1
|
Li J, Tan Y, Lu R, Liang P, Liu H, Yao X. Artificial intelligence for RNA-ligand interaction prediction: advances and prospects. Drug Discov Today 2025; 30:104366. [PMID: 40286982 DOI: 10.1016/j.drudis.2025.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Accurate prediction of RNA-ligand interactions is vital for understanding biological processes and advancing RNA-targeted drug discovery. Given their complexity, artificial intelligence (AI) is revolutionizing the study of RNA-ligand interactions, offering insights into the complex dynamics and therapeutic potential of RNA. In this review, we highlight advances in AI-driven RNA-ligand binding site identification, structure modeling, binding mode and binding affinity prediction, and virtual screening (VS). We also discuss key challenges, such as data set scarcity and modeling RNA flexibility. Future directions emphasize integrating cutting-edge AI techniques with physics-based models and expanding experimental data sets to enhance RNA-ligand interaction predictions.
Collapse
Affiliation(s)
- Jing Li
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Yi Tan
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Ruiqiang Lu
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Pengyu Liang
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China
| | - Huanxiang Liu
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China.
| | - Xiaojun Yao
- Center for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, 999078 Macao, China.
| |
Collapse
|
2
|
Sang C, Shu J, Wang K, Xia W, Wang Y, Sun T, Xu X. The prediction of RNA-small molecule binding sites in RNA structures based on geometric deep learning. Int J Biol Macromol 2025; 310:143308. [PMID: 40268011 DOI: 10.1016/j.ijbiomac.2025.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Biological interactions between RNA and small-molecule ligands play a crucial role in determining the specific functions of RNA, such as catalysis and folding, and are essential for guiding drug design in the medical field. Accurately predicting the binding sites of ligands within RNA structures is therefore of significant importance. To address this challenge, we introduced a computational approach named RLBSIF (RNA-Ligand Binding Surface Interaction Fingerprints) based on geometric deep learning. This model utilizes surface geometric features, including shape index and distance-dependent curvature, combined with chemical features represented by atomic charge, to comprehensively characterize RNA-ligand interactions through MaSIF-based surface interaction fingerprints. Additionally, we employ the ResNet18 network to analyze these fingerprints for identifying ligand binding pockets. Trained on 440 binding pockets, RLBSIF achieves an overall pocket-level classification accuracy of 90 %. Through a full-space enumeration method, it can predict binding sites at nucleotide resolution. In two independent tests, RLBSIF outperformed competing models, demonstrating its efficacy in accurately identifying binding sites within complex molecular structures. This method shows promise for drug design and biological product development, providing valuable insights into RNA-ligand interactions and facilitating the design of novel therapeutic interventions. For access to the related source code, please visit RLBSIF on GitHub (https://github.com/ZUSTSTTLAB/RLBSIF).
Collapse
Affiliation(s)
- Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Jiasai Shu
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Kang Wang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
3
|
Zhu W, Ding X, Shen HB, Pan X. Identifying RNA-small Molecule Binding Sites Using Geometric Deep Learning with Language Models. J Mol Biol 2025; 437:169010. [PMID: 39961524 DOI: 10.1016/j.jmb.2025.169010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
RNAs are emerging as promising therapeutic targets, yet identifying small molecules that bind to them remains a significant challenge in drug discovery. This underscores the crucial role of computational modeling in predicting RNA-small molecule binding sites. However, accurate and efficient computational methods for identifying these interactions are still lacking. Recently, advances in large language models (LLMs), previously successful in DNA and protein research, have spurred the development of RNA-specific LLMs. These models leverage vast unlabeled RNA sequences to autonomously learn semantic representations with the goal of enhancing downstream tasks, particularly those constrained by limited annotated data. Here, we develop RNABind, an embedding-informed geometric deep learning framework to detect RNA-small molecule binding sites from RNA structures. RNABind integrates RNA LLMs into advanced geometric deep learning networks, which encodes both RNA sequence and structure information. To evaluate RNABind, we first compile the largest RNA-small molecule interaction dataset from the entire multi-chain complex structure instead of single-chain RNAs. Extensive experiments demonstrate that RNABind outperforms existing state-of-the-art methods. Besides, we conduct an extensive experimental evaluation of eight pre-trained RNA LLMs, assessing their performance on the binding site prediction task within a unified experimental protocol. In summary, RNABind provides a powerful tool on exploring RNA-small molecule binding site prediction, which paves the way for future innovations in the RNA-targeted drug discovery.
Collapse
Affiliation(s)
- Weimin Zhu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaohan Ding
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.
| |
Collapse
|
4
|
Xia W, Shu J, Sang C, Wang K, Wang Y, Sun T, Xu X. The prediction of RNA-small-molecule ligand binding affinity based on geometric deep learning. Comput Biol Chem 2025; 115:108367. [PMID: 39904171 DOI: 10.1016/j.compbiolchem.2025.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Small molecule-targeted RNA is an emerging technology that plays a pivotal role in drug discovery and inhibitor design, with widespread applications in disease treatment. Consequently, predicting RNA-small-molecule ligand interactions is crucial. With advancements in computer science and the availability of extensive biological data, deep learning methods have shown great promise in this area, particularly in efficiently predicting RNA-small molecule binding sites. However, few computational methods have been developed to predict RNA-small molecule binding affinities. Meanwhile, most of these approaches rely primarily on sequence or structural representations. Molecular surface information, vital for RNA and small molecule interactions, has been largely overlooked. To address these gaps, we propose a geometric deep learning method for predicting RNA-small molecule binding affinity, named RNA-ligand Surface Interaction Fingerprinting (RLASIF). In this study, we create RNA-ligand interaction fingerprints from the geometrical and chemical features present on molecular surface to characterize binding affinity. RLASIF outperformed other computational methods across ten different test sets from PDBbind NL2020. Compared to the second-best method, our approach improves performance by 10.01 %, 6.67 %, 2.01 % and 1.70 % on four evaluation metrics, indicating its effectiveness in capturing key features influencing RNA-ligand binding strength. Additionally, RLASIF holds potential for virtual screening of potential ligands for RNA and predicting small molecule binding nucleotides within RNA structures.
