1
|
da Silva JEH, Bernardino HS, de Oliveira IL, Camata JJ. A survey of the methodological process of modeling, inference, and evaluation of gene regulatory networks using scRNA-Seq data. Biosystems 2025; 253:105464. [PMID: 40409400 DOI: 10.1016/j.biosystems.2025.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/20/2025] [Accepted: 04/17/2025] [Indexed: 05/25/2025]
Abstract
The advent of scRNA-Seq sequencing technology has provided unprecedented resolutions in the analysis of gene regulatory networks (GRNs) at the single-cell level. However, new technical and methodological challenges also emerged. Factors such as the large number of zeros reported in expression levels, the biological variation due to the stochastic nature of gene expression, environmental niche, and effects created by the cell cycle make it difficult to correctly interpret the data obtained in the sequencing stage. On the other hand, the development of methods for the inference of GRNs, specifically using scRNA-Seq technology, proved to be of similar quality to random predictors. The lack of adequate pre-processing of gene expression data, including selection steps for subsets of genes of interest, smoothing, and discretization of gene expression, in addition to the different ways of modeling networks and network motifs, are factors that affect the performance of inference approaches. Finally, the lack of knowledge about the ground-truth network and the non-standardization of appropriate metrics to measure the quality of inferred networks make the process of comparing performance between algorithms a major problem, given the unbalanced nature of the data and the interpretation bias caused by the chosen metric. This article brings these issues to light, aiming to show how these factors influence both the inference process and the performance evaluation of inferred networks, through comparative computational experiments and provides suggestions for a more robust methodological process for researchers dealing with inference of GRNs.
Collapse
Affiliation(s)
- José Eduardo H da Silva
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil.
| | - Heder S Bernardino
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - Itamar L de Oliveira
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| | - José J Camata
- Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, s/n, Juiz de Fora, 36036-900, Minas Gerais, Brazil
| |
Collapse
|
2
|
Pan Q, Ding L, Hladyshau S, Yao X, Zhou J, Yan L, Dhungana Y, Shi H, Qian C, Dong X, Burdyshaw C, Veloso JP, Khatamian A, Xie Z, Risch I, Yang X, Yang J, Huang X, Fang J, Jain A, Jain A, Rusch M, Brewer M, Peng J, Yan KK, Chi H, Yu J. scMINER: a mutual information-based framework for clustering and hidden driver inference from single-cell transcriptomics data. Nat Commun 2025; 16:4305. [PMID: 40341143 PMCID: PMC12062461 DOI: 10.1038/s41467-025-59620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Single-cell transcriptomics data present challenges due to their inherent stochasticity and sparsity, complicating both cell clustering and cell type-specific network inference. To address these challenges, we introduce scMINER (single-cell Mutual Information-based Network Engineering Ranger), an integrative framework for unsupervised cell clustering, transcription factor and signaling protein network inference, and identification of hidden drivers from single-cell transcriptomic data. scMINER demonstrates superior accuracy in cell clustering, outperforming five state-of-the-art algorithms and excelling in distinguishing closely related cell populations. For network inference, scMINER outperforms three established methods, as validated by ATAC-seq and CROP-seq. In particular, it surpasses SCENIC in revealing key transcription factor drivers involved in T cell exhaustion and Treg tissue specification. Moreover, scMINER enables the inference of signaling protein networks and drivers with high accuracy, which presents an advantage in multimodal single cell data analysis. In addition, we establish scMINER Portal, an interactive visualization tool to facilitate exploration of scMINER results.
Collapse
Affiliation(s)
- Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Siarhei Hladyshau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xiangyu Yao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiayu Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lei Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Chenxi Qian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, Shanghai, 201102, P.R. China
| | - Chad Burdyshaw
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Joao Pedro Veloso
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zhen Xie
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Isabel Risch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyuan Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jason Fang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anuj Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arihant Jain
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Brewer
- Department of Information Services, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Department of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Chen L, Dautle M, Gao R, Zhang S, Chen Y. Inferring gene regulatory networks from time-series scRNA-seq data via GRANGER causal recurrent autoencoders. Brief Bioinform 2025; 26:bbaf089. [PMID: 40062616 PMCID: PMC11891664 DOI: 10.1093/bib/bbaf089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/26/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
The development of single-cell RNA sequencing (scRNA-seq) technology provides valuable data resources for inferring gene regulatory networks (GRNs), enabling deeper insights into cellular mechanisms and diseases. While many methods exist for inferring GRNs from static scRNA-seq data, current approaches face challenges in accurately handling time-series scRNA-seq data due to high noise levels and data sparsity. The temporal dimension introduces additional complexity by requiring models to capture dynamic changes, increasing sensitivity to noise, and exacerbating data sparsity across time points. In this study, we introduce GRANGER, an unsupervised deep learning-based method that integrates multiple advanced techniques, including a recurrent variational autoencoder, GRANGER causality, sparsity-inducing penalties, and negative binomial (NB)-based loss functions, to infer GRNs. GRANGER was evaluated using multiple popular benchmarking datasets, where it demonstrated superior performance compared to eight well-known GRN inference methods. The integration of a NB-based loss function and sparsity-inducing penalties in GRANGER significantly enhanced its capacity to address dropout noise and sparsity in scRNA-seq data. Additionally, GRANGER exhibited robustness against high levels of dropout noise. We applied GRANGER to scRNA-seq data from the whole mouse brain obtained through the BRAIN Initiative project and identified GRNs for five transcription regulators: E2f7, Gbx1, Sox10, Prox1, and Onecut2, which play crucial roles in diverse brain cell types. The inferred GRNs not only recalled many known regulatory relationships but also revealed sets of novel regulatory interactions with functional potential. These findings demonstrate that GRANGER is a highly effective tool for real-world applications in discovering novel gene regulatory relationships.
Collapse
Affiliation(s)
- Liang Chen
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Madison Dautle
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| | - Ruoying Gao
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, 393 Binshui W Ave, Tianjin, Tianjin 300387, China
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028, United States
| |
Collapse
|
4
|
Yuan Q, Duren Z. Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data. Nat Biotechnol 2025; 43:247-257. [PMID: 38609714 PMCID: PMC11825371 DOI: 10.1038/s41587-024-02182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/26/2024] [Indexed: 04/14/2024]
Abstract
Existing methods for gene regulatory network (GRN) inference rely on gene expression data alone or on lower resolution bulk data. Despite the recent integration of chromatin accessibility and RNA sequencing data, learning complex mechanisms from limited independent data points still presents a daunting challenge. Here we present LINGER (Lifelong neural network for gene regulation), a machine-learning method to infer GRNs from single-cell paired gene expression and chromatin accessibility data. LINGER incorporates atlas-scale external bulk data across diverse cellular contexts and prior knowledge of transcription factor motifs as a manifold regularization. LINGER achieves a fourfold to sevenfold relative increase in accuracy over existing methods and reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Following the GRN inference from reference single-cell multiome data, LINGER enables the estimation of transcription factor activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies.
