1
|
Spanakis M, Tzamali E, Tzedakis G, Koumpouzi C, Pediaditis M, Tsatsakis A, Sakkalis V. Artificial Intelligence Models and Tools for the Assessment of Drug-Herb Interactions. Pharmaceuticals (Basel) 2025; 18:282. [PMID: 40143062 PMCID: PMC11944892 DOI: 10.3390/ph18030282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool in medical sciences that is revolutionizing various fields of drug research. AI algorithms can analyze large-scale biological data and identify molecular targets and pathways advancing pharmacological knowledge. An especially promising area is the assessment of drug interactions. The AI analysis of large datasets, such as drugs' chemical structure, pharmacological properties, molecular pathways, and known interaction patterns, can provide mechanistic insights and identify potential associations by integrating all this complex information and returning potential risks associated with these interactions. In this context, an area where AI may prove valuable is in the assessment of the underlying mechanisms of drug interactions with natural products (i.e., herbs) that are used as dietary supplements. These products pose a challenging problem since they are complex mixtures of constituents with diverse and limited information regarding their pharmacological properties, especially their pharmacokinetic data. As the use of herbal products and supplements continues to grow, it becomes increasingly important to understand the potential interactions between them and conventional drugs and the associated adverse drug reactions. This review will discuss AI approaches and how they can be exploited in providing valuable mechanistic insights regarding the prediction of interactions between drugs and herbs, and their potential exploitation in experimental validation or clinical utilization.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Toxicology and Forensic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| | - Eleftheria Tzamali
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| | - Georgios Tzedakis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| | - Chryssalenia Koumpouzi
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| | - Matthew Pediaditis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| | - Aristides Tsatsakis
- Department of Toxicology and Forensic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Vangelis Sakkalis
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology—Hellas, 70013 Heraklion, Greece; (E.T.); (G.T.); (C.K.); (M.P.); (V.S.)
| |
Collapse
|
2
|
Ireland D, Rabeler C, Rao S, Richardson RJ, Collins EMS. Distinguishing classes of neuroactive drugs based on computational physicochemical properties and experimental phenotypic profiling in planarians. PLoS One 2025; 20:e0315394. [PMID: 39883642 PMCID: PMC11781733 DOI: 10.1371/journal.pone.0315394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
Mental illnesses put a tremendous burden on afflicted individuals and society. Identification of novel drugs to treat such conditions is intrinsically challenging due to the complexity of neuropsychiatric diseases and the need for a systems-level understanding that goes beyond single molecule-target interactions. Thus far, drug discovery approaches focused on target-based in silico or in vitro high-throughput screening (HTS) have had limited success because they cannot capture pathway interactions or predict how a compound will affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mammalian studies are too time-consuming and cost-prohibitive for the early stages of drug discovery. Behavioral medium-throughput screening (MTS) in small organisms promises to address this need and complement in silico and in vitro HTS to improve the discovery of novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater planarian Dugesia japonica-an invertebrate system used for neurotoxicant testing-to evaluate the extent to which complementary insight could be gained from the two data streams. In this pilot study, our goal was to classify 19 neuroactive compounds into their functional categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was performed with the same computational methods, using either physicochemical descriptors or planarian behavioral profiling. As it was not obvious a priori which classification method was most suited to this task, we compared the performance of four classification approaches. We used principal coordinate analysis or uniform manifold approximation and projection, each coupled with linear discriminant analysis, and two types of machine learning models-artificial neural net ensembles and support vector machines. Classification based on physicochemical properties had comparable accuracy to classification based on planarian profiling, especially with the machine learning models that all had accuracies of 90-100%. Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus yielding additional information compared to cheminformatics. Given that planarian behavioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing and requires zero a priori knowledge about a chemical, it is a promising experimental system to complement in silico cheminformatics to identify new drug candidates.
Collapse
Affiliation(s)
- Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Sagar Rao
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Michigan Institute for Data and AI in Society, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Alatawi AD, Venkatesan K, Asseri K, Paulsamy P, Alqifari SF, Ahmed R, Nagoor Thangam MM, Sirag N, Qureshi AA, Elsayes HA, Faried Bahgat Z, Bahnsawy NSM, Prabahar K, Dawood BMAE. Targeting Ferroptosis in Rare Neurological Disorders Including Pediatric Conditions: Innovations and Therapeutic Challenges. Biomedicines 2025; 13:265. [PMID: 40002678 PMCID: PMC11853599 DOI: 10.3390/biomedicines13020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Ferroptosis, characterized by iron dependency and lipid peroxidation, has emerged as a key mechanism underlying neurodegeneration in rare neurological disorders. These conditions, often marked by significant therapeutic gaps and high unmet medical needs, present unique challenges for intervention development. This review examines the involvement of ferroptosis in rare neurological disease pathogenesis, focusing on its role in oxidative damage and neuronal dysfunction. We explore recent pharmacological advancements, including iron chelators, lipid peroxidation blockers, and antioxidant-based strategies, designed to target ferroptosis. While these approaches show promise, challenges such as disease heterogeneity, limited diagnostic tools, and small patient cohorts hinder progress. Furthermore, we discuss the translational and regulatory barriers to implementing ferroptosis-based therapies in clinical practice. By addressing these obstacles and fostering innovative solutions, this review underscores the potential of ferroptosis-targeting strategies to revolutionize treatment paradigms for rare neurological disorders.
Collapse
Affiliation(s)
- Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Khalid Asseri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saleh F. Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Rehab Ahmed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | | | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (N.S.)
| | - Absar A. Qureshi
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia; (K.A.); (A.A.Q.)
| | - Hala Ahmed Elsayes
- Department of Psychiatric and Mental Health Nursing, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Psychiatric and Mental Health, Faculty of Nursing, Tanta University, Tanta 31527, Egypt
| | - Zeinab Faried Bahgat
- Department of Medical-Surgical Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Medical-Surgical Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| | - Nesren S. M. Bahnsawy
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh 11481, Saudi Arabia;
- Department of Pediatric Nursing, Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (S.F.A.); (K.P.)
| | - Basma Mahmoud Abd Elhamid Dawood
- Department of Pediatric Nursing, Faculty of Nursing, Tanta University, Tanta 31527, Egypt;
- Department of Pediatric Nursing, College of Nursing, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Xiao M, Zheng Q, Popa P, Mi X, Hu J, Zou F, Zou B. Drug molecular representations for drug response predictions: a comprehensive investigation via machine learning methods. Sci Rep 2025; 15:20. [PMID: 39748003 PMCID: PMC11696021 DOI: 10.1038/s41598-024-84711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
The integration of drug molecular representations into predictive models for Drug Response Prediction (DRP) is a standard procedure in pharmaceutical research and development. However, the comparative effectiveness of combining these representations with genetic profiles for DRP remains unclear. This study conducts a comprehensive evaluation of the efficacy of various drug molecular representations employing cutting-edge machine learning models under various experimental settings. Our findings reveal that the inclusion of molecular representations from either PubChem fingerprints or SMILES can significantly enhance the performance of DRPs when used in conjunction with deep learning models. However, the optimal choice of drug molecular representation can vary depending on the predictive model and the specific DRP task. The insights derived from our study offer useful guidance on selecting the most suitable drug molecular representations for constructing efficient predictive models for DRPs, aiding for drug repurposing, personalized medicine, and new drug discovery.
