1
|
Bornet A, Proios D, Yazdani A, Jaume-Santero F, Haller G, Choi E, Teodoro D. Comparing neural language models for medical concept representation and patient trajectory prediction. Artif Intell Med 2025; 163:103108. [PMID: 40086407 DOI: 10.1016/j.artmed.2025.103108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/22/2024] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Effective representation of medical concepts is crucial for secondary analyses of electronic health records. Neural language models have shown promise in automatically deriving medical concept representations from clinical data. However, the comparative performance of different language models for creating these empirical representations, and the extent to which they encode medical semantics, has not been extensively studied. This study aims to address this gap by evaluating the effectiveness of three popular language models - word2vec, fastText, and GloVe - in creating medical concept embeddings that capture their semantic meaning. By using a large dataset of digital health records, we created patient trajectories and used them to train the language models. We then assessed the ability of the learned embeddings to encode semantics through an explicit comparison with biomedical terminologies, and implicitly by predicting patient outcomes and trajectories with different levels of available information. Our qualitative analysis shows that empirical clusters of embeddings learned by fastText exhibit the highest similarity with theoretical clustering patterns obtained from biomedical terminologies, with a similarity score between empirical and theoretical clusters of 0.88, 0.80, and 0.92 for diagnosis, procedure, and medication codes, respectively. Conversely, for outcome prediction, word2vec and GloVe tend to outperform fastText, with the former achieving AUROC as high as 0.78, 0.62, and 0.85 for length-of-stay, readmission, and mortality prediction, respectively. In predicting medical codes in patient trajectories, GloVe achieves the highest performance for diagnosis and medication codes (AUPRC of 0.45 and of 0.81, respectively) at the highest level of the semantic hierarchy, while fastText outperforms the other models for procedure codes (AUPRC of 0.66). Our study demonstrates that subword information is crucial for learning medical concept representations, but global embedding vectors are better suited for more high-level downstream tasks, such as trajectory prediction. Thus, these models can be harnessed to learn representations that convey clinical meaning, and our insights highlight the potential of using machine learning techniques to semantically encode medical data.
Collapse
Affiliation(s)
- Alban Bornet
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Dimitrios Proios
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Anthony Yazdani
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Geneva School of Business Administration, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Fernando Jaume-Santero
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Guy Haller
- Department of Acute Care Medicine, Division of Anaesthesiology, Geneva University Hospitals, Switzerland; Department of Epidemiology and Preventive Medicine, Health Services Management and Research Unit, Monash University, Melbourne, Victoria, Australia
| | | | - Douglas Teodoro
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Laferrière-Langlois P, Imrie F, Geraldo MA, Wingert T, Lahrichi N, van der Schaar M, Cannesson M. Novel Preoperative Risk Stratification Using Digital Phenotyping Applying a Scalable Machine-Learning Approach. Anesth Analg 2024; 139:174-185. [PMID: 38051671 PMCID: PMC11150330 DOI: 10.1213/ane.0000000000006753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
BACKGROUND Classification of perioperative risk is important for patient care, resource allocation, and guiding shared decision-making. Using discriminative features from the electronic health record (EHR), machine-learning algorithms can create digital phenotypes among heterogenous populations, representing distinct patient subpopulations grouped by shared characteristics, from which we can personalize care, anticipate clinical care trajectories, and explore therapies. We hypothesized that digital phenotypes in preoperative settings are associated with postoperative adverse events including in-hospital and 30-day mortality, 30-day surgical redo, intensive care unit (ICU) admission, and hospital length of stay (LOS). METHODS We identified all laminectomies, colectomies, and thoracic surgeries performed over a 9-year period from a large hospital system. Seventy-seven readily extractable preoperative features were first selected from clinical consensus, including demographics, medical history, and lab results. Three surgery-specific datasets were built and split into derivation and validation cohorts using chronological occurrence. Consensus k -means clustering was performed independently on each derivation cohort, from which phenotypes' characteristics were explored. Cluster assignments were used to train a random forest model to assign patient phenotypes in validation cohorts. We reconducted descriptive analyses on validation cohorts to confirm the similarity of patient characteristics with derivation cohorts, and quantified the association of each phenotype with postoperative adverse events by using the area under receiver operating characteristic curve (AUROC). We compared our approach to American Society of Anesthesiologists (ASA) alone and investigated a combination of our phenotypes with the ASA score. RESULTS A total of 7251 patients met inclusion criteria, of which 2770 were held out in a validation dataset based on chronological occurrence. Using segmentation metrics and clinical consensus, 3 distinct phenotypes were created for each surgery. The main features used for segmentation included urgency of the procedure, preoperative LOS, age, and comorbidities. The most relevant characteristics varied for each of the 3 surgeries. Low-risk phenotype alpha was the most common (2039 of 2770, 74%), while high-risk phenotype gamma was the rarest (302 of 2770, 11%). Adverse outcomes progressively increased from phenotypes alpha to gamma, including 30-day mortality (0.3%, 2.1%, and 6.0%, respectively), in-hospital mortality (0.2%, 2.3%, and 7.3%), and prolonged hospital LOS (3.4%, 22.1%, and 25.8%). When combined with the ASA score, digital phenotypes achieved higher AUROC than the ASA score alone (hospital mortality: 0.91 vs 0.84; prolonged hospitalization: 0.80 vs 0.71). CONCLUSIONS For 3 frequently performed surgeries, we identified 3 digital phenotypes. The typical profiles of each phenotype were described and could be used to anticipate adverse postoperative events.