Collapse
Affiliation(s)
- Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Jiasai Shu
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
5
|
Carvajal-Patiño JG, Mallet V, Becerra D, Niño Vasquez LF, Oliver C, Waldispühl J. RNAmigos2: accelerated structure-based RNA virtual screening with deep graph learning. Nat Commun 2025; 16:2799. [PMID: 40118849 PMCID: PMC11928640 DOI: 10.1038/s41467-025-57852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 03/01/2025] [Indexed: 03/24/2025] Open
Abstract
RNAs are a vast reservoir of untapped drug targets. Structure-based virtual screening (VS) identifies candidate molecules by leveraging binding site information, traditionally using molecular docking simulations. However, docking struggles to scale with large compound libraries and RNA targets. Machine learning offers a solution but remains underdeveloped for RNA due to limited data and practical evaluations. We introduce a data-driven VS pipeline tailored for RNA, utilizing coarse-grained 3D modeling, synthetic data augmentation, and RNA-specific self-supervision. Our model achieves a 10,000x speedup over docking while ranking active compounds in the top 2.8% on structurally distinct test sets. It is robust to binding site variations and successfully screens unseen RNA riboswitches in a 20,000-compound in-vitro microarray, with a mean enrichment factor of 2.93 at 1%. This marks the first experimentally validated success of structure-based deep learning for RNA VS.
Collapse
Affiliation(s)
- Juan G Carvajal-Patiño
- School of Computer Science, McGill University, Montréal, QC, Canada
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería - Depto. de Ingeniería de Sistemas e Industrial, Bogotá, Colombia
| | - Vincent Mallet
- LIX, Ecole Polytechnique, IP, Paris, France
- Mines Paris, PSL Research University, CBIO-Center of Computational Biology, Paris, France
- Institut Curie, PSL Research University, Paris, France
- INSERM, Paris, France
| | - David Becerra
- School of Computer Science, McGill University, Montréal, QC, Canada
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería - Depto. de Ingeniería de Sistemas e Industrial, Bogotá, Colombia
| | - Luis Fernando Niño Vasquez
- Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería - Depto. de Ingeniería de Sistemas e Industrial, Bogotá, Colombia
| | - Carlos Oliver
- Max Planck Institute of Biochemistry, Martinsried, Germany.
- Center for AI in Protein Dynamics, Vanderbilt University, Nashville, TN, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Jérôme Waldispühl
- School of Computer Science, McGill University, Montréal, QC, Canada.
| |
Collapse
|
6
|
Krishnan S, Roy A, Wong L, Gromiha M. DRLiPS: a novel method for prediction of druggable RNA-small molecule binding pockets using machine learning. Nucleic Acids Res 2025; 53:gkaf239. [PMID: 40173014 PMCID: PMC11963762 DOI: 10.1093/nar/gkaf239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/16/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
Ribonucleic Acid (RNA) is the central conduit for information transfer in the cell. Identifying potential RNA targets in disease conditions is a challenging task, given the vast repertoire of functional non-coding RNAs in a human cell. A potential druggable target must satisfy several criteria, including disease association, cellular accessibility, binding pockets for drug-like molecules, and minimal cross-reactivity. While several methods exist for prediction of druggable proteins, they cannot be repurposed for RNAs due to fundamental differences in their binding modality. Taking all these constraints into account, a new structure-based model, Druggable RNA-Ligand binding Pocket Selector (DRLiPS), is developed here to predict binding site-level druggability of any given RNA target. A novel strategy for sampling negative binding sites in RNA structures using three parallel approaches is demonstrated here to improve model specificity: backbone motif search, exhaustive pocket prediction, and blind docking. An external blind test dataset has also been curated to showcase the model's generalizability to both experimental and modelled apo state RNA structures. DRLiPS has achieved an F1-score of 0.70, precision of 0.61, specificity of 0.89, and recall of 0.73 on this external test dataset, outperforming two existing methods, DrugPred_RNA and RNACavityMiner. Further analysis indicates that the features selected for model-building generalize well to both apo and holo states with a backbone RMSD tolerance of 3 Å. It can also predict the effect of binding site single point mutations on druggability, which can aid in optimizing synthetic RNA aptamers for small molecule recognition. The DRLiPS model is freely accessible at https://web.iitm.ac.in/bioinfo2/DRLiPS/.