Collapse
Affiliation(s)
- Meisheng Xiao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Qianhui Zheng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Xinlei Mi
- Gilead Science, Inc, Foster City, USA
| | - Jianhua Hu
- Department of Biostatistics, Columbia University, New York, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Baiming Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA.
- School of Nursing, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
5
|
Saranya KR, Vimina ER. DRN-CDR: A cancer drug response prediction model using multi-omics and drug features. Comput Biol Chem 2024; 112:108175. [PMID: 39191166 DOI: 10.1016/j.compbiolchem.2024.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Cancer drug response (CDR) prediction is an important area of research that aims to personalize cancer therapy, optimizing treatment plans for maximum effectiveness while minimizing potential negative effects. Despite the advancements in Deep learning techniques, the effective integration of multi-omics data for drug response prediction remains challenging. In this paper, a regression method using Deep ResNet for CDR (DRN-CDR) prediction is proposed. We aim to explore the potential of considering sole cancer genes in drug response prediction. Here the multi-omics data such as gene expressions, mutation data, and methylation data along with the molecular structural information of drugs were integrated to predict the IC50 values of drugs. Drug features are extracted by employing a Uniform Graph Convolution Network, while Cell line features are extracted using a combination of Convolutional Neural Network and Fully Connected Networks. These features are then concatenated and fed into a deep ResNet for the prediction of IC50 values between Drug - Cell line pairs. The proposed method yielded higher Pearson's correlation coefficient (rp) of 0.7938 with lowest Root Mean Squared Error (RMSE) value of 0.92 when compared with similar methods of tCNNS, MOLI, DeepCDR, TGSA, NIHGCN, DeepTTA, GraTransDRP and TSGCNN. Further, when the model is extended to a classification problem to categorize drugs as sensitive or resistant, we achieved AUC and AUPR measures of 0.7623 and 0.7691, respectively. The drugs such as Tivozanib, SNX-2112, CGP-60474, PHA-665752, Foretinib etc., exhibited low median IC50 values and were found to be effective anti-cancer drugs. The case studies with different TCGA cancer types also revealed the effectiveness of SNX-2112, CGP-60474, Foretinib, Cisplatin, Vinblastine etc. This consistent pattern strongly suggests the effectiveness of the model in predicting CDR.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India
| | - E R Vimina
- Department of Computer Science and IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| |
Collapse
|
6
|
Chen J, Tao R, Qiu Y, Yuan Q. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Brief Bioinform 2024; 25:bbae481. [PMID: 39327064 PMCID: PMC11427075 DOI: 10.1093/bib/bbae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$\pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Ran Tao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Yi Qiu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Qun Yuan
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, 215153 Suzhou, China
| |
Collapse
|
7
|
Ouyang B, Shan C, Shen S, Dai X, Chen Q, Su X, Cao Y, Qin X, He Y, Wang S, Xu R, Hu R, Shi L, Lu T, Yang W, Peng S, Zhang J, Wang J, Li D, Pang Z. AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer. Nat Commun 2024; 15:7560. [PMID: 39215014 PMCID: PMC11364624 DOI: 10.1038/s41467-024-51980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.
Collapse
Affiliation(s)
- Boshu Ouyang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Caihua Shan
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Shun Shen
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, P. R. China
| | - Xinnan Dai
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaomin Su
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Yongbin Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xifeng Qin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ying He
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Siyu Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruizhe Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Tun Lu
- School of Computer Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University); Zhuhai, Guangdong, 519000, P. R. China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| | - Dongsheng Li
- Microsoft Research Asia, Shanghai, 200232, P. R. China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
8
|
Zabihian A, Asghari J, Hooshmand M, Gharaghani S. A comparative analysis of computational drug repurposing approaches: proposing a novel tensor-matrix-tensor factorization method. Mol Divers 2024; 28:2177-2196. [PMID: 38683487 DOI: 10.1007/s11030-024-10851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Efficient drug discovery relies on drug repurposing, an important and open research field. This work presents a novel factorization method and a practical comparison of different approaches for drug repurposing. First, we propose a novel tensor-matrix-tensor (TMT) formulation as a new data array method with a gradient-based factorization procedure. Additionally, this paper examines and contrasts four computational drug repurposing approaches-factorization-based methods, machine learning methods, deep learning methods, and graph neural networks-to fulfill the second purpose. We test the strategies on two datasets and assess each approach's performance, drawbacks, problems, and benefits based on results. The results demonstrate that deep learning techniques work better than other strategies and that their results might be more reliable. Ultimately, graph neural methods need to be in an inductive manner to have a reliable prediction.
Collapse
Affiliation(s)
- Arash Zabihian
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Javad Asghari
- Department of Computer Science and Information Technology, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute of Advanced Studies in Basic Sciences, Zanjan, Iran.
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Mohammadzadeh-Vardin T, Ghareyazi A, Gharizadeh A, Abbasi K, Rabiee HR. DeepDRA: Drug repurposing using multi-omics data integration with autoencoders. PLoS One 2024; 19:e0307649. [PMID: 39058696 PMCID: PMC11280260 DOI: 10.1371/journal.pone.0307649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has become one of the biggest challenges in the world today. Different treatments are used against cancer; drug-based treatments have shown better results. On the other hand, designing new drugs for cancer is costly and time-consuming. Some computational methods, such as machine learning and deep learning, have been suggested to solve these challenges using drug repurposing. Despite the promise of classical machine-learning methods in repurposing cancer drugs and predicting responses, deep-learning methods performed better. This study aims to develop a deep-learning model that predicts cancer drug response based on multi-omics data, drug descriptors, and drug fingerprints and facilitates the repurposing of drugs based on those responses. To reduce multi-omics data's dimensionality, we use autoencoders. As a multi-task learning model, autoencoders are connected to MLPs. We extensively tested our model using three primary datasets: GDSC, CTRP, and CCLE to determine its efficacy. In multiple experiments, our model consistently outperforms existing state-of-the-art methods. Compared to state-of-the-art models, our model achieves an impressive AUPRC of 0.99. Furthermore, in a cross-dataset evaluation, where the model is trained on GDSC and tested on CCLE, it surpasses the performance of three previous works, achieving an AUPRC of 0.72. In conclusion, we presented a deep learning model that outperforms the current state-of-the-art regarding generalization. Using this model, we could assess drug responses and explore drug repurposing, leading to the discovery of novel cancer drugs. Our study highlights the potential for advanced deep learning to advance cancer therapeutic precision.
Collapse
Affiliation(s)
- Taha Mohammadzadeh-Vardin
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Amin Ghareyazi
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Ali Gharizadeh
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| | - Karim Abbasi
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
- Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Iran
| | - Hamid R. Rabiee
- Department of Computer Engineering, Bioinformatics and Computational Biology Lab, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
10
|
Nguyen T, Campbell A, Kumar A, Amponsah E, Fiterau M, Shahriyari L. Optimal fusion of genotype and drug embeddings in predicting cancer drug response. Brief Bioinform 2024; 25:bbae227. [PMID: 38754407 PMCID: PMC11097979 DOI: 10.1093/bib/bbae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Predicting cancer drug response using both genomics and drug features has shown some success compared to using genomics features alone. However, there has been limited research done on how best to combine or fuse the two types of features. Using a visible neural network with two deep learning branches for genes and drug features as the base architecture, we experimented with different fusion functions and fusion points. Our experiments show that injecting multiplicative relationships between gene and drug latent features into the original concatenation-based architecture DrugCell significantly improved the overall predictive performance and outperformed other baseline models. We also show that different fusion methods respond differently to different fusion points, indicating that the relationship between drug features and different hierarchical biological level of gene features is optimally captured using different methods. Considering both predictive performance and runtime speed, tensor product partial is the best-performing fusion function to combine late-stage representations of drug and gene features to predict cancer drug response.