Collapse
Affiliation(s)
- Pascal Laferrière-Langlois
- Department of Anesthesiology and Perioperative Medicine, UCLA David Geffen School of Medicine, Los Angeles, USA
- Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Department of Anesthesiology and Pain Medicine, Maisonneuve-Rosemont Hospital, CIUSSS de l’Est de L’Ile de Montréal, Montréal, Québec, Canada
| | - Fergus Imrie
- Department of Electrical and Computer Engineering, UCLA, Los Angeles, USA
| | - Marc-Andre Geraldo
- Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | - Theodora Wingert
- Department of Anesthesiology and Perioperative Medicine, UCLA David Geffen School of Medicine, Los Angeles, USA
| | - Nadia Lahrichi
- Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Mihaela van der Schaar
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Maxime Cannesson
- Department of Anesthesiology and Perioperative Medicine, UCLA David Geffen School of Medicine, Los Angeles, USA
| |
Collapse
|
3
|
Alfalahi H, Dias SB, Khandoker AH, Chaudhuri KR, Hadjileontiadis LJ. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. NPJ Parkinsons Dis 2023; 9:49. [PMID: 36997573 PMCID: PMC10063633 DOI: 10.1038/s41531-023-00494-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.
Collapse
Affiliation(s)
- Hessa Alfalahi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- CIPER, Faculdade de Motricidade Humana, University of Lisbon, Lisbon, Portugal
| | - Ahsan H Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kallol Ray Chaudhuri
- Parkinson Foundation, International Center of Excellence, King's College London, Denmark Hills, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
4
|
Xu R, Yu Y, Zhang C, Ali MK, Ho JC, Yang C. Counterfactual and Factual Reasoning over Hypergraphs for Interpretable Clinical Predictions on EHR. PROCEEDINGS OF MACHINE LEARNING RESEARCH 2022; 193:259-278. [PMID: 37255863 PMCID: PMC10227831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Electronic Health Record modeling is crucial for digital medicine. However, existing models ignore higher-order interactions among medical codes and their causal relations towards downstream clinical predictions. To address such limitations, we propose a novel framework CACHE, to provide effective and insightful clinical predictions based on hypergraph representation learning and counterfactual and factual reasoning techniques. Experiments on two real EHR datasets show the superior performance of CACHE. Case studies with a domain expert illustrate a preferred capability of CACHE in generating clinically meaningful interpretations towards the correct predictions.
Collapse
Affiliation(s)
- Ran Xu
- Department of Computer Science, Emory University, Atlanta, GA 30322
| | - Yue Yu
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
| | - Chao Zhang
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
| | - Mohammed K Ali
- Rollins School of Public Health, Emory University, Atlanta, GA 30322
| | - Joyce C Ho
- Department of Computer Science, Emory University, Atlanta, GA 30322
| | - Carl Yang
- Department of Computer Science, Emory University, Atlanta, GA 30322
| |
Collapse
|
5
|
Yang X, Liu N, Qiao J, Yuan H, Ma T, Xu Y, Cui L. Clinical Phenotyping Prediction via Auxiliary Task Selection and Adaptive Shared-Space Correction. ARTIF INTELL 2022. [DOI: 10.1007/978-3-031-20500-2_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Zang C, Wang F. SCEHR: Supervised Contrastive Learning for Clinical Risk Prediction using Electronic Health Records. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON DATA MINING 2021; 2021:857-866. [PMID: 36438203 PMCID: PMC9692209 DOI: 10.1109/icdm51629.2021.00097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Contrastive learning has demonstrated promising performance in image and text domains either in a self-supervised or a supervised manner. In this work, we extend the supervised contrastive learning framework to clinical risk prediction problems based on longitudinal electronic health records (EHR). We propose a general supervised contrastive loss ℒ C o n t r a s t i v e C r o s s E n t r o p y + λ ℒ S u p e r v i s e d C o n t r a s t i v e R e g u l a r i z e r for learning both binary classification (e.g. in-hospital mortality prediction) and multi-label classification (e.g. phenotyping) in a unified framework. Our supervised contrastive loss practices the key idea of contrastive learning, namely, pulling similar samples closer and pushing dissimilar ones apart from each other, simultaneously by its two components: ℒ C o n t r a s t i v e C r o s s E n t r o p y tries to contrast samples with learned anchors which represent positive and negative clusters, and ℒ S u p e r v i s e d C o n t r a s t i v e R e g u l a r i z e r tries to contrast samples with each other according to their supervised labels. We propose two versions of the above supervised contrastive loss and our experiments on real-world EHR data demonstrate that our proposed loss functions show benefits in improving the performance of strong baselines and even state-of-the-art models on benchmarking tasks for clinical risk predictions. Our loss functions work well with extremely imbalanced data which are common for clinical risk prediction problems. Our loss functions can be easily used to replace (binary or multi-label) cross-entropy loss adopted in existing clinical predictive models. The Pytorch code is released at https://github.com/calvin-zcx/SCEHR.