Collapse
Affiliation(s)
- Sowmya Ramaswamy Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, 117417, Singapore
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Computer Science, National University of Singapore, 117417, Singapore
| |
Collapse
|
7
|
Zhuo C, Zeng C, Liu H, Wang H, Peng Y, Zhao Y. Advances and Mechanisms of RNA-Ligand Interaction Predictions. Life (Basel) 2025; 15:104. [PMID: 39860045 PMCID: PMC11767038 DOI: 10.3390/life15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Huiwen Wang
- School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
| | - Yunhui Peng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
8
|
Liu H, Zhuo C, Gao J, Zeng C, Zhao Y. AI-integrated network for RNA complex structure and dynamic prediction. BIOPHYSICS REVIEWS 2024; 5:041304. [PMID: 39512332 PMCID: PMC11540444 DOI: 10.1063/5.0237319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RNA complexes are essential components in many cellular processes. The functions of these complexes are linked to their tertiary structures, which are shaped by detailed interface information, such as binding sites, interface contact, and dynamic conformational changes. Network-based approaches have been widely used to analyze RNA complex structures. With their roots in the graph theory, these methods have a long history of providing insight into the static and dynamic properties of RNA molecules. These approaches have been effective in identifying functional binding sites and analyzing the dynamic behavior of RNA complexes. Recently, the advent of artificial intelligence (AI) has brought transformative changes to the field. These technologies have been increasingly applied to studying RNA complex structures, providing new avenues for understanding the complex interactions within RNA complexes. By integrating AI with traditional network analysis methods, researchers can build more accurate models of RNA complex structures, predict their dynamic behaviors, and even design RNA-based inhibitors. In this review, we introduce the integration of network-based methodologies with AI techniques to enhance the understanding of RNA complex structures. We examine how these advanced computational tools can be used to model and analyze the detailed interface information and dynamic behaviors of RNA molecules. Additionally, we explore the potential future directions of how AI-integrated networks can aid in the modeling and analyzing RNA complex structures.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
9
|
Zhuo C, Gao J, Li A, Liu X, Zhao Y. A Machine Learning Method for RNA-Small Molecule Binding Preference Prediction. J Chem Inf Model 2024; 64:7386-7397. [PMID: 39265103 DOI: 10.1021/acs.jcim.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
The interaction between RNA and small molecules is crucial in various biological functions. Identifying molecules targeting RNA is essential for the inhibitor design and RNA-related studies. However, traditional methods focus on learning RNA sequence and secondary structure features and neglect small molecule characteristics, and resulting in poor performance on unknown small molecule testing. To overcome this limitation, we developed a double-layer stacking-based machine learning model called ZHMol-RLinter. This approach more effectively predicts RNA-small molecule binding preferences by learning RNA and small molecule features to capture their interaction information. ZHMol-RLinter also combines sequence and secondary structural features with structural geometric and physicochemical environment information to capture the specificity of RNA spatial conformations in recognizing small molecules. Our results demonstrate that ZHMol-RLinter has a success rate of 90.8% on the published RL98 testing set, representing a significant improvement over existing methods. Additionally, ZHMol-RLinter achieved a success rate of 77.1% on the unknown small molecule UNK96 testing set, showing substantial improvement over the existing methods. The evaluation of predicted structures confirms that ZHMol-RLinter is reliable and accurate for predicting RNA-small molecule binding preferences, even for challenging unknown small molecule testing. Predicting RNA-small molecule binding preferences can help in the understanding of RNA-small molecule interactions and promote the design of RNA-related drugs for biological and medical applications.
Collapse
Affiliation(s)
- Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Anbang Li
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Xuefeng Liu
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
10
|
Gao J, Liu H, Zhuo C, Zeng C, Zhao Y. Predicting Small Molecule Binding Nucleotides in RNA Structures Using RNA Surface Topography. J Chem Inf Model 2024. [PMID: 39230508 DOI: 10.1021/acs.jcim.4c01264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
RNA small molecule interactions play a crucial role in drug discovery and inhibitor design. Identifying RNA small molecule binding nucleotides is essential and requires methods that exhibit a high predictive ability to facilitate drug discovery and inhibitor design. Existing methods can predict the binding nucleotides of simple RNA structures, but it is hard to predict binding nucleotides in complex RNA structures with junctions. To address this limitation, we developed a new deep learning model based on spatial correlation, ZHmolReSTasite, which can accurately predict binding nucleotides of small and large RNA with junctions. We utilize RNA surface topography to consider the spatial correlation, characterizing nucleotides from sequence and tertiary structures to learn a high-level representation. Our method outperforms existing methods for benchmark test sets composed of simple RNA structures, achieving precision values of 72.9% on TE18 and 76.7% on RB9 test sets. For a challenging test set composed of RNA structures with junctions, our method outperforms the second best method by 11.6% in precision. Moreover, ZHmolReSTasite demonstrates robustness regarding the predicted RNA structures. In summary, ZHmolReSTasite successfully incorporates spatial correlation, outperforms previous methods on small and large RNA structures using RNA surface topography, and can provide valuable insights into RNA small molecule prediction and accelerate RNA inhibitor design.