Collapse
Affiliation(s)
- Trang Nguyen
- Department of Computer Science, University of Massachusetts Amherst, Amherst 01002, MA, United States
| | - Anthony Campbell
- Department of Computer Science, University of Massachusetts Amherst, Amherst 01002, MA, United States
| | - Ankit Kumar
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst 01002, MA, United States
| | - Edwin Amponsah
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst 01002, MA, United States
| | - Madalina Fiterau
- Department of Computer Science, University of Massachusetts Amherst, Amherst 01002, MA, United States
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst 01002, MA, United States
| |
Collapse
|
11
|
Hajim WI, Zainudin S, Mohd Daud K, Alheeti K. Optimized models and deep learning methods for drug response prediction in cancer treatments: a review. PeerJ Comput Sci 2024; 10:e1903. [PMID: 38660174 PMCID: PMC11042005 DOI: 10.7717/peerj-cs.1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in deep learning (DL) have played a crucial role in aiding experts to develop personalized healthcare services, particularly in drug response prediction (DRP) for cancer patients. The DL's techniques contribution to this field is significant, and they have proven indispensable in the medical field. This review aims to analyze the diverse effectiveness of various DL models in making these predictions, drawing on research published from 2017 to 2023. We utilized the VOS-Viewer 1.6.18 software to create a word cloud from the titles and abstracts of the selected studies. This study offers insights into the focus areas within DL models used for drug response. The word cloud revealed a strong link between certain keywords and grouped themes, highlighting terms such as deep learning, machine learning, precision medicine, precision oncology, drug response prediction, and personalized medicine. In order to achieve an advance in DRP using DL, the researchers need to work on enhancing the models' generalizability and interoperability. It is also crucial to develop models that not only accurately represent various architectures but also simplify these architectures, balancing the complexity with the predictive capabilities. In the future, researchers should try to combine methods that make DL models easier to understand; this will make DRP reviews more open and help doctors trust the decisions made by DL models in cancer DRP.
Collapse
Affiliation(s)
- Wesam Ibrahim Hajim
- Department of Applied Geology, College of Sciences, Tirkit University, Tikrit, Salah ad Din, Iraq
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Suhaila Zainudin
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Khattab Alheeti
- Department of Computer Networking Systems, College of Computer Sciences and Information Technology, University of Anbar, Al Anbar, Ramadi, Iraq
| |
Collapse
|
12
|
Park A, Lee Y, Nam S. A performance evaluation of drug response prediction models for individual drugs. Sci Rep 2023; 13:11911. [PMID: 37488424 PMCID: PMC10366128 DOI: 10.1038/s41598-023-39179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Drug response prediction is important to establish personalized medicine for cancer therapy. Model construction for predicting drug response (i.e., cell viability half-maximal inhibitory concentration [IC50]) of an individual drug by inputting pharmacogenomics in disease models remains critical. Machine learning (ML) has been predominantly applied for prediction, despite the advent of deep learning (DL). Moreover, whether DL or traditional ML models are superior for predicting cell viability IC50s has to be established. Herein, we constructed ML and DL drug response prediction models for 24 individual drugs and compared the performance of the models by employing gene expression and mutation profiles of cancer cell lines as input. We observed no significant difference in drug response prediction performance between DL and ML models for 24 drugs [root mean squared error (RMSE) ranging from 0.284 to 3.563 for DL and from 0.274 to 2.697 for ML; R2 ranging from -7.405 to 0.331 for DL and from -8.113 to 0.470 for ML]. Among the 24 individual drugs, the ridge model of panobinostat exhibited the best performance (R2 0.470 and RMSE 0.623). Thus, we selected the ridge model of panobinostat for further application of explainable artificial intelligence (XAI). Using XAI, we further identified important genomic features for panobinostat response prediction in the ridge model, suggesting the genomic features of 22 genes. Based on our findings, results for an individual drug employing both DL and ML models were comparable. Our study confirms the applicability of drug response prediction models for individual drugs.
Collapse
Affiliation(s)
- Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Yeeun Lee
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea.
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
13
|
Toseef M, Olayemi Petinrin O, Wang F, Rahaman S, Liu Z, Li X, Wong KC. Deep transfer learning for clinical decision-making based on high-throughput data: comprehensive survey with benchmark results. Brief Bioinform 2023:bbad254. [PMID: 37455245 DOI: 10.1093/bib/bbad254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
The rapid growth of omics-based data has revolutionized biomedical research and precision medicine, allowing machine learning models to be developed for cutting-edge performance. However, despite the wealth of high-throughput data available, the performance of these models is hindered by the lack of sufficient training data, particularly in clinical research (in vivo experiments). As a result, translating this knowledge into clinical practice, such as predicting drug responses, remains a challenging task. Transfer learning is a promising tool that bridges the gap between data domains by transferring knowledge from the source to the target domain. Researchers have proposed transfer learning to predict clinical outcomes by leveraging pre-clinical data (mouse, zebrafish), highlighting its vast potential. In this work, we present a comprehensive literature review of deep transfer learning methods for health informatics and clinical decision-making, focusing on high-throughput molecular data. Previous reviews mostly covered image-based transfer learning works, while we present a more detailed analysis of transfer learning papers. Furthermore, we evaluated original studies based on different evaluation settings across cross-validations, data splits and model architectures. The result shows that those transfer learning methods have great potential; high-throughput sequencing data and state-of-the-art deep learning models lead to significant insights and conclusions. Additionally, we explored various datasets in transfer learning papers with statistics and visualization.
Collapse
Affiliation(s)
- Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR
| | | | - Fuzhou Wang
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR
| | - Saifur Rahaman
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR
| | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong SAR
- Hong Kong Institute for Data Science, City University of Hong Kong, Hong Kong SAR
| |
Collapse
|
14
|
Zabihian A, Sayyad FZ, Hashemi SM, Shami Tanha R, Hooshmand M, Gharaghani S. DEDTI versus IEDTI: efficient and predictive models of drug-target interactions. Sci Rep 2023; 13:9238. [PMID: 37286613 DOI: 10.1038/s41598-023-36438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Drug repurposing is an active area of research that aims to decrease the cost and time of drug development. Most of those efforts are primarily concerned with the prediction of drug-target interactions. Many evaluation models, from matrix factorization to more cutting-edge deep neural networks, have come to the scene to identify such relations. Some predictive models are devoted to the prediction's quality, and others are devoted to the efficiency of the predictive models, e.g., embedding generation. In this work, we propose new representations of drugs and targets useful for more prediction and analysis. Using these representations, we propose two inductive, deep network models of IEDTI and DEDTI for drug-target interaction prediction. Both of them use the accumulation of new representations. The IEDTI takes advantage of triplet and maps the input accumulated similarity features into meaningful embedding corresponding vectors. Then, it applies a deep predictive model to each drug-target pair to evaluate their interaction. The DEDTI directly uses the accumulated similarity feature vectors of drugs and targets and applies a predictive model on each pair to identify their interactions. We have done a comprehensive simulation on the DTINet dataset as well as gold standard datasets, and the results show that DEDTI outperforms IEDTI and the state-of-the-art models. In addition, we conduct a docking study on new predicted interactions between two drug-target pairs, and the results confirm acceptable drug-target binding affinity between both predicted pairs.