Collapse
Affiliation(s)
- Qiuyue Yuan
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.
| |
Collapse
|
5
|
Manchel A, Gee M, Vadigepalli R. From sampling to simulating: Single-cell multiomics in systems pathophysiological modeling. iScience 2024; 27:111322. [PMID: 39628578 PMCID: PMC11612781 DOI: 10.1016/j.isci.2024.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As single-cell omics data sampling and acquisition methods have accumulated at an unprecedented rate, various data analysis pipelines have been developed for the inference of cell types, cell states and their distribution, state transitions, state trajectories, and state interactions. This presents a new opportunity in which single-cell omics data can be utilized to generate high-resolution, high-fidelity computational models. In this review, we discuss how single-cell omics data can be used to build computational models to simulate biological systems at various scales. We propose that single-cell data can be integrated with physiological information to generate organ-specific models, which can then be assembled to generate multi-organ systems pathophysiological models. Finally, we discuss how generic multi-organ models can be brought to the patient-specific level thus permitting their use in the clinical setting.
Collapse
Affiliation(s)
- Alexandra Manchel
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michelle Gee
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Bonev B, Castelo-Branco G, Chen F, Codeluppi S, Corces MR, Fan J, Heiman M, Harris K, Inoue F, Kellis M, Levine A, Lotfollahi M, Luo C, Maynard KR, Nitzan M, Ramani V, Satijia R, Schirmer L, Shen Y, Sun N, Green GS, Theis F, Wang X, Welch JD, Gokce O, Konopka G, Liddelow S, Macosko E, Ali Bayraktar O, Habib N, Nowakowski TJ. Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery. Nat Neurosci 2024; 27:2292-2309. [PMID: 39627587 PMCID: PMC11999325 DOI: 10.1038/s41593-024-01806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/23/2024] [Indexed: 12/13/2024]
Abstract
Over the past decade, single-cell genomics technologies have allowed scalable profiling of cell-type-specific features, which has substantially increased our ability to study cellular diversity and transcriptional programs in heterogeneous tissues. Yet our understanding of mechanisms of gene regulation or the rules that govern interactions between cell types is still limited. The advent of new computational pipelines and technologies, such as single-cell epigenomics and spatially resolved transcriptomics, has created opportunities to explore two new axes of biological variation: cell-intrinsic regulation of cell states and expression programs and interactions between cells. Here, we summarize the most promising and robust technologies in these areas, discuss their strengths and limitations and discuss key computational approaches for analysis of these complex datasets. We highlight how data sharing and integration, documentation, visualization and benchmarking of results contribute to transparency, reproducibility, collaboration and democratization in neuroscience, and discuss needs and opportunities for future technology development and analysis.
Collapse
Affiliation(s)
- Boyan Bonev
- Helmholtz Pioneer Campus, Helmholtz Zentrum München, Neuherberg, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fei Chen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - M Ryan Corces
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Fan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Fumitaka Inoue
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Manolis Kellis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ariel Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Mo Lotfollahi
- Institute of Computational Biology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Chongyuan Luo
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kristen R Maynard
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mor Nitzan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vijay Ramani
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Rahul Satijia
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Lucas Schirmer
- Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Na Sun
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gilad S Green
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabian Theis
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiao Wang
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ozgun Gokce
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Shane Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Evan Macosko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Naomi Habib
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomasz J Nowakowski
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Yu Z, Gan Z, Tawfik A, Meng F. Exploring interspecific interaction variability in microbiota: A review. ENGINEERING MICROBIOLOGY 2024; 4:100178. [PMID: 40104221 PMCID: PMC11915528 DOI: 10.1016/j.engmic.2024.100178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 03/20/2025]
Abstract
Interspecific interactions are an important component and a strong selective force in microbial communities. Over the past few decades, there has been a growing awareness of the variability in microbial interactions, and various studies are already unraveling the inner working dynamics in microbial communities. This has prompted scientists to develop novel techniques for characterizing the varying interspecific interactions among microbes. Here, we review the precise definitions of pairwise and high-order interactions, summarize the key concepts related to interaction variability, and discuss the strengths and weaknesses of emerging characterization techniques. Specifically, we found that most methods can accurately predict or provide direct information about microbial pairwise interactions. However, some of these methods inevitably mask the underlying high-order interactions in the microbial community. Making reasonable assumptions and choosing a characterization method to explore varying microbial interactions should allow us to better understand and engineer dynamic microbial systems.
Collapse
Affiliation(s)
- Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, Dokki, Giza 12622, Egypt
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Peng D, Cahan P. OneSC: a computational platform for recapitulating cell state transitions. Bioinformatics 2024; 40:btae703. [PMID: 39570626 PMCID: PMC11630913 DOI: 10.1093/bioinformatics/btae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
MOTIVATION Computational modeling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology, and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a lab. Recent advancements in single-cell RNA-sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico "synthetic" cells that faithfully mimic the temporal trajectories. RESULTS Here we present OneSC, a platform that can simulate cell state transitions using systems of stochastic differential equations govern by a regulatory network of core transcription factors (TFs). Different from many current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and terminal cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes, and monocytes). Finally, through the in silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations. AVAILABILITY AND IMPLEMENTATION OneSC is implemented as a Python package on GitHub (https://github.com/CahanLab/oneSC) and on Zenodo (https://zenodo.org/records/14052421).
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
9
|
Karamveer, Uzun Y. Approaches for Benchmarking Single-Cell Gene Regulatory Network Methods. Bioinform Biol Insights 2024; 18:11779322241287120. [PMID: 39502448 PMCID: PMC11536393 DOI: 10.1177/11779322241287120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024] Open
Abstract
Gene regulatory networks are powerful tools for modeling genetic interactions that control the expression of genes driving cell differentiation, and single-cell sequencing offers a unique opportunity to build these networks with high-resolution genomic data. There are many proposed computational methods to build these networks using single-cell data, and different approaches are used to benchmark these methods. However, a comprehensive discussion specifically focusing on benchmarking approaches is missing. In this article, we lay the GRN terminology, present an overview of common gold-standard studies and data sets, and define the performance metrics for benchmarking network construction methodologies. We also point out the advantages and limitations of different benchmarking approaches, suggest alternative ground truth data sets that can be used for benchmarking, and specify additional considerations in this context.
Collapse
Affiliation(s)
- Karamveer
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yasin Uzun
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
10
|
Dong J, Li J, Wang F. Deep Learning in Gene Regulatory Network Inference: A Survey. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2089-2101. [PMID: 39137088 DOI: 10.1109/tcbb.2024.3442536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Understanding the intricate regulatory relationships among genes is crucial for comprehending the development, differentiation, and cellular response in living systems. Consequently, inferring gene regulatory networks (GRNs) based on observed data has gained significant attention as a fundamental goal in biological applications. The proliferation and diversification of available data present both opportunities and challenges in accurately inferring GRNs. Deep learning, a highly successful technique in various domains, holds promise in aiding GRN inference. Several GRN inference methods employing deep learning models have been proposed; however, the selection of an appropriate method remains a challenge for life scientists. In this survey, we provide a comprehensive analysis of 12 GRN inference methods that leverage deep learning models. We trace the evolution of these major methods and categorize them based on the types of applicable data. We delve into the core concepts and specific steps of each method, offering a detailed evaluation of their effectiveness and scalability across different scenarios. These insights enable us to make informed recommendations. Moreover, we explore the challenges faced by GRN inference methods utilizing deep learning and discuss future directions, providing valuable suggestions for the advancement of data scientists in this field.