Collapse
Affiliation(s)
- Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
11
|
Wang J, Quan L, Jin Z, Wu H, Ma X, Wang X, Xie J, Pan D, Chen T, Wu T, Lyu Q. MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction. IEEE J Biomed Health Inform 2024; 28:4995-5006. [PMID: 38739505 DOI: 10.1109/jbhi.2024.3400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-modal features using deep learning algorithms. These features include 3D structural properties at the nucleotide base level of the RNA molecule, relational graphs based on overall RNA structure, and rich RNA semantic information. In our investigation, we gathered 851 interactions between RNA and small molecule ligand from the RNAglib dataset and RLBind training set. Unlike conventional training sets, this collection broadened its scope by including RNA complexes that have the same RNA sequence but change their respective binding sites due to structural differences or the presence of different ligands. This enhancement enables the MultiModRLBP model to more accurately capture subtle changes at the structural level, ultimately improving its ability to discern nuances among similar RNA conformations. Furthermore, we evaluated MultiModRLBP on two classic test sets, Test18 and Test3, highlighting its performance disparities on small molecules based on metal and non-metal ions. Additionally, we conducted a structural sensitivity analysis on specific complex categories, considering RNA instances with varying degrees of structural changes and whether they share the same ligands. The research results indicate that MultiModRLBP outperforms the current state-of-the-art methods on multiple classic test sets, particularly excelling in predicting binding sites for non-metal ions and instances where the binding sites are widely distributed along the sequence. MultiModRLBP also can be used as a potential tool when the RNA structure is perturbed or the RNA experimental tertiary structure is not available. Most importantly, MultiModRLBP exhibits the capability to distinguish binding characteristics of RNA that are structurally diverse yet exhibit sequence similarity. These advancements hold promise in reducing the costs associated with the development of RNA-targeted drugs.
Collapse
|
12
|
Panei FP, Gkeka P, Bonomi M. Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN. Nat Commun 2024; 15:5725. [PMID: 38977675 PMCID: PMC11231146 DOI: 10.1038/s41467-024-49638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
The rational targeting of RNA with small molecules is hampered by our still limited understanding of RNA structural and dynamic properties. Most in silico tools for binding site identification rely on static structures and therefore cannot face the challenges posed by the dynamic nature of RNA molecules. Here, we present SHAMAN, a computational technique to identify potential small-molecule binding sites in RNA structural ensembles. SHAMAN enables exploring the conformational landscape of RNA with atomistic molecular dynamics simulations and at the same time identifying RNA pockets in an efficient way with the aid of probes and enhanced-sampling techniques. In our benchmark composed of large, structured riboswitches as well as small, flexible viral RNAs, SHAMAN successfully identifies all the experimentally resolved pockets and ranks them among the most favorite probe hotspots. Overall, SHAMAN sets a solid foundation for future drug design efforts targeting RNA with small molecules, effectively addressing the long-standing challenges in the field.
Collapse
Affiliation(s)
- F P Panei
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France
- Sorbonne Université, Ecole Doctorale Complexité du Vivant, Paris, France
| | - P Gkeka
- Integrated Drug Discovery, Molecular Design Sciences, Sanofi, Vitry-sur-Seine, France.
| | - M Bonomi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Computational Structural Biology Unit, Paris, France.
| |
Collapse
|
13
|
Zhou Y, Chen SJ. Advances in machine-learning approaches to RNA-targeted drug design. ARTIFICIAL INTELLIGENCE CHEMISTRY 2024; 2:100053. [PMID: 38434217 PMCID: PMC10904028 DOI: 10.1016/j.aichem.2024.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
RNA molecules play multifaceted functional and regulatory roles within cells and have garnered significant attention in recent years as promising therapeutic targets. With remarkable successes achieved by artificial intelligence (AI) in different fields such as computer vision and natural language processing, there is a growing imperative to harness AI's potential in computer-aided drug design (CADD) to discover novel drug compounds that target RNA. Although machine-learning (ML) approaches have been widely adopted in the discovery of small molecules targeting proteins, the application of ML approaches to model interactions between RNA and small molecule is still in its infancy. Compared to protein-targeted drug discovery, the major challenges in ML-based RNA-targeted drug discovery stem from the scarcity of available data resources. With the growing interest and the development of curated databases focusing on interactions between RNA and small molecule, the field anticipates a rapid growth and the opening of a new avenue for disease treatment. In this review, we aim to provide an overview of recent advancements in computationally modeling RNA-small molecule interactions within the context of RNA-targeted drug discovery, with a particular emphasis on methodologies employing ML techniques.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211-7010, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, Department of Biochemistry, Institute of Data Sciences and Informatics, University of Missouri, Columbia, MO 65211-7010, USA
| |
Collapse
|
14
|
Wei H, Wang W, Peng Z, Yang J. Q-BioLiP: A Comprehensive Resource for Quaternary Structure-based Protein-ligand Interactions. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae001. [PMID: 38862427 PMCID: PMC11423850 DOI: 10.1093/gpbjnl/qzae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 06/13/2024]
Abstract
Since its establishment in 2013, BioLiP has become one of the widely used resources for protein-ligand interactions. Nevertheless, several known issues occurred with it over the past decade. For example, the protein-ligand interactions are represented in the form of single chain-based tertiary structures, which may be inappropriate as many interactions involve multiple protein chains (known as quaternary structures). We sought to address these issues, resulting in Q-BioLiP, a comprehensive resource for quaternary structure-based protein-ligand interactions. The major features of Q-BioLiP include: (1) representing protein structures in the form of quaternary structures rather than single chain-based tertiary structures; (2) pairing DNA/RNA chains properly rather than separation; (3) providing both experimental and predicted binding affinities; (4) retaining both biologically relevant and irrelevant interactions to alleviate the wrong justification of ligands' biological relevance; and (5) developing a new quaternary structure-based algorithm for the modelling of protein-ligand complex structure. With these new features, Q-BioLiP is expected to be a valuable resource for studying biomolecule interactions, including protein-small molecule interaction, protein-metal ion interaction, protein-peptide interaction, protein-protein interaction, protein-DNA/RNA interaction, and RNA-small molecule interaction. Q-BioLiP is freely available at https://yanglab.qd.sdu.edu.cn/Q-BioLiP/.