Collapse
Affiliation(s)
- Arash Zabihian
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Faeze Zakaryapour Sayyad
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Seyyed Morteza Hashemi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Reza Shami Tanha
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
15
|
Das T, Bhattarai K, Rajaganapathy S, Wang L, Cerhan JR, Zong N. Leveraging multi-source to resolve inconsistency across pharmacogenomic datasets in drug sensitivity prediction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.25.23290546. [PMID: 37333219 PMCID: PMC10274988 DOI: 10.1101/2023.05.25.23290546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Pharmacogenomics datasets have been generated for various purposes, such as investigating different biomarkers. However, when studying the same cell line with the same drugs, differences in drug responses exist between studies. These variations arise from factors such as inter-tumoral heterogeneity, experimental standardization, and the complexity of cell subtypes. Consequently, drug response prediction suffers from limited generalizability. To address these challenges, we propose a computational model based on Federated Learning (FL) for drug response prediction. By leveraging three pharmacogenomics datasets (CCLE, GDSC2, and gCSI), we evaluate the performance of our model across diverse cell line-based databases. Our results demonstrate superior predictive performance compared to baseline methods and traditional FL approaches through various experimental tests. This study underscores the potential of employing FL to leverage multiple data sources, enabling the development of generalized models that account for inconsistencies among pharmacogenomics datasets. By addressing the limitations of low generalizability, our approach contributes to advancing drug response prediction in precision oncology.
Collapse
Affiliation(s)
- Trisha Das
- University of Illinois Urbana-Champaign, Champaign, Illinois, United States
| | | | - Sivaraman Rajaganapathy
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - James R. Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Nansu Zong
- Department of Artificial Intelligence and Informatics Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Zhang M, Gao H, Liao X, Ning B, Gu H, Yu B. DBGRU-SE: predicting drug-drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism. Brief Bioinform 2023:7176312. [PMID: 37225428 DOI: 10.1093/bib/bbad184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/03/2023] [Accepted: 04/23/2023] [Indexed: 05/26/2023] Open
Abstract
The prediction of drug-drug interactions (DDIs) is essential for the development and repositioning of new drugs. Meanwhile, they play a vital role in the fields of biopharmaceuticals, disease diagnosis and pharmacological treatment. This article proposes a new method called DBGRU-SE for predicting DDIs. Firstly, FP3 fingerprints, MACCS fingerprints, Pubchem fingerprints and 1D and 2D molecular descriptors are used to extract the feature information of the drugs. Secondly, Group Lasso is used to remove redundant features. Then, SMOTE-ENN is applied to balance the data to obtain the best feature vectors. Finally, the best feature vectors are fed into the classifier combining BiGRU and squeeze-and-excitation (SE) attention mechanisms to predict DDIs. After applying five-fold cross-validation, The ACC values of DBGRU-SE model on the two datasets are 97.51 and 94.98%, and the AUC are 99.60 and 98.85%, respectively. The results showed that DBGRU-SE had good predictive performance for drug-drug interactions.
Collapse
Affiliation(s)
| | - Hongli Gao
- Qingdao University of Science and Technology, China
| | - Xin Liao
- Qingdao University of Science and Technology, China
| | - Baoxing Ning
- Qingdao University of Science and Technology, China
| | - Haiming Gu
- Qingdao University of Science and Technology, China
| | - Bin Yu
- Qingdao University of Science and Technology, China
| |
Collapse
|
17
|
Singh DP, Kaushik B. CTDN (Convolutional Temporal Based Deep- Neural Network): An Improvised Stacked Hybrid Computational Approach for Anticancer Drug Response Prediction. Comput Biol Chem 2023; 105:107868. [PMID: 37257399 DOI: 10.1016/j.compbiolchem.2023.107868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/02/2023]
Abstract
The characterization of drug - metabolizing enzymes is a significant problem for customized therapy. It is important to choose the right drugs for cancer victims, and the ability to forecast how those drugs will react is usually based on the available information, genetic sequence, and structural properties. To the finest of our knowledge, this is the first study to evaluate optimization algorithms for selection of features and pharmacogenetics categorization using classification methods based on a successful evolutionary algorithm using datasets from the Cancer Cell Line Encyclopaedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC). The study proposes the uses of Firefly and Grey Wolf Optimization techniques for feature extraction, while comparing the traditional Machine Learning (ML), ensemble ML and Stacking Algorithm with the proposed Convolutional Temporal Deep Neural Network or CTDN. With the potential to increase efficiency from the suggested intelligible classifier model for a suggestive chemotherapeutic drugs response prediction, our study is important in particular for selecting an acceptable feature selection method. The comparison analysis demonstrates that the proposed model not only surpasses the prior state-of-the-art methods, but also uses Grey Wolf and Fire Fly Optimization to lessen multicollinearity and overfitting.
Collapse
Affiliation(s)
- Davinder Paul Singh
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India.
| | - Baijnath Kaushik
- School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra 182320, Jammu and Kashmir, India
| |
Collapse
|
18
|
Abbasi Mesrabadi H, Faez K, Pirgazi J. Drug-target interaction prediction based on protein features, using wrapper feature selection. Sci Rep 2023; 13:3594. [PMID: 36869062 PMCID: PMC9984486 DOI: 10.1038/s41598-023-30026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Drug-target interaction prediction is a vital stage in drug development, involving lots of methods. Experimental methods that identify these relationships on the basis of clinical remedies are time-taking, costly, laborious, and complex introducing a lot of challenges. One group of new methods is called computational methods. The development of new computational methods which are more accurate can be preferable to experimental methods, in terms of total cost and time. In this paper, a new computational model to predict drug-target interaction (DTI), consisting of three phases, including feature extraction, feature selection, and classification is proposed. In feature extraction phase, different features such as EAAC, PSSM and etc. would be extracted from sequence of proteins and fingerprint features from drugs. These extracted features would then be combined. In the next step, one of the wrapper feature selection methods named IWSSR, due to the large amount of extracted data, is applied. The selected features are then given to rotation forest classification, to have a more efficient prediction. Actually, the innovation of our work is that we extract different features; and then select features by the use of IWSSR. The accuracy of the rotation forest classifier based on tenfold on the golden standard datasets (enzyme, ion channels, G-protein-coupled receptors, nuclear receptors) is as follows: 98.12, 98.07, 96.82, and 95.64. The results of experiments indicate that the proposed model has an acceptable rate in DTI prediction and is compatible with the proposed methods in other papers.