Collapse
Affiliation(s)
- Chengxi Zang
- Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Fei Wang
- Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Vogt L. FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example. J Biomed Semantics 2021; 12:20. [PMID: 34823588 PMCID: PMC8613519 DOI: 10.1186/s13326-021-00254-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible, interoperable, and reusable (FAIR). This can be achieved by using ontologies and through representing them as semantic graphs. Here, we discuss two different semantic graph approaches of representing empirical data and metadata in a knowledge graph, with phenotype descriptions as an example. Almost all phenotype descriptions are still being published as unstructured natural language texts, with far-reaching consequences for their FAIRness, substantially impeding their overall usability within the life sciences. However, with an increasing amount of anatomy ontologies becoming available and semantic applications emerging, a solution to this problem becomes available. Researchers are starting to document and communicate phenotype descriptions through the Web in the form of highly formalized and structured semantic graphs that use ontology terms and Uniform Resource Identifiers (URIs) to circumvent the problems connected with unstructured texts. RESULTS Using phenotype descriptions as an example, we compare and evaluate two basic representations of empirical data and their accompanying metadata in the form of semantic graphs: the class-based TBox semantic graph approach called Semantic Phenotype and the instance-based ABox semantic graph approach called Phenotype Knowledge Graph. Their main difference is that only the ABox approach allows for identifying every individual part and property mentioned in the description in a knowledge graph. This technical difference results in substantial practical consequences that significantly affect the overall usability of empirical data. The consequences affect findability, accessibility, and explorability of empirical data as well as their comparability, expandability, universal usability and reusability, and overall machine-actionability. Moreover, TBox semantic graphs often require querying under entailment regimes, which is computationally more complex. CONCLUSIONS We conclude that, from a conceptual point of view, the advantages of the instance-based ABox semantic graph approach outweigh its shortcomings and outweigh the advantages of the class-based TBox semantic graph approach. Therefore, we recommend the instance-based ABox approach as a FAIR approach for documenting and communicating empirical data and metadata in a knowledge graph.
Collapse
Affiliation(s)
- Lars Vogt
- TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167, Hanover, Germany.
| |
Collapse
|
8
|
Kulmanov M, Smaili FZ, Gao X, Hoehndorf R. Semantic similarity and machine learning with ontologies. Brief Bioinform 2021; 22:bbaa199. [PMID: 33049044 PMCID: PMC8293838 DOI: 10.1093/bib/bbaa199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in ontologies and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.
Collapse
Affiliation(s)
| | | | - Xin Gao
- Computational Bioscience Research Center and lead of the Structural and Functional Bioinformatics Group at King Abdullah University of Science and Technology
| | | |
Collapse
|
9
|
Deng L, Chen L, Yang T, Liu M, Li S, Jiang T. Constructing High-Fidelity Phenotype Knowledge Graphs for Infectious Diseases With a Fine-Grained Semantic Information Model: Development and Usability Study. J Med Internet Res 2021; 23:e26892. [PMID: 34128811 PMCID: PMC8277235 DOI: 10.2196/26892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Phenotypes characterize the clinical manifestations of diseases and provide important information for diagnosis. Therefore, the construction of phenotype knowledge graphs for diseases is valuable to the development of artificial intelligence in medicine. However, phenotype knowledge graphs in current knowledge bases such as WikiData and DBpedia are coarse-grained knowledge graphs because they only consider the core concepts of phenotypes while neglecting the details (attributes) associated with these phenotypes. OBJECTIVE To characterize the details of disease phenotypes for clinical guidelines, we proposed a fine-grained semantic information model named PhenoSSU (semantic structured unit of phenotypes). METHODS PhenoSSU is an "entity-attribute-value" model by its very nature, and it aims to capture the full semantic information underlying phenotype descriptions with a series of attributes and values. A total of 193 clinical guidelines for infectious diseases from Wikipedia were selected as the study corpus, and 12 attributes from SNOMED-CT were introduced into the PhenoSSU model based on the co-occurrences of phenotype concepts and attribute values. The expressive power of the PhenoSSU model was evaluated by analyzing whether PhenoSSU instances could capture the full semantics underlying the descriptions of the corresponding phenotypes. To automatically construct fine-grained phenotype knowledge graphs, a hybrid strategy that first recognized phenotype concepts with the MetaMap tool and then predicted the attribute values of phenotypes with machine learning classifiers was developed. RESULTS Fine-grained phenotype knowledge graphs of 193 infectious diseases were manually constructed with the BRAT annotation tool. A total of 4020 PhenoSSU instances were annotated in these knowledge graphs, and 3757 of them (89.5%) were found to be able to capture the full semantics underlying the descriptions of the corresponding phenotypes listed in clinical guidelines. By comparison, other information models, such as the clinical element model and the HL7 fast health care interoperability resource model, could only capture the full semantics underlying 48.4% (2034/4020) and 21.8% (914/4020) of the descriptions of phenotypes listed in clinical guidelines, respectively. The hybrid strategy achieved an F1-score of 0.732 for the subtask of phenotype concept recognition and an average weighted accuracy of 0.776 for the subtask of attribute value prediction. CONCLUSIONS PhenoSSU is an effective information model for the precise representation of phenotype knowledge for clinical guidelines, and machine learning can be used to improve the efficiency of constructing PhenoSSU-based knowledge graphs. Our work will potentially shift the focus of medical knowledge engineering from a coarse-grained level to a more fine-grained level.