Collapse
|
11
|
K Lodi M, Chernikov A, Ghosh P. COFFEE: consensus single cell-type specific inference for gene regulatory networks. Brief Bioinform 2024; 25:bbae457. [PMID: 39311699 PMCID: PMC11418232 DOI: 10.1093/bib/bbae457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
The inference of gene regulatory networks (GRNs) is crucial to understanding the regulatory mechanisms that govern biological processes. GRNs may be represented as edges in a graph, and hence, it have been inferred computationally for scRNA-seq data. A wisdom of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when compared with individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting-based consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved performance across synthetic, curated, and experimental datasets when compared with baseline methods. Additionally, we show that a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall, our results demonstrate that consensus-based methods with pertinent modifications continue to be valuable for GRN inference at the single cell level. While COFFEE is benchmarked on 10 algorithms, it is a flexible strategy that can incorporate any set of GRN inference algorithms according to user preference. A Python implementation of COFFEE may be found on GitHub: https://github.com/lodimk2/coffee.
Collapse
Affiliation(s)
- Musaddiq K Lodi
- Integrative Life Sciences, Virginia Commonwealth University, 1000 W Cary St, Richmond, VA 23284, United States
| | - Anna Chernikov
- Center for Biological Data Science, Virginia Commonwealth University, 1015 Floyd Ave, Richmond, VA 23284, United States
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, 401 W Main St, Richmond, VA 23284, United States
| |
Collapse
|
12
|
Hsiao YC, Dutta A. Network Modeling and Control of Dynamic Disease Pathways, Review and Perspectives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1211-1230. [PMID: 38498762 DOI: 10.1109/tcbb.2024.3378155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Dynamic disease pathways are a combination of complex dynamical processes among bio-molecules in a cell that leads to diseases. Network modeling of disease pathways considers disease-related bio-molecules (e.g. DNA, RNA, transcription factors, enzymes, proteins, and metabolites) and their interaction (e.g. DNA methylation, histone modification, alternative splicing, and protein modification) to study disease progression and predict therapeutic responses. These bio-molecules and their interactions are the basic elements in the study of the misregulation in the disease-related gene expression that lead to abnormal cellular responses. Gene regulatory networks, cell signaling networks, and metabolic networks are the three major types of intracellular networks for the study of the cellular responses elicited from extracellular signals. The disease-related cellular responses can be prevented or regulated by designing control strategies to manipulate these extracellular or other intracellular signals. The paper reviews the regulatory mechanisms, the dynamic models, and the control strategies for each intracellular network. The applications, limitations and the prospective for modeling and control are also discussed.
Collapse
|
13
|
Huo Q, Song R, Ma Z. Recent advances in exploring transcriptional regulatory landscape of crops. FRONTIERS IN PLANT SCIENCE 2024; 15:1421503. [PMID: 38903438 PMCID: PMC11188431 DOI: 10.3389/fpls.2024.1421503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Crop breeding entails developing and selecting plant varieties with improved agronomic traits. Modern molecular techniques, such as genome editing, enable more efficient manipulation of plant phenotype by altering the expression of particular regulatory or functional genes. Hence, it is essential to thoroughly comprehend the transcriptional regulatory mechanisms that underpin these traits. In the multi-omics era, a large amount of omics data has been generated for diverse crop species, including genomics, epigenomics, transcriptomics, proteomics, and single-cell omics. The abundant data resources and the emergence of advanced computational tools offer unprecedented opportunities for obtaining a holistic view and profound understanding of the regulatory processes linked to desirable traits. This review focuses on integrated network approaches that utilize multi-omics data to investigate gene expression regulation. Various types of regulatory networks and their inference methods are discussed, focusing on recent advancements in crop plants. The integration of multi-omics data has been proven to be crucial for the construction of high-confidence regulatory networks. With the refinement of these methodologies, they will significantly enhance crop breeding efforts and contribute to global food security.
Collapse
Affiliation(s)
| | | | - Zeyang Ma
- State Key Laboratory of Maize Bio-breeding, Frontiers Science Center for Molecular Design Breeding, Joint International Research Laboratory of Crop Molecular Breeding, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Peng D, Cahan P. OneSC: A computational platform for recapitulating cell state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596831. [PMID: 38895453 PMCID: PMC11185539 DOI: 10.1101/2024.05.31.596831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Computational modelling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a wet lab. Recent advancements in single-cell RNA sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico 'synthetic' cells that faithfully mimic the temporal trajectories. Here we present OneSC, a platform that can simulate synthetic cells across developmental trajectories using systems of stochastic differential equations govern by a core transcription factors (TFs) regulatory network. Different from the current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and steady cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes and monocytes). Finally, through the in-silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| |
Collapse
|
15
|
Wan R, Zhang Y, Peng Y, Tian F, Gao G, Tang F, Jia J, Ge H. Unveiling gene regulatory networks during cellular state transitions without linkage across time points. Sci Rep 2024; 14:12355. [PMID: 38811747 PMCID: PMC11137113 DOI: 10.1038/s41598-024-62850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
Time-stamped cross-sectional data, which lack linkage across time points, are commonly generated in single-cell transcriptional profiling. Many previous methods for inferring gene regulatory networks (GRNs) driving cell-state transitions relied on constructing single-cell temporal ordering. Introducing COSLIR (COvariance restricted Sparse LInear Regression), we presented a direct approach to reconstructing GRNs that govern cell-state transitions, utilizing only the first and second moments of samples between two consecutive time points. Simulations validated COSLIR's perfect accuracy in the oracle case and demonstrated its robust performance in real-world scenarios. When applied to single-cell RT-PCR and RNAseq datasets in developmental biology, COSLIR competed favorably with existing methods. Notably, its running time remained nearly independent of the number of cells. Therefore, COSLIR emerges as a promising addition to GRN reconstruction methods under cell-state transitions, bypassing the single-cell temporal ordering to enhance accuracy and efficiency in single-cell transcriptional profiling.
Collapse
Affiliation(s)
- Ruosi Wan
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Yuhao Zhang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yongli Peng
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Feng Tian
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Ge Gao
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Fuchou Tang
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jinzhu Jia
- School of Public Health and Center for Statistical Science, Peking University, Beijing, China.
| | - Hao Ge
- Beijing International Center for Mathematical Research, Peking University, Beijing, China.
- Biomedical Pioneering Innovation Center, Peking University, Beijing, China.
| |
Collapse
|
16
|
Lei Y, Huang XT, Guo X, Hang Katie Chan K, Gao L. DeepGRNCS: deep learning-based framework for jointly inferring gene regulatory networks across cell subpopulations. Brief Bioinform 2024; 25:bbae334. [PMID: 38980373 PMCID: PMC11232306 DOI: 10.1093/bib/bbae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Inferring gene regulatory networks (GRNs) allows us to obtain a deeper understanding of cellular function and disease pathogenesis. Recent advances in single-cell RNA sequencing (scRNA-seq) technology have improved the accuracy of GRN inference. However, many methods for inferring individual GRNs from scRNA-seq data are limited because they overlook intercellular heterogeneity and similarities between different cell subpopulations, which are often present in the data. Here, we propose a deep learning-based framework, DeepGRNCS, for jointly inferring GRNs across cell subpopulations. We follow the commonly accepted hypothesis that the expression of a target gene can be predicted based on the expression of transcription factors (TFs) due to underlying regulatory relationships. We initially processed scRNA-seq data by discretizing data scattering using the equal-width method. Then, we trained deep learning models to predict target gene expression from TFs. By individually removing each TF from the expression matrix, we used pre-trained deep model predictions to infer regulatory relationships between TFs and genes, thereby constructing the GRN. Our method outperforms existing GRN inference methods for various simulated and real scRNA-seq datasets. Finally, we applied DeepGRNCS to non-small cell lung cancer scRNA-seq data to identify key genes in each cell subpopulation and analyzed their biological relevance. In conclusion, DeepGRNCS effectively predicts cell subpopulation-specific GRNs. The source code is available at https://github.com/Nastume777/DeepGRNCS.