Collapse
Affiliation(s)
- Hengame Abbasi Mesrabadi
- Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Karim Faez
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Jamshid Pirgazi
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
19
|
Partin A, Brettin TS, Zhu Y, Narykov O, Clyde A, Overbeek J, Stevens RL. Deep learning methods for drug response prediction in cancer: Predominant and emerging trends. Front Med (Lausanne) 2023; 10:1086097. [PMID: 36873878 PMCID: PMC9975164 DOI: 10.3389/fmed.2023.1086097] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Cancer claims millions of lives yearly worldwide. While many therapies have been made available in recent years, by in large cancer remains unsolved. Exploiting computational predictive models to study and treat cancer holds great promise in improving drug development and personalized design of treatment plans, ultimately suppressing tumors, alleviating suffering, and prolonging lives of patients. A wave of recent papers demonstrates promising results in predicting cancer response to drug treatments while utilizing deep learning methods. These papers investigate diverse data representations, neural network architectures, learning methodologies, and evaluations schemes. However, deciphering promising predominant and emerging trends is difficult due to the variety of explored methods and lack of standardized framework for comparing drug response prediction models. To obtain a comprehensive landscape of deep learning methods, we conducted an extensive search and analysis of deep learning models that predict the response to single drug treatments. A total of 61 deep learning-based models have been curated, and summary plots were generated. Based on the analysis, observable patterns and prevalence of methods have been revealed. This review allows to better understand the current state of the field and identify major challenges and promising solution paths.
Collapse
Affiliation(s)
- Alexander Partin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Thomas S. Brettin
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Yitan Zhu
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Oleksandr Narykov
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Austin Clyde
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Jamie Overbeek
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
| | - Rick L. Stevens
- Division of Data Science and Learning, Argonne National Laboratory, Lemont, IL, United States
- Department of Computer Science, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Shen B, Feng F, Li K, Lin P, Ma L, Li H. A systematic assessment of deep learning methods for drug response prediction: from in vitro to clinical applications. Brief Bioinform 2023; 24:6961794. [PMID: 36575826 DOI: 10.1093/bib/bbac605] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Drug response prediction is an important problem in personalized cancer therapy. Among various newly developed models, significant improvement in prediction performance has been reported using deep learning methods. However, systematic comparisons of deep learning methods, especially of the transferability from preclinical models to clinical cohorts, are currently lacking. To provide a more rigorous assessment, the performance of six representative deep learning methods for drug response prediction using nine evaluation metrics, including the overall prediction accuracy, predictability of each drug, potential associated factors and transferability to clinical cohorts, in multiple application scenarios was benchmarked. Most methods show promising prediction within cell line datasets, and TGSA, with its lower time cost and better performance, is recommended. Although the performance metrics decrease when applying models trained on cell lines to patients, a certain amount of power to distinguish clinical response on some drugs can be maintained using CRDNN and TGSA. With these assessments, we provide a guidance for researchers to choose appropriate methods, as well as insights into future directions for the development of more effective methods in clinical scenarios.
Collapse
Affiliation(s)
- Bihan Shen
- Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fangyoumin Feng
- Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kunshi Li
- Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Lin
- Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangxiao Ma
- Bio-Med Big Data Center at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Li
- Cancer Systems Biology group at Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Xi J, Wang D, Yang X, Zhang W, Huang Q. Cancer omic data based explainable AI drug recommendation inference: A traceability perspective for explainability. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Shin J, Piao Y, Bang D, Kim S, Jo K. DRPreter: Interpretable Anticancer Drug Response Prediction Using Knowledge-Guided Graph Neural Networks and Transformer. Int J Mol Sci 2022; 23:13919. [PMID: 36430395 PMCID: PMC9699175 DOI: 10.3390/ijms232213919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Some of the recent studies on drug sensitivity prediction have applied graph neural networks to leverage prior knowledge on the drug structure or gene network, and other studies have focused on the interpretability of the model to delineate the mechanism governing the drug response. However, it is crucial to make a prediction model that is both knowledge-guided and interpretable, so that the prediction accuracy is improved and practical use of the model can be enhanced. We propose an interpretable model called DRPreter (drug response predictor and interpreter) that predicts the anticancer drug response. DRPreter learns cell line and drug information with graph neural networks; the cell-line graph is further divided into multiple subgraphs with domain knowledge on biological pathways. A type-aware transformer in DRPreter helps detect relationships between pathways and a drug, highlighting important pathways that are involved in the drug response. Extensive experiments on the GDSC (Genomics of Drug Sensitivity and Cancer) dataset demonstrate that the proposed method outperforms state-of-the-art graph-based models for drug response prediction. In addition, DRPreter detected putative key genes and pathways for specific drug-cell-line pairs with supporting evidence in the literature, implying that our model can help interpret the mechanism of action of the drug.
Collapse
Affiliation(s)
- Jihye Shin
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
- Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Korea
- MOGAM Institute for Biomedical Research, Yongin-si 16924, Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
23
|
Yingtaweesittikul H, Wu J, Mongia A, Peres R, Ko K, Nagarajan N, Suphavilai C. CREAMMIST: an integrative probabilistic database for cancer drug response prediction. Nucleic Acids Res 2022; 51:D1242-D1248. [PMID: 36259664 PMCID: PMC9825458 DOI: 10.1093/nar/gkac911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Extensive in vitro cancer drug screening datasets have enabled scientists to identify biomarkers and develop machine learning models for predicting drug sensitivity. While most advancements have focused on omics profiles, cancer drug sensitivity scores precalculated by the original sources are often used as-is, without consideration for variabilities between studies. It is well-known that significant inconsistencies exist between the drug sensitivity scores across datasets due to differences in experimental setups and preprocessing methods used to obtain the sensitivity scores. As a result, many studies opt to focus only on a single dataset, leading to underutilization of available data and a limited interpretation of cancer pharmacogenomics analysis. To overcome these caveats, we have developed CREAMMIST (https://creammist.mtms.dev), an integrative database that enables users to obtain an integrative dose-response curve, to capture uncertainty (or high certainty when multiple datasets well align) across five widely used cancer cell-line drug-response datasets. We utilized the Bayesian framework to systematically integrate all available dose-response values across datasets (>14 millions dose-response data points). CREAMMIST provides easy-to-use statistics derived from the integrative dose-response curves for various downstream analyses such as identifying biomarkers, selecting drug concentrations for experiments, and training robust machine learning models.
Collapse
Affiliation(s)
| | - Jiaxi Wu
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Aanchal Mongia
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Rafael Peres
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | - Karrie Ko
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
| | | | - Chayaporn Suphavilai
- To whom correspondence should be addressed. Tel: +65 86213683; Fax: +65 68088292;
| |
Collapse
|
24
|
Mariappan R, Jayagopal A, Sien HZ, Rajan V. Neural Collective Matrix Factorization for integrated analysis of heterogeneous biomedical data. Bioinformatics 2022; 38:4554-4561. [PMID: 35929808 DOI: 10.1093/bioinformatics/btac543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION In many biomedical studies, there arises the need to integrate data from multiple directly or indirectly related sources. Collective matrix factorization (CMF) and its variants are models designed to collectively learn from arbitrary collections of matrices. The latent factors learnt are rich integrative representations that can be used in downstream tasks, such as clustering or relation prediction with standard machine-learning models. Previous CMF-based methods have numerous modeling limitations. They do not adequately capture complex non-linear interactions and do not explicitly model varying sparsity and noise levels in the inputs, and some cannot model inputs with multiple datatypes. These inadequacies limit their use on many biomedical datasets. RESULTS To address these limitations, we develop Neural Collective Matrix Factorization (NCMF), the first fully neural approach to CMF. We evaluate NCMF on relation prediction tasks of gene-disease association prediction and adverse drug event prediction, using multiple datasets. In each case, data are obtained from heterogeneous publicly available databases and used to learn representations to build predictive models. NCMF is found to outperform previous CMF-based methods and several state-of-the-art graph embedding methods for representation learning in our experiments. Our experiments illustrate the versatility and efficacy of NCMF in representation learning for seamless integration of heterogeneous data. AVAILABILITY AND IMPLEMENTATION https://github.com/ajayago/NCMF_bioinformatics. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ragunathan Mariappan
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Aishwarya Jayagopal
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Ho Zong Sien
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Vaibhav Rajan
- Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore 117417, Singapore
| |
Collapse
|
25
|
Lim S, Lee S, Piao Y, Choi M, Bang D, Gu J, Kim S. On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach. Comput Struct Biotechnol J 2022; 20:4288-4304. [PMID: 36051875 PMCID: PMC9399946 DOI: 10.1016/j.csbj.2022.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
A large number of chemical compounds are available in databases such as PubChem and ZINC. However, currently known compounds, though large, represent only a fraction of possible compounds, which is known as chemical space. Many of these compounds in the databases are annotated with properties and assay data that can be used for drug discovery efforts. For this goal, a number of machine learning algorithms have been developed and recent deep learning technologies can be effectively used to navigate chemical space, especially for unknown chemical compounds, in terms of drug-related tasks. In this article, we survey how deep learning technologies can model and utilize chemical compound information in a task-oriented way by exploiting annotated properties and assay data in the chemical compounds databases. We first compile what kind of tasks are trying to be accomplished by machine learning methods. Then, we survey deep learning technologies to show their modeling power and current applications for accomplishing drug related tasks. Next, we survey deep learning techniques to address the insufficiency issue of annotated data for more effective navigation of chemical space. Chemical compound information alone may not be powerful enough for drug related tasks, thus we survey what kind of information, such as assay and gene expression data, can be used to improve the prediction power of deep learning models. Finally, we conclude this survey with four important newly developed technologies that are yet to be fully incorporated into computational analysis of chemical information.
