs and diseases has garnered significant attention from researchers in recent years. Various computational methods have been proposed to explore ncRNA-disease relationships, with Graph Neural Network (GNN) emerging as a state-of-the-art approach for ncRNA-disease association prediction. In this survey, we present a comprehensive review of GNN-based models for ncRNA-disease associations. Firstly, we provide a detailed introduction to ncRNAs and GNNs. Next, we delve into the motivations behind adopting GNNs for predicting ncRNA-disease associations, focusing on data structure, high-order connectivity in graphs and sparse supervision signals. Subsequently, we analyze the challenges associated with using GNNs in predicting ncRNA-disease associations, covering graph construction, feature propagation and aggregation, and model optimization. We then present a detailed summary and performance evaluation of existing GNN-based models in the context of ncRNA-disease associations. Lastly, we explore potential future research directions in this rapidly evolving field. This survey serves as a valuable resource for researchers interested in leveraging GNNs to uncover the complex relationships between ncRNAs and diseases.
Collapse
Affiliation(s)
- Xiaowen Hu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Dayun Liu
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Jiaxuan Zhang
- Department of Electrical and Computer Engineering, University of California, San Diego,92093 CA, USA
| | - Yanhao Fan
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Tianxiang Ouyang
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yue Luo
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| | - Yuanpeng Zhang
- school of software, Xinjiang University, 830046 Urumqi, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075 Changsha, China
| |
Collapse
|