Collapse
Affiliation(s)
- Lizong Deng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Luming Chen
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Tao Yang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Mi Liu
- Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shicheng Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
- Guangzhou Laboratory, Guangzhou, China
| |
Collapse
|
10
|
Al-Shwaheen TI, Moghbel M, Hau YW, Ooi CY. Use of learning approaches to predict clinical deterioration in patients based on various variables: a review of the literature. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-09982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Liu-Wei W, Kafkas Ş, Chen J, Dimonaco NJ, Tegnér J, Hoehndorf R. DeepViral: prediction of novel virus-host interactions from protein sequences and infectious disease phenotypes. Bioinformatics 2021; 37:2722-2729. [PMID: 33682875 PMCID: PMC8428617 DOI: 10.1093/bioinformatics/btab147] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Infectious diseases caused by novel viruses have become a major public health concern. Rapid identification of virus-host interactions can reveal mechanistic insights into infectious diseases and shed light on potential treatments. Current computational prediction methods for novel viruses are based mainly on protein sequences. However, it is not clear to what extent other important features, such as the symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e., signs and symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a potential proxy and an additional source of information for the underlying molecular interactions between the pathogens and hosts. RESULTS We developed DeepViral, a deep learning based method that predicts protein-protein interactions (PPI) between humans and viruses. Motivated by the potential utility of infectious disease phenotypes, we first embedded human proteins and viruses in a shared space using their associated phenotypes and functions, supported by formalized background knowledge from biomedical ontologies. By jointly learning from protein sequences and phenotype features, DeepViral significantly improves over existing sequence-based methods for intra- and inter-species PPI prediction. AVAILABILITY Code and datasets for reproduction and customization are available at https://github.com/bio-ontology-research-group/DeepViral. Prediction results for 14 virus families are available at https://doi.org/10.5281/zenodo.4429824.
Collapse
Affiliation(s)
- Wang Liu-Wei
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Şenay Kafkas
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jun Chen
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Nicholas J Dimonaco
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3BQ, Wales, UK
| | - Jesper Tegnér
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Robert Hoehndorf
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
|
13
|
|
14
|
Vos RA, Katayama T, Mishima H, Kawano S, Kawashima S, Kim JD, Moriya Y, Tokimatsu T, Yamaguchi A, Yamamoto Y, Wu H, Amstutz P, Antezana E, Aoki NP, Arakawa K, Bolleman JT, Bolton E, Bonnal RJP, Bono H, Burger K, Chiba H, Cohen KB, Deutsch EW, Fernández-Breis JT, Fu G, Fujisawa T, Fukushima A, García A, Goto N, Groza T, Hercus C, Hoehndorf R, Itaya K, Juty N, Kawashima T, Kim JH, Kinjo AR, Kotera M, Kozaki K, Kumagai S, Kushida T, Lütteke T, Matsubara M, Miyamoto J, Mohsen A, Mori H, Naito Y, Nakazato T, Nguyen-Xuan J, Nishida K, Nishida N, Nishide H, Ogishima S, Ohta T, Okuda S, Paten B, Perret JL, Prathipati P, Prins P, Queralt-Rosinach N, Shinmachi D, Suzuki S, Tabata T, Takatsuki T, Taylor K, Thompson M, Uchiyama I, Vieira B, Wei CH, Wilkinson M, Yamada I, Yamanaka R, Yoshitake K, Yoshizawa AC, Dumontier M, Kosaki K, Takagi T. BioHackathon 2015: Semantics of data for life sciences and reproducible research. F1000Res 2020; 9:136. [PMID: 32308977 PMCID: PMC7141167 DOI: 10.12688/f1000research.18236.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2020] [Indexed: 01/08/2023] Open
Abstract
We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.
Collapse
Affiliation(s)
- Rutger A. Vos
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shin Kawano
- Database Center for Life Science, Tokyo, Japan
| | | | | | - Yuki Moriya
- Database Center for Life Science, Tokyo, Japan
| | | | | | | | - Hongyan Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Erick Antezana
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nobuyuki P. Aoki
- Faculty of Science and Engineering, SOKA University, Tokyo, Japan
| | - Kazuharu Arakawa
- Institute for Advanced Biosciences, Keio University, Tokyo, Japan
| | - Jerven T. Bolleman
- SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, Lausanne, Switzerland
| | - Evan Bolton
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Raoul J. P. Bonnal
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | | | - Kees Burger
- Dutch Techcentre for Life Sciences, Utrecht, The Netherlands
| | - Hirokazu Chiba
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kevin B. Cohen
- Computational Bioscience Program, University of Colorado School of Medicine, Denver, USA
- Université Paris-Saclay, LIMSI, CNRS, Paris, France
| | | | | | - Gang Fu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | | | | | | | - Naohisa Goto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tudor Groza
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Colin Hercus
- Novocraft Technologies Sdn. Bhd., Selangor, Malaysia
| | - Robert Hoehndorf
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kotone Itaya
- Institute for Advanced Biosciences, Keio University, Tokyo, Japan
| | - Nick Juty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | | | - Jee-Hyub Kim
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Akira R. Kinjo
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Masaaki Kotera
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Kouji Kozaki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | | - Tatsuya Kushida
- National Bioscience Database Center, Japan Science and Technology Agency, Tokyo, Japan
| | - Thomas Lütteke
- Institute of Veterinary Physiology and Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
- Gesellschaft für innovative Personalwirtschaftssysteme mbH (GIP GmbH), Offenbach, Germany
| | | | | | - Attayeb Mohsen
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hiroshi Mori
- Center for Information Biology, National Institute of Genetics, Mishima, Japan
| | - Yuki Naito
- Database Center for Life Science, Tokyo, Japan
| | | | | | | | - Naoki Nishida
- Department of Systems Science, Osaka University, Osaka, Japan
| | - Hiroyo Nishide
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Tazro Ohta
- Database Center for Life Science, Tokyo, Japan
| | - Shujiro Okuda
- Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | | | - Philip Prathipati
- National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Pjotr Prins
- University Medical Center Utrecht, Utrecht, The Netherlands
- University of Tennessee Health Science Center, Memphis, USA
| | - Núria Queralt-Rosinach