Collapse
Affiliation(s)
- Hong Wei
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Wenkai Wang
- School of Mathematical Sciences, Nankai University, Tianjin 300071, China
| | - Zhenling Peng
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Morishita EC, Nakamura S. Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery. Expert Opin Drug Discov 2024; 19:415-431. [PMID: 38321848 DOI: 10.1080/17460441.2024.2313455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Targeting RNAs with small molecules offers an alternative to the conventional protein-targeted drug discovery and can potentially address unmet and emerging medical needs. The recent rise of interest in the strategy has already resulted in large amounts of data on disease associated RNAs, as well as on small molecules that bind to such RNAs. Artificial intelligence (AI) approaches, including machine learning and deep learning, present an opportunity to speed up the discovery of RNA-targeted small molecules by improving decision-making efficiency and quality. AREAS COVERED The topics described in this review include the recent applications of AI in the identification of RNA targets, RNA structure determination, screening of chemical compound libraries, and hit-to-lead optimization. The impact and limitations of the recent AI applications are discussed, along with an outlook on the possible applications of next-generation AI tools for the discovery of novel RNA-targeted small molecule drugs. EXPERT OPINION Key areas for improvement include developing AI tools for understanding RNA dynamics and RNA - small molecule interactions. High-quality and comprehensive data still need to be generated especially on the biological activity of small molecules that target RNAs.
Collapse
|
16
|
Sun S, Gao L. Contrastive pre-training and 3D convolution neural network for RNA and small molecule binding affinity prediction. Bioinformatics 2024; 40:btae155. [PMID: 38507691 PMCID: PMC11007238 DOI: 10.1093/bioinformatics/btae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
MOTIVATION The diverse structures and functions inherent in RNAs present a wealth of potential drug targets. Some small molecules are anticipated to serve as leading compounds, providing guidance for the development of novel RNA-targeted therapeutics. Consequently, the determination of RNA-small molecule binding affinity is a critical undertaking in the landscape of RNA-targeted drug discovery and development. Nevertheless, to date, only one computational method for RNA-small molecule binding affinity prediction has been proposed. The prediction of RNA-small molecule binding affinity remains a significant challenge. The development of a computational model is deemed essential to effectively extract relevant features and predict RNA-small molecule binding affinity accurately. RESULTS In this study, we introduced RLaffinity, a novel deep learning model designed for the prediction of RNA-small molecule binding affinity based on 3D structures. RLaffinity integrated information from RNA pockets and small molecules, utilizing a 3D convolutional neural network (3D-CNN) coupled with a contrastive learning-based self-supervised pre-training model. To the best of our knowledge, RLaffinity was the first deep learning based method for the prediction of RNA-small molecule binding affinity. Our experimental results exhibited RLaffinity's superior performance compared to baseline methods, revealed by all metrics. The efficacy of RLaffinity underscores the capability of 3D-CNN to accurately extract both global pocket information and local neighbor nucleotide information within RNAs. Notably, the integration of a self-supervised pre-training model significantly enhanced predictive performance. Ultimately, RLaffinity was also proved as a potential tool for RNA-targeted drugs virtual screening. AVAILABILITY AND IMPLEMENTATION https://github.com/SaisaiSun/RLaffinity.
Collapse
Affiliation(s)
- Saisai Sun
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| |
Collapse
|
17
|
Tadesse K, Benhamou RI. Targeting MicroRNAs with Small Molecules. Noncoding RNA 2024; 10:17. [PMID: 38525736 PMCID: PMC10961812 DOI: 10.3390/ncrna10020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
MicroRNAs (miRs) have been implicated in numerous diseases, presenting an attractive target for the development of novel therapeutics. The various regulatory roles of miRs in cellular processes underscore the need for precise strategies. Recent advances in RNA research offer hope by enabling the identification of small molecules capable of selectively targeting specific disease-associated miRs. This understanding paves the way for developing small molecules that can modulate the activity of disease-associated miRs. Herein, we discuss the progress made in the field of drug discovery processes, transforming the landscape of miR-targeted therapeutics by small molecules. By leveraging various approaches, researchers can systematically identify compounds to modulate miR function, providing a more potent intervention either by inhibiting or degrading miRs. The implementation of these multidisciplinary approaches bears the potential to revolutionize treatments for diverse diseases, signifying a significant stride towards the targeting of miRs by precision medicine.