Collapse
Affiliation(s)
- Yahui Lei
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| | - Xiao-Tai Huang
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| | - Xingli Guo
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Epidemiology and Center for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an 710071, Shaanxi, China
| |
Collapse
|
17
|
Singh R, Wu AP, Mudide A, Berger B. Causal gene regulatory analysis with RNA velocity reveals an interplay between slow and fast transcription factors. Cell Syst 2024; 15:462-474.e5. [PMID: 38754366 DOI: 10.1016/j.cels.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/25/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Single-cell expression dynamics, from differentiation trajectories or RNA velocity, have the potential to reveal causal links between transcription factors (TFs) and their target genes in gene regulatory networks (GRNs). However, existing methods either overlook these expression dynamics or necessitate that cells be ordered along a linear pseudotemporal axis, which is incompatible with branching trajectories. We introduce Velorama, an approach to causal GRN inference that represents single-cell differentiation dynamics as a directed acyclic graph of cells, constructed from pseudotime or RNA velocity measurements. Additionally, Velorama enables the estimation of the speed at which TFs influence target genes. Applying Velorama, we uncover evidence that the speed of a TF's interactions is tied to its regulatory function. For human corticogenesis, we find that slow TFs are linked to gliomas, while fast TFs are associated with neuropsychiatric diseases. We expect Velorama to become a critical part of the RNA velocity toolkit for investigating the causal drivers of differentiation and disease.
Collapse
Affiliation(s)
- Rohit Singh
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA.
| | - Alexander P Wu
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Anish Mudide
- Phillips Exeter Academy, Exeter, NH 03883, USA; Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA 02139, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Zhang K, Zhu J, Kong D, Zhang Z. Modeling single cell trajectory using forward-backward stochastic differential equations. PLoS Comput Biol 2024; 20:e1012015. [PMID: 38620017 PMCID: PMC11018287 DOI: 10.1371/journal.pcbi.1012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Recent advances in single-cell sequencing technology have provided opportunities for mathematical modeling of dynamic developmental processes at the single-cell level, such as inferring developmental trajectories. Optimal transport has emerged as a promising theoretical framework for this task by computing pairings between cells from different time points. However, optimal transport methods have limitations in capturing nonlinear trajectories, as they are static and can only infer linear paths between endpoints. In contrast, stochastic differential equations (SDEs) offer a dynamic and flexible approach that can model non-linear trajectories, including the shape of the path. Nevertheless, existing SDE methods often rely on numerical approximations that can lead to inaccurate inferences, deviating from true trajectories. To address this challenge, we propose a novel approach combining forward-backward stochastic differential equations (FBSDE) with a refined approximation procedure. Our FBSDE model integrates the forward and backward movements of two SDEs in time, aiming to capture the underlying dynamics of single-cell developmental trajectories. Through comprehensive benchmarking on multiple scRNA-seq datasets, we demonstrate the superior performance of FBSDE compared to other methods, highlighting its efficacy in accurately inferring developmental trajectories.
Collapse
Affiliation(s)
- Kevin Zhang
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Junhao Zhu
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Dehan Kong
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
20
|
Lodi MK, Chernikov A, Ghosh P. COFFEE: Consensus Single Cell-Type Specific Inference for Gene Regulatory Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574445. [PMID: 38260386 PMCID: PMC10802453 DOI: 10.1101/2024.01.05.574445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The inference of gene regulatory networks (GRNs) is crucial to understanding the regulatory mechanisms that govern biological processes. GRNs may be represented as edges in a graph, and hence have been inferred computationally for scRNA-seq data. A wisdom of crowds approach to integrate edges from several GRNs to create one composite GRN has demonstrated improved performance when compared to individual algorithm implementations on bulk RNA-seq and microarray data. In an effort to extend this approach to scRNA-seq data, we present COFFEE (COnsensus single cell-type speciFic inFerence for gEnE regulatory networks), a Borda voting based consensus algorithm that integrates information from 10 established GRN inference methods. We conclude that COFFEE has improved performance across synthetic, curated and experimental datasets when compared to baseline methods. Additionally, we show that a modified version of COFFEE can be leveraged to improve performance on newer cell-type specific GRN inference methods. Overall, our results demonstrate that consensus based methods with pertinent modifications continue to be valuable for GRN inference at the single cell level.
Collapse
Affiliation(s)
- Musaddiq K Lodi
- Integrative Life Sciences, Virginia Commonwealth University, Richmond, VA 23284
| | - Anna Chernikov
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
21
|
Kim H, Choi H, Lee D, Kim J. A review on gene regulatory network reconstruction algorithms based on single cell RNA sequencing. Genes Genomics 2024; 46:1-11. [PMID: 38032470 DOI: 10.1007/s13258-023-01473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Understanding gene regulatory networks (GRNs) is essential for unraveling the molecular mechanisms governing cellular behavior. With the advent of high-throughput transcriptome measurement technology, researchers have aimed to reverse engineer the biological systems, extracting gene regulatory rules from their outputs, which represented by gene expression data. Bulk RNA sequencing, a widely used method for measuring gene expression, has been employed for GRN reconstruction. However, it falls short in capturing dynamic changes in gene expression at the level of individual cells since it averages gene expression across mixed cell populations. OBJECTIVE In this review, we provide an overview of 15 GRN reconstruction tools and discuss their respective strengths and limitations, particularly in the context of single cell RNA sequencing (scRNA-seq). METHODS Recent advancements in scRNA-seq break new ground of GRN reconstruction. They offer snapshots of the individual cell transcriptomes and capturing dynamic changes. We emphasize how these technological breakthroughs have enhanced GRN reconstruction. CONCLUSION GRN reconstructors can be classified based on their requirement for cellular trajectory, which represents a dynamical cellular process including differentiation, aging, or disease progression. Benchmarking studies support the superiority of GRN reconstructors that do not require trajectory analysis in identifying regulator-target relationships. However, methods equipped with trajectory analysis demonstrate better performance in identifying key regulatory factors. In conclusion, researchers should select a suitable GRN reconstructor based on their specific research objectives.
Collapse
Affiliation(s)
- Hyeonkyu Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Hwisoo Choi
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Daewon Lee
- School of Art and Technology, Chung-Ang University, 4726 Seodong-Daero, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea.
| |
Collapse
|
22
|
Gong M, He Y, Wang M, Zhang Y, Ding C. Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism. Comput Biol Chem 2023; 106:107923. [PMID: 37598467 DOI: 10.1016/j.compbiolchem.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023]
Abstract
Predicting the transcription factor binding site (TFBS) in the whole genome range is essential in exploring the rule of gene transcription control. Although many deep learning methods to predict TFBS have been proposed, predicting TFBS using single-cell ATAC-seq data and embedding attention mechanisms needs to be improved. To this end, we present IscPAM, an interpretable method based on deep learning with an attention mechanism to predict single-cell transcription factors. Our model adopts the convolution neural network to extract the data feature and optimize the pre-trained model. In particular, the model obtains faster training and prediction due to the embedded attention mechanism. For datasets, we take ATAC-seq, ChIP-seq, and DNA sequences data for the pre-trained model, and single-cell ATAC-seq data is used to predict the TF binding graph in the given cell. We verify the interpretability of the model through ablation experiments and sensitivity analysis. IscPAM can efficiently predict the combination of whole genome transcription factors in single cells and study cellular heterogeneity through chromatin accessibility of related diseases.