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Shinya Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Tsuyosi Tabata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | - Kieron Taylor
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Mark Thompson
- Leiden University Medical Center, Leiden, The Netherlands
| | - Ikuo Uchiyama
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Bruno Vieira
- WurmLab, School of Biological & Chemical Sciences, Queen Mary University of London, London, UK
| | - Chih-Hsuan Wei
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Mark Wilkinson
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Michel Dumontier
- Institute of Data Science, Maastricht University, Maastricht, The Netherlands
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshihisa Takagi
- National Bioscience Database Center, Japan Science and Technology Agency, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Predicting ICD-9 code groups with fuzzy similarity based supervised multi-label classification of unstructured clinical nursing notes. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2019.105321] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Newman-Griffis D, Porcino J, Zirikly A, Thieu T, Camacho Maldonado J, Ho PS, Ding M, Chan L, Rasch E. Broadening horizons: the case for capturing function and the role of health informatics in its use. BMC Public Health 2019; 19:1288. [PMID: 31615472 PMCID: PMC6794808 DOI: 10.1186/s12889-019-7630-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
Background Human activity and the interaction between health conditions and activity is a critical part of understanding the overall function of individuals. The World Health Organization’s International Classification of Functioning, Disability and Health (ICF) models function as all aspects of an individual’s interaction with the world, including organismal concepts such as individual body structures, functions, and pathologies, as well as the outcomes of the individual’s interaction with their environment, referred to as activity and participation. Function, particularly activity and participation outcomes, is an important indicator of health at both the level of an individual and the population level, as it is highly correlated with quality of life and a critical component of identifying resource needs. Since it reflects the cumulative impact of health conditions on individuals and is not disease specific, its use as a health indicator helps to address major barriers to holistic, patient-centered care that result from multiple, and often competing, disease specific interventions. While the need for better information on function has been widely endorsed, this has not translated into its routine incorporation into modern health systems. Purpose We present the importance of capturing information on activity as a core component of modern health systems and identify specific steps and analytic methods that can be used to make it more available to utilize in improving patient care. We identify challenges in the use of activity and participation information, such as a lack of consistent documentation and diversity of data specificity and representation across providers, health systems, and national surveys. We describe how activity and participation information can be more effectively captured, and how health informatics methodologies, including natural language processing (NLP), can enable automatically locating, extracting, and organizing this information on a large scale, supporting standardization and utilization with minimal additional provider burden. We examine the analytic requirements and potential challenges of capturing this information with informatics, and describe how data-driven techniques can combine with common standards and documentation practices to make activity and participation information standardized and accessible for improving patient care. Recommendations We recommend four specific actions to improve the capture and analysis of activity and participation information throughout the continuum of care: (1) make activity and participation annotation standards and datasets available to the broader research community; (2) define common research problems in automatically processing activity and participation information; (3) develop robust, machine-readable ontologies for function that describe the components of activity and participation information and their relationships; and (4) establish standards for how and when to document activity and participation status during clinical encounters. We further provide specific short-term goals to make significant progress in each of these areas within a reasonable time frame.
Collapse
Affiliation(s)
- Denis Newman-Griffis
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA. .,Department of Computer Science and Engineering, The Ohio State University, 2015 Neil Avenue, DL 395, Columbus, OH, 43210, USA.
| | - Julia Porcino
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| | - Ayah Zirikly
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| | - Thanh Thieu
- Department of Computer Science, Oklahoma State University, 116-A MSCS, Stillwater, OK, 74078, USA
| | - Jonathan Camacho Maldonado
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| | - Pei-Shu Ho
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| | - Min Ding
- Information Technology Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Leighton Chan
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| | - Elizabeth Rasch
- Rehabilitation Medicine Department, National Institutes of Health, Mark O. Hatfield Clinical Research Center, 6707 Democracy Boulevard, Suite 856, MSC 5493, Bethesda, MD, 20892, USA
| |
Collapse
|
17
|
Brietzke E, Hawken ER, Idzikowski M, Pong J, Kennedy SH, Soares CN. Integrating digital phenotyping in clinical characterization of individuals with mood disorders. Neurosci Biobehav Rev 2019; 104:223-230. [DOI: 10.1016/j.neubiorev.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/26/2022]
|
18
|
Harutyunyan H, Khachatrian H, Kale DC, Ver Steeg G, Galstyan A. Multitask learning and benchmarking with clinical time series data. Sci Data 2019; 6:96. [PMID: 31209213 PMCID: PMC6572845 DOI: 10.1038/s41597-019-0103-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
Health care is one of the most exciting frontiers in data mining and machine learning. Successful adoption of electronic health records (EHRs) created an explosion in digital clinical data available for analysis, but progress in machine learning for healthcare research has been difficult to measure because of the absence of publicly available benchmark data sets. To address this problem, we propose four clinical prediction benchmarks using data derived from the publicly available Medical Information Mart for Intensive Care (MIMIC-III) database. These tasks cover a range of clinical problems including modeling risk of mortality, forecasting length of stay, detecting physiologic decline, and phenotype classification. We propose strong linear and neural baselines for all four tasks and evaluate the effect of deep supervision, multitask training and data-specific architectural modifications on the performance of neural models.