Collapse
Affiliation(s)
- Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Sangseon Lee
- Institute of Computer Technology, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Yinhua Piao
- Department of Computer Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - MinGyu Choi
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Dongmin Bang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Jeonghyeon Gu
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
- MOGAM Institute for Biomedical Research, Yong-in 16924, South Korea
- AIGENDRUG Co., Ltd., Gwanak-ro 1, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
26
|
Paltun BG, Kaski S, Mamitsuka H. DIVERSE: Bayesian Data IntegratiVE Learning for Precise Drug ResponSE Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:2197-2207. [PMID: 33705322 DOI: 10.1109/tcbb.2021.3065535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detecting predictive biomarkers from multi-omics data is important for precision medicine, to improve diagnostics of complex diseases and for better treatments. This needs substantial experimental efforts that are made difficult by the heterogeneity of cell lines and huge cost. An effective solution is to build a computational model over the diverse omics data, including genomic, molecular, and environmental information. However, choosing informative and reliable data sources from among the different types of data is a challenging problem. We propose DIVERSE, a framework of Bayesian importance-weighted tri- and bi-matrix factorization(DIVERSE3 or DIVERSE2) to predict drug responses from data of cell lines, drugs, and gene interactions. DIVERSE integrates the data sources systematically, in a step-wise manner, examining the importance of each added data set in turn. More specifically, we sequentially integrate five different data sets, which have not all been combined in earlier bioinformatic methods for predicting drug responses. Empirical experiments show that DIVERSE clearly outperformed five other methods including three state-of-the-art approaches, under cross-validation, particularly in out-of-matrix prediction, which is closer to the setting of real use cases and more challenging than simpler in-matrix prediction. Additionally, case studies for discovering new drugs further confirmed the performance advantage of DIVERSE.
Collapse
|
27
|
From single-omics to interactomics: How can ligand-induced perturbations modulate single-cell phenotypes? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:45-83. [PMID: 35871896 DOI: 10.1016/bs.apcsb.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cells suffer from perturbations by different stimuli, which, consequently, rise to individual alterations in their profile and function that may end up affecting the tissue as a whole. This is no different if we consider the effect of a therapeutic agent on a biological system. As cells are exposed to external ligands their profile can change at different single-omics levels. Detecting how these changes take place through different sequencing technologies is key to a better understanding of the effects of therapeutic agents. Single-cell RNA-sequencing stands out as one of the most common approaches for cell profiling and perturbation analysis. As a result, single-cell transcriptomics data can be integrated with other omics data sources, such as proteomics and epigenomics data, to clarify the perturbation effects and mechanism at the cell level. Appropriate computational tools are key to process and integrate the available information. This chapter focuses on the recent advances on ligand-induced perturbation and single-cell omics computational tools and algorithms, their current limitations, and how the deluge of data can be used to improve the current process of drug research and development.
Collapse
|
28
|
Bieganek C, Aliferis C, Ma S. Prediction of clinical trial enrollment rates. PLoS One 2022; 17:e0263193. [PMID: 35202402 PMCID: PMC8870517 DOI: 10.1371/journal.pone.0263193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Clinical trials represent a critical milestone of translational and clinical sciences. However, poor recruitment to clinical trials has been a long standing problem affecting institutions all over the world. One way to reduce the cost incurred by insufficient enrollment is to minimize initiating trials that are most likely to fall short of their enrollment goal. Hence, the ability to predict which proposed trials will meet enrollment goals prior to the start of the trial is highly beneficial. In the current study, we leveraged a data set extracted from ClinicalTrials.gov that consists of 46,724 U.S. based clinical trials from 1990 to 2020. We constructed 4,636 candidate predictors based on data collected by ClinicalTrials.gov and external sources for enrollment rate prediction using various state-of-the-art machine learning methods. Taking advantage of a nested time series cross-validation design, our models resulted in good predictive performance that is generalizable to future data and stable over time. Moreover, information content analysis revealed the study design related features to be the most informative feature type regarding enrollment. Compared to the performance of models built with all features, the performance of models built with study design related features is only marginally worse (AUC = 0.78 ± 0.03 vs. AUC = 0.76 ± 0.02). The results presented can form the basis for data-driven decision support systems to assess whether proposed clinical trials would likely meet their enrollment goal.
Collapse
Affiliation(s)
- Cameron Bieganek
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States of America
| | - Constantin Aliferis
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States of America
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
29
|
Xia F, Allen J, Balaprakash P, Brettin T, Garcia-Cardona C, Clyde A, Cohn J, Doroshow J, Duan X, Dubinkina V, Evrard Y, Fan YJ, Gans J, He S, Lu P, Maslov S, Partin A, Shukla M, Stahlberg E, Wozniak JM, Yoo H, Zaki G, Zhu Y, Stevens R. A cross-study analysis of drug response prediction in cancer cell lines. Brief Bioinform 2022; 23:bbab356. [PMID: 34524425 PMCID: PMC8769697 DOI: 10.1093/bib/bbab356] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022] Open
Abstract
To enable personalized cancer treatment, machine learning models have been developed to predict drug response as a function of tumor and drug features. However, most algorithm development efforts have relied on cross-validation within a single study to assess model accuracy. While an essential first step, cross-validation within a biological data set typically provides an overly optimistic estimate of the prediction performance on independent test sets. To provide a more rigorous assessment of model generalizability between different studies, we use machine learning to analyze five publicly available cell line-based data sets: National Cancer Institute 60, ancer Therapeutics Response Portal (CTRP), Genomics of Drug Sensitivity in Cancer, Cancer Cell Line Encyclopedia and Genentech Cell Line Screening Initiative (gCSI). Based on observed experimental variability across studies, we explore estimates of prediction upper bounds. We report performance results of a variety of machine learning models, with a multitasking deep neural network achieving the best cross-study generalizability. By multiple measures, models trained on CTRP yield the most accurate predictions on the remaining testing data, and gCSI is the most predictable among the cell line data sets included in this study. With these experiments and further simulations on partial data, two lessons emerge: (1) differences in viability assays can limit model generalizability across studies and (2) drug diversity, more than tumor diversity, is crucial for raising model generalizability in preclinical screening.