Collapse
Affiliation(s)
- Meiqin Gong
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchen He
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Maocheng Wang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Chunli Ding
- Sichuan Institute of Computer Sciences, Chengdu 610041, China.
| |
Collapse
|
23
|
Velten B, Stegle O. Principles and challenges of modeling temporal and spatial omics data. Nat Methods 2023; 20:1462-1474. [PMID: 37710019 DOI: 10.1038/s41592-023-01992-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2023] [Indexed: 09/16/2023]
Abstract
Studies with temporal or spatial resolution are crucial to understand the molecular dynamics and spatial dependencies underlying a biological process or system. With advances in high-throughput omic technologies, time- and space-resolved molecular measurements at scale are increasingly accessible, providing new opportunities to study the role of timing or structure in a wide range of biological questions. At the same time, analyses of the data being generated in the context of spatiotemporal studies entail new challenges that need to be considered, including the need to account for temporal and spatial dependencies and compare them across different scales, biological samples or conditions. In this Review, we provide an overview of common principles and challenges in the analysis of temporal and spatial omics data. We discuss statistical concepts to model temporal and spatial dependencies and highlight opportunities for adapting existing analysis methods to data with temporal and spatial dimensions.
Collapse
Affiliation(s)
- Britta Velten
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Centre for Organismal Studies (COS) and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
24
|
Zhao J, Wong CW, Ching WK, Cheng X. NG-SEM: an effective non-Gaussian structural equation modeling framework for gene regulatory network inference from single-cell RNA-seq data. Brief Bioinform 2023; 24:bbad369. [PMID: 37864293 DOI: 10.1093/bib/bbad369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023] Open
Abstract
Inference of gene regulatory network (GRN) from gene expression profiles has been a central problem in systems biology and bioinformatics in the past decades. The tremendous emergency of single-cell RNA sequencing (scRNA-seq) data brings new opportunities and challenges for GRN inference: the extensive dropouts and complicated noise structure may also degrade the performance of contemporary gene regulatory models. Thus, there is an urgent need to develop more accurate methods for gene regulatory network inference in single-cell data while considering the noise structure at the same time. In this paper, we extend the traditional structural equation modeling (SEM) framework by considering a flexible noise modeling strategy, namely we use the Gaussian mixtures to approximate the complex stochastic nature of a biological system, since the Gaussian mixture framework can be arguably served as a universal approximation for any continuous distributions. The proposed non-Gaussian SEM framework is called NG-SEM, which can be optimized by iteratively performing Expectation-Maximization algorithm and weighted least-squares method. Moreover, the Akaike Information Criteria is adopted to select the number of components of the Gaussian mixture. To probe the accuracy and stability of our proposed method, we design a comprehensive variate of control experiments to systematically investigate the performance of NG-SEM under various conditions, including simulations and real biological data sets. Results on synthetic data demonstrate that this strategy can improve the performance of traditional Gaussian SEM model and results on real biological data sets verify that NG-SEM outperforms other five state-of-the-art methods.
Collapse
Affiliation(s)
- Jiaying Zhao
- Department of Mathematics, The University of Hongkong, Pokfulam road, Hong Kong
| | - Chi-Wing Wong
- Department of Mathematics, The University of Hongkong, Pokfulam road, Hong Kong
| | - Wai-Ki Ching
- Department of Mathematics, The University of Hongkong, Pokfulam road, Hong Kong
| | - Xiaoqing Cheng
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| |
Collapse
|
25
|
Zeng Y, He Y, Zheng R, Li M. Inferring single-cell gene regulatory network by non-redundant mutual information. Brief Bioinform 2023; 24:bbad326. [PMID: 37715282 DOI: 10.1093/bib/bbad326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 09/17/2023] Open
Abstract
Gene regulatory network plays a crucial role in controlling the biological processes of living creatures. Deciphering the complex gene regulatory networks from experimental data remains a major challenge in system biology. Recent advances in single-cell RNA sequencing technology bring massive high-resolution data, enabling computational inference of cell-specific gene regulatory networks (GRNs). Many relevant algorithms have been developed to achieve this goal in the past years. However, GRN inference is still less ideal due to the extra noises involved in pseudo-time information and large amounts of dropouts in datasets. Here, we present a novel GRN inference method named Normi, which is based on non-redundant mutual information. Normi manipulates these problems by employing a sliding size-fixed window approach on the entire trajectory and conducts average smoothing strategy on the gene expression of the cells in each window to obtain representative cells. To further alleviate the impact of dropouts, we utilize the mixed KSG estimator to quantify the high-order time-delayed mutual information among genes, then filter out the redundant edges by adopting Max-Relevance and Min Redundancy algorithm. Moreover, we determined the optimal time delay for each gene pair by distance correlation. Normi outperforms other state-of-the-art GRN inference methods on both simulated data and single-cell RNA sequencing (scRNA-seq) datasets, demonstrating its superiority in robustness. The performance of Normi in real scRNA-seq data further reveals its ability to identify the key regulators and crucial biological processes.
Collapse
Affiliation(s)
- Yanping Zeng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yongxin He
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Wang J, Chen Y, Zou Q. Inferring gene regulatory network from single-cell transcriptomes with graph autoencoder model. PLoS Genet 2023; 19:e1010942. [PMID: 37703293 PMCID: PMC10519590 DOI: 10.1371/journal.pgen.1010942] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/25/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
The gene regulatory structure of cells involves not only the regulatory relationship between two genes, but also the cooperative associations of multiple genes. However, most gene regulatory network inference methods for single cell only focus on and infer the regulatory relationships of pairs of genes, ignoring the global regulatory structure which is crucial to identify the regulations in the complex biological systems. Here, we proposed a graph-based Deep learning model for Regulatory networks Inference among Genes (DeepRIG) from single-cell RNA-seq data. To learn the global regulatory structure, DeepRIG builds a prior regulatory graph by transforming the gene expression of data into the co-expression mode. Then it utilizes a graph autoencoder model to embed the global regulatory information contained in the graph into gene latent embeddings and to reconstruct the gene regulatory network. Extensive benchmarking results demonstrate that DeepRIG can accurately reconstruct the gene regulatory networks and outperform existing methods on multiple simulated networks and real-cell regulatory networks. Additionally, we applied DeepRIG to the samples of human peripheral blood mononuclear cells and triple-negative breast cancer, and presented that DeepRIG can provide accurate cell-type-specific gene regulatory networks inference and identify novel regulators of progression and inhibition.