Collapse
Affiliation(s)
- Hrayr Harutyunyan
- USC Information Sciences Institute, Marina del Rey, California, 90292, United States of America
| | - Hrant Khachatrian
- YerevaNN, Yerevan, 0025, Armenia.
- Yerevan State University, Yerevan, 0025, Armenia.
| | - David C Kale
- USC Information Sciences Institute, Marina del Rey, California, 90292, United States of America
| | - Greg Ver Steeg
- USC Information Sciences Institute, Marina del Rey, California, 90292, United States of America
| | - Aram Galstyan
- USC Information Sciences Institute, Marina del Rey, California, 90292, United States of America
| |
Collapse
|
19
|
Romano JD, Tatonetti NP. Informatics and Computational Methods in Natural Product Drug Discovery: A Review and Perspectives. Front Genet 2019; 10:368. [PMID: 31114606 PMCID: PMC6503039 DOI: 10.3389/fgene.2019.00368] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
The discovery of new pharmaceutical drugs is one of the preeminent tasks-scientifically, economically, and socially-in biomedical research. Advances in informatics and computational biology have increased productivity at many stages of the drug discovery pipeline. Nevertheless, drug discovery has slowed, largely due to the reliance on small molecules as the primary source of novel hypotheses. Natural products (such as plant metabolites, animal toxins, and immunological components) comprise a vast and diverse source of bioactive compounds, some of which are supported by thousands of years of traditional medicine, and are largely disjoint from the set of small molecules used commonly for discovery. However, natural products possess unique characteristics that distinguish them from traditional small molecule drug candidates, requiring new methods and approaches for assessing their therapeutic potential. In this review, we investigate a number of state-of-the-art techniques in bioinformatics, cheminformatics, and knowledge engineering for data-driven drug discovery from natural products. We focus on methods that aim to bridge the gap between traditional small-molecule drug candidates and different classes of natural products. We also explore the current informatics knowledge gaps and other barriers that need to be overcome to fully leverage these compounds for drug discovery. Finally, we conclude with a "road map" of research priorities that seeks to realize this goal.
Collapse
Affiliation(s)
- Joseph D. Romano
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
- Department of Systems Biology, Columbia University, New York, NY, United States
- Department of Medicine, Columbia University, New York, NY, United States
- Data Science Institute, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Luo G. A roadmap for semi-automatically extracting predictive and clinically meaningful temporal features from medical data for predictive modeling. GLOBAL TRANSITIONS 2019; 1:61-82. [PMID: 31032483 PMCID: PMC6482973 DOI: 10.1016/j.glt.2018.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Predictive modeling based on machine learning with medical data has great potential to improve healthcare and reduce costs. However, two hurdles, among others, impede its widespread adoption in hdealthcare. First, medical data are by nature longitudinal. Pre-processing them, particularly for feature engineering, is labor intensive and often takes 50-80% of the model building effort. Predictive temporal features are the basis of building accurate models, but are difficult to identify. This is problematic. Healthcare systems have limited resources for model building, while inaccurate models produce sub-optimal outcomes and are often useless. Second, most machine learning models provide no explanation of their prediction results. However, offering such explanations is essential for a model to be used in usual clinical practice. To address these two hurdles, this paper outlines: 1) a data-driven method for semi-automatically extracting predictive and clinically meaningful temporal features from medical data for predictive modeling; and 2) a method of using these features to automatically explain machine learning prediction results and suggest tailored interventions. This provides a roadmap for future research.
Collapse
Affiliation(s)
- Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, UW Medicine South Lake Union, 850 Republican Street, Building C, Box 358047, Seattle, WA, 98109, USA
| |
Collapse
|
21
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
22
|
Percha B, Zhang Y, Bozkurt S, Rubin D, Altman RB, Langlotz CP. Expanding a radiology lexicon using contextual patterns in radiology reports. J Am Med Inform Assoc 2018; 25:679-685. [PMID: 29329435 PMCID: PMC5978019 DOI: 10.1093/jamia/ocx152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 12/18/2017] [Indexed: 11/14/2022] Open
Abstract
Objective Distributional semantics algorithms, which learn vector space representations of words and phrases from large corpora, identify related terms based on contextual usage patterns. We hypothesize that distributional semantics can speed up lexicon expansion in a clinical domain, radiology, by unearthing synonyms from the corpus. Materials and Methods We apply word2vec, a distributional semantics software package, to the text of radiology notes to identify synonyms for RadLex, a structured lexicon of radiology terms. We stratify performance by term category, term frequency, number of tokens in the term, vector magnitude, and the context window used in vector building. Results Ranking candidates based on distributional similarity to a target term results in high curation efficiency: on a ranked list of 775 249 terms, >50% of synonyms occurred within the first 25 terms. Synonyms are easier to find if the target term is a phrase rather than a single word, if it occurs at least 100× in the corpus, and if its vector magnitude is between 4 and 5. Some RadLex categories, such as anatomical substances, are easier to identify synonyms for than others. Discussion The unstructured text of clinical notes contains a wealth of information about human diseases and treatment patterns. However, searching and retrieving information from clinical notes often suffer due to variations in how similar concepts are described in the text. Biomedical lexicons address this challenge, but are expensive to produce and maintain. Distributional semantics algorithms can assist lexicon curation, saving researchers time and money.