Collapse
Affiliation(s)
| | - Raphael I. Benhamou
- The Institute for Drug Research of the School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
18
|
Rinaldi S, Moroni E, Rozza R, Magistrato A. Frontiers and Challenges of Computing ncRNAs Biogenesis, Function and Modulation. J Chem Theory Comput 2024; 20:993-1018. [PMID: 38287883 DOI: 10.1021/acs.jctc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets. In this review, after providing an overview of non-coding RNAs' role in cell homeostasis, we illustrate the potential and the challenges of state-of-the-art computational methods exploited to study non-coding RNAs biogenesis, function, and modulation. This can be done by directly targeting them with small molecules or by altering their expression by targeting the cellular engines underlying their biosynthesis. Drawing from applications, also taken from our work, we showcase the significance and role of computer simulations in uncovering fundamental facets of ncRNA mechanisms and modulation. This information may set the basis to advance gene modulation tools and therapeutic strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Silvia Rinaldi
- National Research Council of Italy (CNR) - Institute of Chemistry of OrganoMetallic Compounds (ICCOM), c/o Area di Ricerca CNR di Firenze Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Elisabetta Moroni
- National Research Council of Italy (CNR) - Institute of Chemical Sciences and Technologies (SCITEC), via Mario Bianco 9, 20131 Milano, Italy
| | - Riccardo Rozza
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| | - Alessandra Magistrato
- National Research Council of Italy (CNR) - Institute of Material Foundry (IOM) c/o International School for Advanced Studies (SISSA), Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
19
|
Zhang L, Xiao K, Kong L. A computational method for small molecule-RNA binding sites identification by utilizing position specificity and complex network information. Biosystems 2024; 235:105094. [PMID: 38056591 DOI: 10.1016/j.biosystems.2023.105094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Some computational methods have been given for small molecule-RNA binding site identification due to that it plays a significant role in revealing biology function researches. However, it is still challenging to design an accurate model, especially for MCC. We designed a feature extraction technology from two aspects (position specificity and complex network information). Specifically, complex network was employed to express the space topological structure and sequence position information for improving prediction effect. Then, the features fused position specificity and complex network information were input into random forest classifier for model construction. The AUC of 88.22%, 77.92% and 81.46% were obtained on three independent datasets (RB19, CS71, RB78). Compared with the existing method, the best MCC were obtained on three datasets, which were 8.19%, 0.59% and 4.35% higher than the state-of-the-art prediction methods, respectively. The outstanding performances show that our method is a powerful tool to identify RNA binding sites, helping to the design RNA-targeting small molecule drugs. The data and resource codes are available at https://github.com/Kangxiaoneuq/PCN_RNAsite.
Collapse
Affiliation(s)
- Lichao Zhang
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China; Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China.
| | - Kang Xiao
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, 066000, PR China.
| | - Liang Kong
- Hebei Innovation Center for Smart Perception and Applied Technology of Agricultural Data, Qinhuangdao, 066000, PR China; School of Mathematics and Information Science & Technology, Hebei Normal University of Science & Technology, Qinhuangdao, 066000, PR China.
| |
Collapse
|
20
|
Liu H, Jian Y, Hou J, Zeng C, Zhao Y. RNet: a network strategy to predict RNA binding preferences. Brief Bioinform 2023; 25:bbad482. [PMID: 38145947 PMCID: PMC10749790 DOI: 10.1093/bib/bbad482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Determining the RNA binding preferences remains challenging because of the bottleneck of the binding interactions accompanied by subtle RNA flexibility. Typically, designing RNA inhibitors involves screening thousands of potential candidates for binding. Accurate binding site information can increase the number of successful hits even with few candidates. There are two main issues regarding RNA binding preference: binding site prediction and binding dynamical behavior prediction. Here, we propose one interpretable network-based approach, RNet, to acquire precise binding site and binding dynamical behavior information. RNetsite employs a machine learning-based network decomposition algorithm to predict RNA binding sites by analyzing the local and global network properties. Our research focuses on large RNAs with 3D structures without considering smaller regulatory RNAs, which are too small and dynamic. Our study shows that RNetsite outperforms existing methods, achieving precision values as high as 0.701 on TE18 and 0.788 on RB9 tests. In addition, RNetsite demonstrates remarkable robustness regarding perturbations in RNA structures. We also developed RNetdyn, a distance-based dynamical graph algorithm, to characterize the interface dynamical behavior consequences upon inhibitor binding. The simulation testing of competitive inhibitors indicates that RNetdyn outperforms the traditional method by 30%. The benchmark testing results demonstrate that RNet is highly accurate and robust. Our interpretable network algorithms can assist in predicting RNA binding preferences and accelerating RNA inhibitor design, providing valuable insights to the RNA research community.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
21
|
Zhao Y, Wang J, Chang F, Gong W, Liu Y, Li C. Identification of metal ion-binding sites in RNA structures using deep learning method. Brief Bioinform 2023; 24:7034467. [PMID: 36772993 DOI: 10.1093/bib/bbad049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Metal ion is an indispensable factor for the proper folding, structural stability and functioning of RNA molecules. However, it is very difficult for experimental methods to detect them in RNAs. With the increase of experimentally resolved RNA structures, it becomes possible to identify the metal ion-binding sites in RNA structures through in-silico methods. Here, we propose an approach called Metal3DRNA to identify the binding sites of the most common metal ions (Mg2+, Na+ and K+) in RNA structures by using a three-dimensional convolutional neural network model. The negative samples, screened out based on the analysis for binding surroundings of metal ions, are more like positive ones than the randomly selected ones, which are beneficial to a powerful predictor construction. The microenvironments of the spatial distributions of C, O, N and P atoms around a sample are extracted as features. Metal3DRNA shows a promising prediction power, generally surpassing the state-of-the-art methods FEATURE and MetalionRNA. Finally, utilizing the visualization method, we inspect the contributions of nucleotide atoms to the classification in several cases, which provides a visualization that helps to comprehend the model. The method will be helpful for RNA structure prediction and dynamics simulation study. Availability and implementation: The source code is available at https://github.com/ChunhuaLiLab/Metal3DRNA.
Collapse
Affiliation(s)
- Yanpeng Zhao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Jingjing Wang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fubin Chang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Weikang Gong
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yang Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Wang K, Zhou R, Wu Y, Li M. RLBind: a deep learning method to predict RNA-ligand binding sites. Brief Bioinform 2023; 24:6832814. [PMID: 36398911 DOI: 10.1093/bib/bbac486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.