Collapse
Affiliation(s)
- Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Yaojia Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| |
Collapse
|
27
|
Bocci F, Jia D, Nie Q, Jolly MK, Onuchic J. Theoretical and computational tools to model multistable gene regulatory networks. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:10.1088/1361-6633/acec88. [PMID: 37531952 PMCID: PMC10521208 DOI: 10.1088/1361-6633/acec88] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
Collapse
Affiliation(s)
- Federico Bocci
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Qing Nie
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - José Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
28
|
Zito F, Cutello V, Pavone M. A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1214. [PMID: 37628244 PMCID: PMC10453511 DOI: 10.3390/e25081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The ability to simulate gene expression and infer gene regulatory networks has vast potential applications in various fields, including medicine, agriculture, and environmental science. In recent years, machine learning approaches to simulate gene expression and infer gene regulatory networks have gained significant attention as a promising area of research. By simulating gene expression, we can gain insights into the complex mechanisms that control gene expression and how they are affected by various environmental factors. This knowledge can be used to develop new treatments for genetic diseases, improve crop yields, and better understand the evolution of species. In this article, we address this issue by focusing on a novel method capable of simulating the gene expression regulation of a group of genes and their mutual interactions. Our framework enables us to simulate the regulation of gene expression in response to alterations or perturbations that can affect the expression of a gene. We use both artificial and real benchmarks to empirically evaluate the effectiveness of our methodology. Furthermore, we compare our method with existing ones to understand its advantages and disadvantages. We also present future ideas for improvement to enhance the effectiveness of our method. Overall, our approach has the potential to greatly improve the field of gene expression simulation and gene regulatory network inference, possibly leading to significant advancements in genetics.
Collapse
Affiliation(s)
| | | | - Mario Pavone
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| |
Collapse
|
29
|
Yuan Q, Duren Z. Continuous lifelong learning for modeling of gene regulation from single cell multiome data by leveraging atlas-scale external data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551575. [PMID: 37577525 PMCID: PMC10418251 DOI: 10.1101/2023.08.01.551575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Accurate context-specific Gene Regulatory Networks (GRNs) inference from genomics data is a crucial task in computational biology. However, existing methods face limitations, such as reliance on gene expression data alone, lower resolution from bulk data, and data scarcity for specific cellular systems. Despite recent technological advancements, including single-cell sequencing and the integration of ATAC-seq and RNA-seq data, learning such complex mechanisms from limited independent data points still presents a daunting challenge, impeding GRN inference accuracy. To overcome this challenge, we present LINGER (LIfelong neural Network for GEne Regulation), a novel deep learning-based method to infer GRNs from single-cell multiome data with paired gene expression and chromatin accessibility data from the same cell. LINGER incorporates both 1) atlas-scale external bulk data across diverse cellular contexts and 2) the knowledge of transcription factor (TF) motif matching to cis-regulatory elements as a manifold regularization to address the challenge of limited data and extensive parameter space in GRN inference. Our results demonstrate that LINGER achieves 2-3 fold higher accuracy over existing methods. LINGER reveals a complex regulatory landscape of genome-wide association studies, enabling enhanced interpretation of disease-associated variants and genes. Additionally, following the GRN inference from a reference sc-multiome data, LINGER allows for the estimation of TF activity solely from bulk or single-cell gene expression data, leveraging the abundance of available gene expression data to identify driver regulators from case-control studies. Overall, LINGER provides a comprehensive tool for robust gene regulation inference from genomics data, empowering deeper insights into cellular mechanisms.
Collapse
Affiliation(s)
- Qiuyue Yuan
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
30
|
Marku M, Pancaldi V. From time-series transcriptomics to gene regulatory networks: A review on inference methods. PLoS Comput Biol 2023; 19:e1011254. [PMID: 37561790 PMCID: PMC10414591 DOI: 10.1371/journal.pcbi.1011254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.
Collapse
Affiliation(s)
- Malvina Marku
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
31
|
Li L, Sun L, Chen G, Wong CW, Ching WK, Liu ZP. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data. Bioinformatics 2023; 39:btad256. [PMID: 37079737 PMCID: PMC10172039 DOI: 10.1093/bioinformatics/btad256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
MOTIVATION From a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe the updated logic rules of regulation in GRNs to obtain their dynamics. Moreover, some inference methods also fail to deal with the over-fitting problem caused by the noise in time series data. RESULTS In this article, we propose a novel embedded Boolean threshold network method called LogBTF, which effectively infers GRN by integrating regularized logistic regression and Boolean threshold function. First, the continuous gene expression values are converted into Boolean values and the elastic net regression model is adopted to fit the binarized time series data. Then, the estimated regression coefficients are applied to represent the unknown Boolean threshold function of the candidate Boolean threshold network as the dynamical equations. To overcome the multi-collinearity and over-fitting problems, a new and effective approach is designed to optimize the network topology by adding a perturbation design matrix to the input data and thereafter setting sufficiently small elements of the output coefficient vector to zeros. In addition, the cross-validation procedure is implemented into the Boolean threshold network model framework to strengthen the inference capability. Finally, extensive experiments on one simulated Boolean value dataset, dozens of simulation datasets, and three real single-cell RNA sequencing datasets demonstrate that the LogBTF method can infer GRNs from time series data more accurately than some other alternative methods for GRN inference. AVAILABILITY AND IMPLEMENTATION The source data and code are available at https://github.com/zpliulab/LogBTF.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Liangjie Sun
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Guangyi Chen
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Chi-Wing Wong
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Wai-Ki Ching
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
32
|
Shen B, Coruzzi G, Shasha D. EnsInfer: a simple ensemble approach to network inference outperforms any single method. BMC Bioinformatics 2023; 24:114. [PMID: 36964499 PMCID: PMC10037858 DOI: 10.1186/s12859-023-05231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
This study evaluates both a variety of existing base causal inference methods and a variety of ensemble methods. We show that: (i) base network inference methods vary in their performance across different datasets, so a method that works poorly on one dataset may work well on another; (ii) a non-homogeneous ensemble method in the form of a Naive Bayes classifier leads overall to as good or better results than using the best single base method or any other ensemble method; (iii) for the best results, the ensemble method should integrate all methods that satisfy a statistical test of normality on training data. The resulting ensemble model EnsInfer easily integrates all kinds of RNA-seq data as well as new and existing inference methods. The paper categorizes and reviews state-of-the-art underlying methods, describes the EnsInfer ensemble approach in detail, and presents experimental results. The source code and data used will be made available to the community upon publication.
Collapse
Affiliation(s)
- Bingran Shen
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, 10012 USA
| | - Gloria Coruzzi
- Department of Biology, Center for Genomics and Systems Biology, New York University, 12 Waverly Pl, New York, 10003 USA
| | - Dennis Shasha
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, 10012 USA
| |
Collapse
|
33
|
Tu YH, Juan HF, Huang HC. Context-dependent gene regulatory network reveals regulation dynamics and cell trajectories using unspliced transcripts. Brief Bioinform 2023; 24:6991202. [PMID: 36653899 DOI: 10.1093/bib/bbac633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Gene regulatory networks govern complex gene expression programs in various biological phenomena, including embryonic development, cell fate decisions and oncogenesis. Single-cell techniques are increasingly being used to study gene expression, providing higher resolution than traditional approaches. However, inferring a comprehensive gene regulatory network across different cell types remains a challenge. Here, we propose to construct context-dependent gene regulatory networks (CDGRNs) from single-cell RNA sequencing data utilizing both spliced and unspliced transcript expression levels. A gene regulatory network is decomposed into subnetworks corresponding to different transcriptomic contexts. Each subnetwork comprises the consensus active regulation pairs of transcription factors and their target genes shared by a group of cells, inferred by a Gaussian mixture model. We find that the union of gene regulation pairs in all contexts is sufficient to reconstruct differentiation trajectories. Functions specific to the cell cycle, cell differentiation or tissue-specific functions are enriched throughout the developmental process in each context. Surprisingly, we also observe that the network entropy of CDGRNs decreases along differentiation trajectories, indicating directionality in differentiation. Overall, CDGRN allows us to establish the connection between gene regulation at the molecular level and cell differentiation at the macroscopic level.