Collapse
Affiliation(s)
| | | | | | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | | | | | | | - Ya Ju Fan
- Lawrence Livermore National Laboratory
| | | | | | - Pinyi Lu
- Frederick National Laboratory for Cancer Research
| | | | | | | | | | | | | | - George Zaki
- Frederick National Laboratory for Cancer Research
| | | | - Rick Stevens
- Argonne National Laboratory
- University of Chicago
| |
Collapse
|
30
|
Firoozbakht F, Yousefi B, Schwikowski B. An overview of machine learning methods for monotherapy drug response prediction. Brief Bioinform 2022; 23:bbab408. [PMID: 34619752 PMCID: PMC8769705 DOI: 10.1093/bib/bbab408] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
For an increasing number of preclinical samples, both detailed molecular profiles and their responses to various drugs are becoming available. Efforts to understand, and predict, drug responses in a data-driven manner have led to a proliferation of machine learning (ML) methods, with the longer term ambition of predicting clinical drug responses. Here, we provide a uniquely wide and deep systematic review of the rapidly evolving literature on monotherapy drug response prediction, with a systematic characterization and classification that comprises more than 70 ML methods in 13 subclasses, their input and output data types, modes of evaluation, and code and software availability. ML experts are provided with a fundamental understanding of the biological problem, and how ML methods are configured for it. Biologists and biomedical researchers are introduced to the basic principles of applicable ML methods, and their application to the problem of drug response prediction. We also provide systematic overviews of commonly used data sources used for training and evaluation methods.
Collapse
Affiliation(s)
- Farzaneh Firoozbakht
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Behnam Yousefi
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
- Sorbonne Université, École Doctorale Complexite du Vivant, Paris, France
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
31
|
Mourragui SMC, Loog M, Vis DJ, Moore K, Manjon AG, van de Wiel MA, Reinders MJT, Wessels LFA. Predicting patient response with models trained on cell lines and patient-derived xenografts by nonlinear transfer learning. Proc Natl Acad Sci U S A 2021; 118:e2106682118. [PMID: 34873056 PMCID: PMC8670522 DOI: 10.1073/pnas.2106682118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Preclinical models have been the workhorse of cancer research, producing massive amounts of drug response data. Unfortunately, translating response biomarkers derived from these datasets to human tumors has proven to be particularly challenging. To address this challenge, we developed TRANSACT, a computational framework that builds a consensus space to capture biological processes common to preclinical models and human tumors and exploits this space to construct drug response predictors that robustly transfer from preclinical models to human tumors. TRANSACT performs favorably compared to four competing approaches, including two deep learning approaches, on a set of 23 drug prediction challenges on The Cancer Genome Atlas and 226 metastatic tumors from the Hartwig Medical Foundation. We demonstrate that response predictions deliver a robust performance for a number of therapies of high clinical importance: platinum-based chemotherapies, gemcitabine, and paclitaxel. In contrast to other approaches, we demonstrate the interpretability of the TRANSACT predictors by correctly identifying known biomarkers of targeted therapies, and we propose potential mechanisms that mediate the resistance to two chemotherapeutic agents.
Collapse
Affiliation(s)
- Soufiane M C Mourragui
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 XE Delft, The Netherlands
| | - Marco Loog
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 XE Delft, The Netherlands
- Department of Computer Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel J Vis
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Kat Moore
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anna G Manjon
- Division of Cell Biology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mark A van de Wiel
- Epidemiology and Biostatistics, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
- Medical Research Council Biostatistics Unit, Cambridge University, Cambridge CB2 0SR, United Kingdom
| | - Marcel J T Reinders
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 XE Delft, The Netherlands;
- Leiden Computational Biology Center, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Department of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 XE Delft, The Netherlands
| |
Collapse
|
32
|
Güvenç Paltun B, Kaski S, Mamitsuka H. Machine learning approaches for drug combination therapies. Brief Bioinform 2021; 22:bbab293. [PMID: 34368832 PMCID: PMC8574999 DOI: 10.1093/bib/bbab293] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Drug combination therapy is a promising strategy to treat complex diseases such as cancer and infectious diseases. However, current knowledge of drug combination therapies, especially in cancer patients, is limited because of adverse drug effects, toxicity and cell line heterogeneity. Screening new drug combinations requires substantial efforts since considering all possible combinations between drugs is infeasible and expensive. Therefore, building computational approaches, particularly machine learning methods, could provide an effective strategy to overcome drug resistance and improve therapeutic efficacy. In this review, we group the state-of-the-art machine learning approaches to analyze personalized drug combination therapies into three categories and discuss each method in each category. We also present a short description of relevant databases used as a benchmark in drug combination therapies and provide a list of well-known, publicly available interactive data analysis portals. We highlight the importance of data integration on the identification of drug combinations. Finally, we address the advantages of combining multiple data sources on drug combination analysis by showing an experimental comparison.
Collapse
Affiliation(s)
- Betül Güvenç Paltun
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology (HIIT), Finland
| | - Samuel Kaski
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology (HIIT), Finland
- University of Manchester, UK
| | - Hiroshi Mamitsuka
- Department of Computer Science, Aalto University, Espoo, Finland
- Helsinki Institute for Information Technology (HIIT), Finland
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 6110011, Japan
| |
Collapse
|
33
|
Zagidullin B, Wang Z, Guan Y, Pitkänen E, Tang J. Comparative analysis of molecular fingerprints in prediction of drug combination effects. Brief Bioinform 2021; 22:bbab291. [PMID: 34401895 PMCID: PMC8574997 DOI: 10.1093/bib/bbab291] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Application of machine and deep learning methods in drug discovery and cancer research has gained a considerable amount of attention in the past years. As the field grows, it becomes crucial to systematically evaluate the performance of novel computational solutions in relation to established techniques. To this end, we compare rule-based and data-driven molecular representations in prediction of drug combination sensitivity and drug synergy scores using standardized results of 14 high-throughput screening studies, comprising 64 200 unique combinations of 4153 molecules tested in 112 cancer cell lines. We evaluate the clustering performance of molecular representations and quantify their similarity by adapting the Centered Kernel Alignment metric. Our work demonstrates that to identify an optimal molecular representation type, it is necessary to supplement quantitative benchmark results with qualitative considerations, such as model interpretability and robustness, which may vary between and throughout preclinical drug development projects.