Collapse
Affiliation(s)
- Bethany Percha
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Yuhao Zhang
- Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
| | - Selen Bozkurt
- Department of Biostatistics and Medical Informatics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Daniel Rubin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Russ B Altman
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics and Bioengineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
23
|
Raballo A. Digital phenotyping: an overarching framework to capture our extended mental states. Lancet Psychiatry 2018; 5:194-195. [PMID: 29482758 DOI: 10.1016/s2215-0366(18)30054-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Andrea Raballo
- Department of Psychology, Psychopathology and Development Research, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
24
|
Richter J, Pittig A, Hollandt M, Lueken U. Bridging the Gaps Between Basic Science and Cognitive-Behavioral Treatments for Anxiety Disorders in Routine Care. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY 2017. [DOI: 10.1027/2151-2604/a000309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. As a core component of cognitive-behavioral therapies (CBT), behavioral exposure is an effective treatment for anxiety disorders. Still, recent treatment studies demonstrate relatively high rates of treatment dropout, nonresponse, and relapse, indicating a substantial need for optimizing and personalizing existing treatment procedures. In the present article, we aim to address current challenges and future demands for translational research in CBT for the anxiety disorders, including (a) a better understanding of those mechanisms conferring behavioral change, (b) identifying important sources of individual variation that may act as moderators of treatment response, and (c) targeting practical barriers for dissemination of exposure therapy to routine care. Based on a recursive process model of psychotherapy research we will describe distinct steps to systematically translate basic and clinical research “from bench to bedside” to routine care, but also vice versa. Some of these aspects may stimulate the future roadmap for evidence-based psychotherapy research in order to better target the treatment of anxiety disorders as one core health challenge of our time.
Collapse
Affiliation(s)
- Jan Richter
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Germany
| | - Andre Pittig
- Institute of Clinical Psychology and Psychotherapy, Department of Psychology, Technische Universität Dresden, Germany
| | - Maike Hollandt
- Department of Physiological and Clinical Psychology/Psychotherapy, University of Greifswald, Germany
| | - Ulrike Lueken
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Germany
- Department of Psychology, Humboldt University of Berlin, Germany
| |
Collapse
|
25
|
Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. ACTA ACUST UNITED AC 2017; 2:311-327. [PMID: 30062151 PMCID: PMC6034501 DOI: 10.1016/j.jacbts.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The traditional paradigm of cardiovascular disease research derives insight from large-scale, broadly inclusive clinical studies of well-characterized pathologies. These insights are then put into practice according to standardized clinical guidelines. However, stagnation in the development of new cardiovascular therapies and variability in therapeutic response implies that this paradigm is insufficient for reducing the cardiovascular disease burden. In this state-of-the-art review, we examine 3 interconnected ideas we put forth as key concepts for enabling a transition to precision cardiology: 1) precision characterization of cardiovascular disease with machine learning methods; 2) the application of network models of disease to embrace disease complexity; and 3) using insights from the previous 2 ideas to enable pharmacology and polypharmacology systems for more precise drug-to-patient matching and patient-disease stratification. We conclude by exploring the challenges of applying a precision approach to cardiology, which arise from a deficit of the required resources and infrastructure, and emerging evidence for the clinical effectiveness of this nascent approach.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khader Shameer
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben Readhead
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Partho P Sengupta
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medical Biochemistry and Biophysics Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
26
|
Movaghar A, Mailick M, Sterling A, Greenberg J, Saha K. Automated screening for Fragile X premutation carriers based on linguistic and cognitive computational phenotypes. Sci Rep 2017; 7:2674. [PMID: 28572606 PMCID: PMC5454004 DOI: 10.1038/s41598-017-02682-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/18/2017] [Indexed: 01/03/2023] Open
Abstract
Millions of people globally are at high risk for neurodegenerative disorders, infertility or having children with a disability as a result of the Fragile X (FX) premutation, a genetic abnormality in FMR1 that is underdiagnosed. Despite the high prevalence of the FX premutation and its effect on public health and family planning, most FX premutation carriers are unaware of their condition. Since genetic testing for the premutation is resource intensive, it is not practical to screen individuals for FX premutation status using genetic testing. In a novel approach to phenotyping, we have utilized audio recordings and cognitive profiling assessed via self-administered questionnaires on 200 females. Machine-learning methods were developed to discriminate FX premutation carriers from mothers of children with autism spectrum disorders, the comparison group. By using a random forest classifier, FX premutation carriers could be identified in an automated fashion with high precision and recall (0.81 F1 score). Linguistic and cognitive phenotypes that were highly associated with FX premutation carriers were high language dysfluency, poor ability to organize material, and low self-monitoring. Our framework sets the foundation for computational phenotyping strategies to pre-screen large populations for this genetic variant with nominal costs.