Collapse
Affiliation(s)
- Yueh-Hua Tu
- Bioinformatics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115, Taiwan
- Taiwan International Graduate Program on Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Hsueh-Fen Juan
- Taiwan International Graduate Program on Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| |
Collapse
|
34
|
van der Sande M, Frölich S, van Heeringen SJ. Computational approaches to understand transcription regulation in development. Biochem Soc Trans 2023; 51:1-12. [PMID: 36695505 PMCID: PMC9988001 DOI: 10.1042/bst20210145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Gene regulatory networks (GRNs) serve as useful abstractions to understand transcriptional dynamics in developmental systems. Computational prediction of GRNs has been successfully applied to genome-wide gene expression measurements with the advent of microarrays and RNA-sequencing. However, these inferred networks are inaccurate and mostly based on correlative rather than causative interactions. In this review, we highlight three approaches that significantly impact GRN inference: (1) moving from one genome-wide functional modality, gene expression, to multi-omics, (2) single cell sequencing, to measure cell type-specific signals and predict context-specific GRNs, and (3) neural networks as flexible models. Together, these experimental and computational developments have the potential to significantly impact the quality of inferred GRNs. Ultimately, accurately modeling the regulatory interactions between transcription factors and their target genes will be essential to understand the role of transcription factors in driving developmental gene expression programs and to derive testable hypotheses for validation.
Collapse
Affiliation(s)
| | | | - Simon J. van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6525GA Nijmegen, The Netherlands
| |
Collapse
|
35
|
Koumadorakis DE, Krokidis MG, Dimitrakopoulos GN, Vrahatis AG. A Consensus Gene Regulatory Network for Neurodegenerative Diseases Using Single-Cell RNA-Seq Data. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:215-224. [PMID: 37525047 DOI: 10.1007/978-3-031-31978-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Gene regulatory network (GRN) inference from gene expression data is a highly complex and challenging task in systems biology. Despite the challenges, GRNs have emerged, and for complex diseases such as neurodegenerative diseases, they have the potential to provide vital information and identify key regulators. However, every GRN method produced predicts results based on its assumptions, providing limited biological insights. For that reason, the current work focused on the development of an ensemble method from individual GRN methods to address this issue. Four state-of-the-art GRN algorithms were selected to form a consensus GRN from their common gene interactions. Each algorithm uses a different construction method, and for a more robust behavior, both static and dynamic methods were selected as well. The algorithms were applied to a scRNA-seq dataset from the CK-p25 mus musculus model during neurodegeneration. The top subnetworks were constructed from the consensus network, and potential key regulators were identified. The results also demonstrated the overlap between the algorithms for the current dataset and the necessity for an ensemble approach. This work aims to demonstrate the creation of an ensemble network and provide insights into whether a combination of different GRN methods can produce valuable results.
Collapse
Affiliation(s)
- Dimitrios E Koumadorakis
- Bioinformatics and Human Electrophysiology Lab (BiHELab), Department of Informatics, Ionian University, Corfu, Greece
| | - Marios G Krokidis
- Bioinformatics and Human Electrophysiology Lab (BiHELab), Department of Informatics, Ionian University, Corfu, Greece
| | - Georgios N Dimitrakopoulos
- Bioinformatics and Human Electrophysiology Lab (BiHELab), Department of Informatics, Ionian University, Corfu, Greece
| | - Aristidis G Vrahatis
- Bioinformatics and Human Electrophysiology Lab (BiHELab), Department of Informatics, Ionian University, Corfu, Greece
| |
Collapse
|
36
|
Mao G, Zeng R, Peng J, Zuo K, Pang Z, Liu J. Reconstructing gene regulatory networks of biological function using differential equations of multilayer perceptrons. BMC Bioinformatics 2022; 23:503. [PMID: 36434499 PMCID: PMC9700916 DOI: 10.1186/s12859-022-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Building biological networks with a certain function is a challenge in systems biology. For the functionality of small (less than ten nodes) biological networks, most methods are implemented by exhausting all possible network topological spaces. This exhaustive approach is difficult to scale to large-scale biological networks. And regulatory relationships are complex and often nonlinear or non-monotonic, which makes inference using linear models challenging. RESULTS In this paper, we propose a multi-layer perceptron-based differential equation method, which operates by training a fully connected neural network (NN) to simulate the transcription rate of genes in traditional differential equations. We verify whether the regulatory network constructed by the NN method can continue to achieve the expected biological function by verifying the degree of overlap between the regulatory network discovered by NN and the regulatory network constructed by the Hill function. And we validate our approach by adapting to noise signals, regulator knockout, and constructing large-scale gene regulatory networks using link-knockout techniques. We apply a real dataset (the mesoderm inducer Xenopus Brachyury expression) to construct the core topology of the gene regulatory network and find that Xbra is only strongly expressed at moderate levels of activin signaling. CONCLUSION We have demonstrated from the results that this method has the ability to identify the underlying network topology and functional mechanisms, and can also be applied to larger and more complex gene network topologies.
Collapse
Affiliation(s)
- Guo Mao
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ruigeng Zeng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jintao Peng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ke Zuo
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Zhengbin Pang
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jie Liu
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China ,grid.412110.70000 0000 9548 2110Laboratory of Software Engineering for Complex System, National University of Defense Technology, Deya Road, Changsha, 410073 China
| |
Collapse
|
37
|
Bocci F, Zhou P, Nie Q. spliceJAC: transition genes and state-specific gene regulation from single-cell transcriptome data. Mol Syst Biol 2022; 18:e11176. [PMID: 36321549 PMCID: PMC9627675 DOI: 10.15252/msb.202211176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Extracting dynamical information from single-cell transcriptomics is a novel task with the promise to advance our understanding of cell state transition and interactions between genes. Yet, theory-oriented, bottom-up approaches that consider differences among cell states are largely lacking. Here, we present spliceJAC, a method to quantify the multivariate mRNA splicing from single-cell RNA sequencing (scRNA-seq). spliceJAC utilizes the unspliced and spliced mRNA count matrices to constructs cell state-specific gene-gene regulatory interactions and applies stability analysis to predict putative driver genes critical to the transitions between cell states. By applying spliceJAC to biological systems including pancreas endothelium development and epithelial-mesenchymal transition (EMT) in A549 lung cancer cells, we predict genes that serve specific signaling roles in different cell states, recover important differentially expressed genes in agreement with pre-existing analysis, and predict new transition genes that are either exclusive or shared between different cell state transitions.