Collapse
Affiliation(s)
- Kaili Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
23
|
Varricchio C, Mathez G, Pillonel T, Bertelli C, Kaiser L, Tapparel C, Brancale A, Cagno V. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. Antiviral Res 2022; 208:105452. [PMID: 36341734 PMCID: PMC9617636 DOI: 10.1016/j.antiviral.2022.105452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modeling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.
Collapse
Affiliation(s)
- Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland; Center for Emerging Viruses, Geneva University Hospitals, 1205, Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland.
| |
Collapse
|
24
|
Varricchio C, Mathez G, Pillonel T, Bertelli C, Kaiser L, Tapparel C, Brancale A, Cagno V. Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.08.483429. [PMID: 35291297 PMCID: PMC8923105 DOI: 10.1101/2022.03.08.483429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 is currently causing an unprecedented pandemic. While vaccines are massively deployed, we still lack effective large-scale antiviral therapies. In the quest for antivirals targeting conserved structures, we focused on molecules able to bind viral RNA secondary structures. Aminoglycosides are a class of antibiotics known to interact with the ribosomal RNA of both prokaryotes and eukaryotes and have previously been shown to exert antiviral activities by interacting with viral RNA. Here we show that the aminoglycoside geneticin is endowed with antiviral activity against all tested variants of SARS-CoV-2, in different cell lines and in a respiratory tissue model at non-toxic concentrations. The mechanism of action is an early inhibition of RNA replication and protein expression related to a decrease in the efficiency of the -1 programmed ribosomal frameshift (PRF) signal of SARS-CoV-2. Using in silico modelling, we have identified a potential binding site of geneticin in the pseudoknot of frameshift RNA motif. Moreover, we have selected, through virtual screening, additional RNA binding compounds, interacting with the same site with increased potency.
Collapse
Affiliation(s)
- Carmine Varricchio
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Gregory Mathez
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Laurent Kaiser
- Laboratory of Virology, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- Center for Emerging Viruses, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Andrea Brancale
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff, UK
| | - Valeria Cagno
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Switzerland
| |
Collapse
|
25
|
Möller L, Guerci L, Isert C, Atz K, Schneider G. Translating from proteins to ribonucleic acids for ligand-binding site detection. Mol Inform 2022; 41:e2200059. [PMID: 35577762 DOI: 10.1002/minf.202200059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Identifying druggable ligand-binding sites on the surface of the macromolecular targets is an important process in structure-based drug discovery. Deep-learning models have been shown to successfully predict ligand-binding sites of proteins. As a step toward predicting binding sites in RNA and RNA-protein complexes, we employ three-dimensional convolutional neural networks. We introduce a dataset splitting approach to minimize structure-related bias in training data, and investigate the influence of protein-based neural network pre-training before fine-tuning on RNA structures. Models that were pre-trained on proteins considerably outperformed the models that were trained exclusively on RNA structures. Overall, 71% of the known RNA binding sites were correctly located within 4 Å of their true centres with a structural overlap of at least 25%.
Collapse
|
26
|
Terai G, Asai K. QRNAstruct: a method for extracting secondary structural features of RNA via regression with biological activity. Nucleic Acids Res 2022; 50:e73. [PMID: 35390152 PMCID: PMC9303433 DOI: 10.1093/nar/gkac220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Recent technological advances have enabled the generation of large amounts of data consisting of RNA sequences and their functional activity. Here, we propose a method for extracting secondary structure features that affect the functional activity of RNA from sequence–activity data. Given pairs of RNA sequences and their corresponding bioactivity values, our method calculates position-specific structural features of the input RNA sequences, considering every possible secondary structure of each RNA. A Ridge regression model is trained using the structural features as feature vectors and the bioactivity values as response variables. Optimized model parameters indicate how secondary structure features affect bioactivity. We used our method to extract intramolecular structural features of bacterial translation initiation sites and self-cleaving ribozymes, and the intermolecular features between rRNAs and Shine–Dalgarno sequences and between U1 RNAs and splicing sites. We not only identified known structural features but also revealed more detailed insights into structure–activity relationships than previously reported. Importantly, the datasets we analyzed here were obtained from different experimental systems and differed in size, sequence length and similarity, and number of RNA molecules involved, demonstrating that our method is applicable to various types of data consisting of RNA sequences and bioactivity values.
Collapse
Affiliation(s)
- Goro Terai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| | - Kiyoshi Asai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
27
|
DFpin: Deep learning-based protein-binding site prediction with feature-based non-redundancy from RNA level. Comput Biol Med 2022; 142:105216. [PMID: 35030497 DOI: 10.1016/j.compbiomed.2022.105216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/19/2021] [Accepted: 01/02/2022] [Indexed: 11/20/2022]
Abstract
The interaction between proteins and RNA is closely related to various human diseases. Computer-aided drug design can be facilitated by detecting the RNA sites that bind proteins. However, due to the aggregation of binding sites in RNA sequences, high sample similarity occurs when extracting RNA fragments by using a sliding window. Considering these problems, we present a method, DFpin, to predict protein-interacting nucleotides in RNA. To retain more key nucleotide sites, we used the redundancy method based on feature similarity, that is, feature redundancy is removed based on the RNA mono-nucleotide composition to maintain the diversity of RNA samples and avoid the residue of redundant data. In addition, to extract key abstract features and avoid over-fitting, we used the cascade structure of a deep forest model to predict protein-interacting nucleotides. Overall, DFpin demonstrated excellent classification with 85.4% accuracy and 93.3% area under the curve. Compared with other methods, the accuracy of DFpin was better, suggesting that feature-based redundancy removal and deep forest can help predict nucleotides of protein interactions. The source code and all dataset are available at: https://github.com/zhaoxj-tech/DFpin.git.