Collapse
Affiliation(s)
- Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Marsha Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Audra Sterling
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jan Greenberg
- Department of Social Work, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
27
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
28
|
Weng C, Kahn MG. Clinical Research Informatics for Big Data and Precision Medicine. Yearb Med Inform 2016:211-218. [PMID: 27830253 DOI: 10.15265/iy-2016-019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To reflect on the notable events and significant developments in Clinical Research Informatics (CRI) in the year of 2015 and discuss near-term trends impacting CRI. METHODS We selected key publications that highlight not only important recent advances in CRI but also notable events likely to have significant impact on CRI activities over the next few years or longer, and consulted the discussions in relevant scientific communities and an online living textbook for modern clinical trials. We also related the new concepts with old problems to improve the continuity of CRI research. RESULTS The highlights in CRI in 2015 include the growing adoption of electronic health records (EHR), the rapid development of regional, national, and global clinical data research networks for using EHR data to integrate scalable clinical research with clinical care and generate robust medical evidence. Data quality, integration, and fusion, data access by researchers, study transparency, results reproducibility, and infrastructure sustainability are persistent challenges. CONCLUSION The advances in Big Data Analytics and Internet technologies together with the engagement of citizens in sciences are shaping the global clinical research enterprise, which is getting more open and increasingly stakeholder-centered, where stakeholders include patients, clinicians, researchers, and sponsors.
Collapse
Affiliation(s)
- C Weng
- Chunhua Weng, PhD, FACMI, Department of Biomedical Informatics, Columbia University, 622 W 168 Street, PH-20, New York, NY 10032, USA, E-mail:
| | | |
Collapse
|
29
|
Hochheiser H, Castine M, Harris D, Savova G, Jacobson RS. An information model for computable cancer phenotypes. BMC Med Inform Decis Mak 2016; 16:121. [PMID: 27629872 PMCID: PMC5024416 DOI: 10.1186/s12911-016-0358-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Standards, methods, and tools supporting the integration of clinical data and genomic information are an area of significant need and rapid growth in biomedical informatics. Integration of cancer clinical data and cancer genomic information poses unique challenges, because of the high volume and complexity of clinical data, as well as the heterogeneity and instability of cancer genome data when compared with germline data. Current information models of clinical and genomic data are not sufficiently expressive to represent individual observations and to aggregate those observations into longitudinal summaries over the course of cancer care. These models are acutely needed to support the development of systems and tools for generating the so called clinical "deep phenotype" of individual cancer patients, a process which remains almost entirely manual in cancer research and precision medicine. METHODS Reviews of existing ontologies and interviews with cancer researchers were used to inform iterative development of a cancer phenotype information model. We translated a subset of the Fast Healthcare Interoperability Resources (FHIR) models into the OWL 2 Description Logic (DL) representation, and added extensions as needed for modeling cancer phenotypes with terms derived from the NCI Thesaurus. Models were validated with domain experts and evaluated against competency questions. RESULTS The DeepPhe Information model represents cancer phenotype data at increasing levels of abstraction from mention level in clinical documents to summaries of key events and findings. We describe the model using breast cancer as an example, depicting methods to represent phenotypic features of cancers, tumors, treatment regimens, and specific biologic behaviors that span the entire course of a patient's disease. CONCLUSIONS We present a multi-scale information model for representing individual document mentions, document level classifications, episodes along a disease course, and phenotype summarization, linking individual observations to high-level summaries in support of subsequent integration and analysis.
Collapse
Affiliation(s)
- Harry Hochheiser
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Rm 523, Pittsburgh, 15206-3701, PA, USA. .,Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Melissa Castine
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Rm 523, Pittsburgh, 15206-3701, PA, USA
| | - David Harris
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Guergana Savova
- Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca S Jacobson
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Boulevard, Rm 523, Pittsburgh, 15206-3701, PA, USA.,Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Lelieveld SH, Veltman JA, Gilissen C. Novel bioinformatic developments for exome sequencing. Hum Genet 2016; 135:603-14. [PMID: 27075447 PMCID: PMC4883269 DOI: 10.1007/s00439-016-1658-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023]
Abstract
With the widespread adoption of next generation sequencing technologies by the genetics community and the rapid decrease in costs per base, exome sequencing has become a standard within the repertoire of genetic experiments for both research and diagnostics. Although bioinformatics now offers standard solutions for the analysis of exome sequencing data, many challenges still remain; especially the increasing scale at which exome data are now being generated has given rise to novel challenges in how to efficiently store, analyze and interpret exome data of this magnitude. In this review we discuss some of the recent developments in bioinformatics for exome sequencing and the directions that this is taking us to. With these developments, exome sequencing is paving the way for the next big challenge, the application of whole genome sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Donders Centre for Neuroscience, Radboudumc, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
- Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Centre for Neuroscience, Radboudumc, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Lelieveld SH, Veltman JA, Gilissen C. Novel bioinformatic developments for exome sequencing. Hum Genet 2016. [PMID: 27075447 DOI: 10.1007/s00439‐016‐1658‐6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With the widespread adoption of next generation sequencing technologies by the genetics community and the rapid decrease in costs per base, exome sequencing has become a standard within the repertoire of genetic experiments for both research and diagnostics. Although bioinformatics now offers standard solutions for the analysis of exome sequencing data, many challenges still remain; especially the increasing scale at which exome data are now being generated has given rise to novel challenges in how to efficiently store, analyze and interpret exome data of this magnitude. In this review we discuss some of the recent developments in bioinformatics for exome sequencing and the directions that this is taking us to. With these developments, exome sequencing is paving the way for the next big challenge, the application of whole genome sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands
| | - Joris A Veltman
- Department of Human Genetics, Donders Centre for Neuroscience, Radboudumc, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.,Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Donders Centre for Neuroscience, Radboudumc, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|