Collapse
Affiliation(s)
- B Zagidullin
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
| | - Z Wang
- Department of Electrical Engineering & Computer Science, University of Michigan, Ann Arbor, USA
| | - Y Guan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, USA
| | - E Pitkänen
- Institute for Molecular Medicine Finland (FIMM) & Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Finland
| | - J Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
34
|
Demirel HC, Arici MK, Tuncbag N. Computational approaches leveraging integrated connections of multi-omic data toward clinical applications. Mol Omics 2021; 18:7-18. [PMID: 34734935 DOI: 10.1039/d1mo00158b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In line with the advances in high-throughput technologies, multiple omic datasets have accumulated to study biological systems and diseases coherently. No single omics data type is capable of fully representing cellular activity. The complexity of the biological processes arises from the interactions between omic entities such as genes, proteins, and metabolites. Therefore, multi-omic data integration is crucial but challenging. The impact of the molecular alterations in multi-omic data is not local in the neighborhood of the altered gene or protein; rather, the impact diffuses in the network and changes the functionality of multiple signaling pathways and regulation of the gene expression. Additionally, multi-omic data is high-dimensional and has background noise. Several integrative approaches have been developed to accurately interpret the multi-omic datasets, including machine learning, network-based methods, and their combination. In this review, we overview the most recent integrative approaches and tools with a focus on network-based methods. We then discuss these approaches according to their specific applications, from disease-network and biomarker identification to patient stratification, drug discovery, and repurposing.
Collapse
Affiliation(s)
- Habibe Cansu Demirel
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey
| | - Muslum Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey.,Foot and Mouth Diseases Institute, Ministry of Agriculture and Forestry, Ankara, 06044, Turkey
| | - Nurcan Tuncbag
- Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul, 34450, Turkey.,School of Medicine, Koc University, Istanbul, 34450, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.
| |
Collapse
|
35
|
An X, Chen X, Yi D, Li H, Guan Y. Representation of molecules for drug response prediction. Brief Bioinform 2021; 23:6375515. [PMID: 34571534 DOI: 10.1093/bib/bbab393] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
The rapid development of machine learning and deep learning algorithms in the recent decade has spurred an outburst of their applications in many research fields. In the chemistry domain, machine learning has been widely used to aid in drug screening, drug toxicity prediction, quantitative structure-activity relationship prediction, anti-cancer synergy score prediction, etc. This review is dedicated to the application of machine learning in drug response prediction. Specifically, we focus on molecular representations, which is a crucial element to the success of drug response prediction and other chemistry-related prediction tasks. We introduce three types of commonly used molecular representation methods, together with their implementation and application examples. This review will serve as a brief introduction of the broad field of molecular representations.
Collapse
Affiliation(s)
- Xin An
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xi Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Daiyao Yi
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data. Brief Bioinform 2021; 22:6321360. [PMID: 34260682 DOI: 10.1093/bib/bbab260] [Citation(s) in RCA: 893] [Impact Index Per Article: 223.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 11/12/2022] Open
Abstract
Cell line drug screening datasets can be utilized for a range of different drug discovery applications from drug biomarker discovery to building translational models of drug response. Previously, we described three separate methodologies to (1) correct for general levels of drug sensitivity to enable drug-specific biomarker discovery, (2) predict clinical drug response in patients and (3) associate these predictions with clinical features to perform in vivo drug biomarker discovery. Here, we unite and update these methodologies into one R package (oncoPredict) to facilitate the development and adoption of these tools. This new OncoPredict R package can be applied to various in vitro and in vivo contexts for drug and biomarker discovery.
Collapse
Affiliation(s)
- Danielle Maeser
- Department of Bioinformatics & Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert F Gruener
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Rong Stephanie Huang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
37
|
Li Y, Umbach DM, Krahn JM, Shats I, Li X, Li L. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics 2021; 22:272. [PMID: 33858332 PMCID: PMC8048084 DOI: 10.1186/s12864-021-07581-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Human cancer cell line profiling and drug sensitivity studies provide valuable information about the therapeutic potential of drugs and their possible mechanisms of action. The goal of those studies is to translate the findings from in vitro studies of cancer cell lines into in vivo therapeutic relevance and, eventually, patients’ care. Tremendous progress has been made. Results In this work, we built predictive models for 453 drugs using data on gene expression and drug sensitivity (IC50) from cancer cell lines. We identified many known drug-gene interactions and uncovered several potentially novel drug-gene associations. Importantly, we further applied these predictive models to ~ 17,000 bulk RNA-seq samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database to predict drug sensitivity for both normal and tumor tissues. We created a web site for users to visualize and download our predicted data (https://manticore.niehs.nih.gov/cancerRxTissue). Using trametinib as an example, we showed that our approach can faithfully recapitulate the known tumor specificity of the drug. Conclusions We demonstrated that our approach can predict drugs that 1) are tumor-type specific; 2) elicit higher sensitivity from tumor compared to corresponding normal tissue; 3) elicit differential sensitivity across breast cancer subtypes. If validated, our prediction could have relevance for preclinical drug testing and in phase I clinical design. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07581-7.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity & Structural Biology Laboratory, Research Triangle Park, Durham, NC, 27709, USA
| | - Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA.
| |
Collapse
|
38
|
Sharifi-Noghabi H, Peng S, Zolotareva O, Collins CC, Ester M. AITL: Adversarial Inductive Transfer Learning with input and output space adaptation for pharmacogenomics. Bioinformatics 2021; 36:i380-i388. [PMID: 32657371 PMCID: PMC7355265 DOI: 10.1093/bioinformatics/btaa442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Motivation The goal of pharmacogenomics is to predict drug response in patients using their single- or multi-omics data. A major challenge is that clinical data (i.e. patients) with drug response outcome is very limited, creating a need for transfer learning to bridge the gap between large pre-clinical pharmacogenomics datasets (e.g. cancer cell lines), as a source domain, and clinical datasets as a target domain. Two major discrepancies exist between pre-clinical and clinical datasets: (i) in the input space, the gene expression data due to difference in the basic biology, and (ii) in the output space, the different measures of the drug response. Therefore, training a computational model on cell lines and testing it on patients violates the i.i.d assumption that train and test data are from the same distribution. Results We propose Adversarial Inductive Transfer Learning (AITL), a deep neural network method for addressing discrepancies in input and output space between the pre-clinical and clinical datasets. AITL takes gene expression of patients and cell lines as the input, employs adversarial domain adaptation and multi-task learning to address these discrepancies, and predicts the drug response as the output. To the best of our knowledge, AITL is the first adversarial inductive transfer learning method to address both input and output discrepancies. Experimental results indicate that AITL outperforms state-of-the-art pharmacogenomics and transfer learning baselines and may guide precision oncology more accurately. Availability and implementation https://github.com/hosseinshn/AITL. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hossein Sharifi-Noghabi
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Shuman Peng
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Olga Zolotareva
- International Research Training Group Computational Methods for the Analysis of the Diversity and Dynamics of Genomes and Genome Informatics, Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, BC, Canada.,Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin Ester
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada.,Vancouver Prostate Centre, Vancouver, BC, Canada
| |
Collapse
|
39
|
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun 2020; 11:6136. [PMID: 33262326 PMCID: PMC7708835 DOI: 10.1038/s41467-020-19950-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
We present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors. We demonstrate high predictive performance of comboFM in various prediction scenarios using data from cancer cell line pharmacogenomic screens. Subsequent experimental validation of a set of previously untested drug combinations further supports the practical and robust applicability of comboFM. For instance, we confirm a novel synergy between anaplastic lymphoma kinase (ALK) inhibitor crizotinib and proteasome inhibitor bortezomib in lymphoma cells. Overall, our results demonstrate that comboFM provides an effective means for systematic pre-screening of drug combinations to support precision oncology applications. Combinatorial treatments have become a standard of care for various complex diseases including cancers. Here, the authors show that combinatorial responses of two anticancer drugs can be accurately predicted using factorization machines trained on large-scale pharmacogenomic data for guiding precision oncology studies.
Collapse
|