Collapse
|
28
|
Kozlovskii I, Popov P. Structure-based deep learning for binding site detection in nucleic acid macromolecules. NAR Genom Bioinform 2021; 3:lqab111. [PMID: 34859211 PMCID: PMC8633674 DOI: 10.1093/nargab/lqab111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Structure-based drug design (SBDD) targeting nucleic acid macromolecules, particularly RNA, is a gaining momentum research direction that already resulted in several FDA-approved compounds. Similar to proteins, one of the critical components in SBDD for RNA is the correct identification of the binding sites for putative drug candidates. RNAs share a common structural organization that, together with the dynamic nature of these molecules, makes it challenging to recognize binding sites for small molecules. Moreover, there is a need for structure-based approaches, as sequence information only does not consider conformation plasticity of nucleic acid macromolecules. Deep learning holds a great promise to resolve binding site detection problem, but requires a large amount of structural data, which is very limited for nucleic acids, compared to proteins. In this study we composed a set of ∼2000 nucleic acid-small molecule structures comprising ∼2500 binding sites, which is ∼40-times larger than previously used one, and demonstrated the first structure-based deep learning approach, BiteNetN, to detect binding sites in nucleic acid structures. BiteNetN operates with arbitrary nucleic acid complexes, shows the state-of-the-art performance, and can be helpful in the analysis of different conformations and mutant variants, as we demonstrated for HIV-1 TAR RNA and ATP-aptamer case studies.
Collapse
Affiliation(s)
- Igor Kozlovskii
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Petr Popov
- iMolecule, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
29
|
Feng Y, Yan Y, He J, Tao H, Wu Q, Huang SY. Docking and scoring for nucleic acid-ligand interactions: Principles and current status. Drug Discov Today 2021; 27:838-847. [PMID: 34718205 DOI: 10.1016/j.drudis.2021.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/06/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acid (NA)-ligand interactions have crucial roles in many cellular processes and, thus, are increasingly attracting therapeutic interest in drug discovery. Molecular docking is a valuable tool for studying molecular interactions. However, because NAs differ significantly from proteins in both their physical and chemical properties, traditional docking algorithms and scoring functions for protein-ligand interactions might not be applicable to NA-ligand docking. Therefore, various sampling strategies and scoring functions for NA-ligand interactions have been developed. Here, we review the basic principles and current status of docking algorithms and scoring functions for DNA/RNA-ligand interactions. We also discuss challenges and limitations of current docking and scoring approaches.
Collapse
Affiliation(s)
- Yuyu Feng
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yumeng Yan
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jiahua He
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Qilong Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
30
|
Jiang Z, Xiao SR, Liu R. Dissecting and predicting different types of binding sites in nucleic acids based on structural information. Brief Bioinform 2021; 23:6384399. [PMID: 34624074 PMCID: PMC8769709 DOI: 10.1093/bib/bbab411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
The biological functions of DNA and RNA generally depend on their interactions with other molecules, such as small ligands, proteins and nucleic acids. However, our knowledge of the nucleic acid binding sites for different interaction partners is very limited, and identification of these critical binding regions is not a trivial work. Herein, we performed a comprehensive comparison between binding and nonbinding sites and among different categories of binding sites in these two nucleic acid classes. From the structural perspective, RNA may interact with ligands through forming binding pockets and contact proteins and nucleic acids using protruding surfaces, while DNA may adopt regions closer to the middle of the chain to make contacts with other molecules. Based on structural information, we established a feature-based ensemble learning classifier to identify the binding sites by fully using the interplay among different machine learning algorithms, feature spaces and sample spaces. Meanwhile, we designed a template-based classifier by exploiting structural conservation. The complementarity between the two classifiers motivated us to build an integrative framework for improving prediction performance. Moreover, we utilized a post-processing procedure based on the random walk algorithm to further correct the integrative predictions. Our unified prediction framework yielded promising results for different binding sites and outperformed existing methods.
Collapse
Affiliation(s)
- Zheng Jiang
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Si-Rui Xiao
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| | - Rong Liu
- College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
31
|
Baisden JT, Childs-Disney JL, Ryan LS, Disney MD. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Curr Opin Chem Biol 2021; 62:119-129. [PMID: 34118759 PMCID: PMC9264282 DOI: 10.1016/j.cbpa.2021.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023]
Abstract
The ENCODE and genome-wide association projects have shown that much of the genome is transcribed into RNA and much less is translated into protein. These and other functional studies suggest that the druggable transcriptome is much larger than the druggable proteome. This review highlights approaches to define druggable RNA targets and structure-activity relationships across genomic RNA. Binding compounds can be identified and optimized into structure-specific ligands by using sequence-based design with various modes of action, for example, inhibiting translation or directing pre-mRNA splicing outcomes. In addition, strategies to direct protein activity against an RNA of interest via chemically induced proximity is a burgeoning area that has been validated both in cells and in preclinical animal models, and we describe that it may allow rapid access to new avenues to affect RNA biology. These approaches and the unique modes of action suggest that more RNAs are potentially amenable to targeting than proteins.
Collapse
Affiliation(s)
- Jared T Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Jessica L Childs-Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Lucas S Ryan
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA
| | - Matthew D Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 USA.
| |
Collapse
|