Collapse
Affiliation(s)
- Federico Bocci
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
- NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
| | - Peijie Zhou
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
| | - Qing Nie
- Department of MathematicsUniversity of CaliforniaIrvineCAUSA
- NSF‐Simons Center for Multiscale Cell Fate ResearchUniversity of CaliforniaIrvineCAUSA
- Department of Developmental and Cell BiologyUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
38
|
Yue R, Dutta A. Computational systems biology in disease modeling and control, review and perspectives. NPJ Syst Biol Appl 2022; 8:37. [PMID: 36192551 PMCID: PMC9528884 DOI: 10.1038/s41540-022-00247-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 02/02/2023] Open
Abstract
Omics-based approaches have become increasingly influential in identifying disease mechanisms and drug responses. Considering that diseases and drug responses are co-expressed and regulated in the relevant omics data interactions, the traditional way of grabbing omics data from single isolated layers cannot always obtain valuable inference. Also, drugs have adverse effects that may impair patients, and launching new medicines for diseases is costly. To resolve the above difficulties, systems biology is applied to predict potential molecular interactions by integrating omics data from genomic, proteomic, transcriptional, and metabolic layers. Combined with known drug reactions, the resulting models improve medicines' therapeutical performance by re-purposing the existing drugs and combining drug molecules without off-target effects. Based on the identified computational models, drug administration control laws are designed to balance toxicity and efficacy. This review introduces biomedical applications and analyses of interactions among gene, protein and drug molecules for modeling disease mechanisms and drug responses. The therapeutical performance can be improved by combining the predictive and computational models with drug administration designed by control laws. The challenges are also discussed for its clinical uses in this work.
Collapse
Affiliation(s)
- Rongting Yue
- Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT, 06269, USA.
| | - Abhishek Dutta
- Department of Electrical and Computer Engineering, University of Connecticut, 371 Fairfield Way, Storrs, CT, 06269, USA
| |
Collapse
|
39
|
Sardoo AM, Zhang S, Ferraro TN, Keck TM, Chen Y. Decoding brain memory formation by single-cell RNA sequencing. Brief Bioinform 2022; 23:6713514. [PMID: 36156112 PMCID: PMC9677489 DOI: 10.1093/bib/bbac412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/10/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
To understand how distinct memories are formed and stored in the brain is an important and fundamental question in neuroscience and computational biology. A population of neurons, termed engram cells, represents the physiological manifestation of a specific memory trace and is characterized by dynamic changes in gene expression, which in turn alters the synaptic connectivity and excitability of these cells. Recent applications of single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) are promising approaches for delineating the dynamic expression profiles in these subsets of neurons, and thus understanding memory-specific genes, their combinatorial patterns and regulatory networks. The aim of this article is to review and discuss the experimental and computational procedures of sc/snRNA-seq, new studies of molecular mechanisms of memory aided by sc/snRNA-seq in human brain diseases and related mouse models, and computational challenges in understanding the regulatory mechanisms underlying long-term memory formation.
Collapse
Affiliation(s)
- Atlas M Sardoo
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Shaoqiang Zhang
- College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Thomas M Keck
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA,Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Yong Chen
- Corresponding author. Yong Chen, Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA. Tel.: +1 856 256 4500; E-mail:
| |
Collapse
|
40
|
Zhao X, Lan Y, Chen D. Exploring long non-coding RNA networks from single cell omics data. Comput Struct Biotechnol J 2022; 20:4381-4389. [PMID: 36051880 PMCID: PMC9403499 DOI: 10.1016/j.csbj.2022.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
|
41
|
Zhang Y, He Y, Chen Q, Yang Y, Gong M. Fusion prior gene network for high reliable single-cell gene regulatory network inference. Comput Biol Med 2022; 143:105279. [PMID: 35134605 DOI: 10.1016/j.compbiomed.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/03/2022]
Abstract
Single-Cell RNA sequencing technology provides an opportunity to discover gene regulatory networks(GRN) that control cell differentiation and drive cell type transformation. However, it is faced with the challenge of high loss and high noise of sequencing data and contains many pseudo-connections. To solve these problems, we propose a framework called Fusion prior gene network for Gene Regulatory Network inference Accuracy Enhancement(FGRNAE) to infer a high reliable gene regulatory network. Specifically, based on the Single-Cell RNA-sequencing Network Propagation and network Fusion(scNPF) preprocessing framework, we employ the Random Walk with Restart on the prior gene network to interpolate the missing data. Furthermore, we infer the network using the Random Forest algorithm with the results achieved above. In addition, we apply data from the Co-Function Network to build a meta-gene network and select the regulatory connection with the Markov Random Field. Extensive experiments based on datasets from BEELINE validate the effectiveness of our framework for improving the accuracy of inference.
Collapse
Affiliation(s)
- Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China; School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuchen He
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Qingyuan Chen
- School of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yihan Yang
- International College, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Meiqin Gong
- West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
42
|
Li X, Ma S, Liu J, Tang J, Guo F. Inferring gene regulatory network via fusing gene expression image and RNA-seq data. Bioinformatics 2022; 38:1716-1723. [PMID: 34999771 DOI: 10.1093/bioinformatics/btac008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION Recently, with the development of high-throughput experimental technology, reconstruction of gene regulatory network (GRN) has ushered in new opportunities and challenges. Some previous methods mainly extract gene expression information based on RNA-seq data, but the associated information is very limited. With the establishment of gene expression image database, it is possible to infer GRN from image data with rich spatial information. RESULTS First, we propose a new convolutional neural network (called SDINet), which can extract gene expression information from images and identify the interaction between genes. SDINet can obtain the detailed information and high-level semantic information from the images well. And it can achieve satisfying performance on image data (Acc: 0.7196, F1: 0.7374). Second, we apply the idea of our SDINet to build an RNA-model, which also achieves good results on RNA-seq data (Acc: 0.8962, F1: 0.8950). Finally, we combine image data and RNA-seq data, and design a new fusion network to explore the potential relationship between them. Experiments show that our proposed network fusing two modalities can obtain satisfying performance (Acc: 0.9116, F1: 0.9118) than any single data. AVAILABILITY AND IMPLEMENTATION Data and code are available from https://github.com/guofei-tju/Combine-Gene-Expression-images-and-RNA-seq-data-For-infering-GRN.
Collapse
Affiliation(s)
- Xuejian Li
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Shiqiang Ma
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jin Liu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518005, China.,School of Computational Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
43
|
Wang M, Song WM, Ming C, Wang Q, Zhou X, Xu P, Krek A, Yoon Y, Ho L, Orr ME, Yuan GC, Zhang B. Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Mol Neurodegener 2022; 17:17. [PMID: 35236372 PMCID: PMC8889402 DOI: 10.1186/s13024-022-00517-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive impairment and neurodegeneration. Extensive clinical and genomic studies have revealed biomarkers, risk factors, pathways, and targets of AD in the past decade. However, the exact molecular basis of AD development and progression remains elusive. The emerging single-cell sequencing technology can potentially provide cell-level insights into the disease. Here we systematically review the state-of-the-art bioinformatics approaches to analyze single-cell sequencing data and their applications to AD in 14 major directions, including 1) quality control and normalization, 2) dimension reduction and feature extraction, 3) cell clustering analysis, 4) cell type inference and annotation, 5) differential expression, 6) trajectory inference, 7) copy number variation analysis, 8) integration of single-cell multi-omics, 9) epigenomic analysis, 10) gene network inference, 11) prioritization of cell subpopulations, 12) integrative analysis of human and mouse sc-RNA-seq data, 13) spatial transcriptomics, and 14) comparison of single cell AD mouse model studies and single cell human AD studies. We also address challenges in using human postmortem and mouse tissues and outline future developments in single cell sequencing data analysis. Importantly, we have implemented our recommended workflow for each major analytic direction and applied them to a large single nucleus RNA-sequencing (snRNA-seq) dataset in AD. Key analytic results are reported while the scripts and the data are shared with the research community through GitHub. In summary, this comprehensive review provides insights into various approaches to analyze single cell sequencing data and offers specific guidelines for study design and a variety of analytic directions. The review and the accompanied software tools will serve as a valuable resource for studying cellular and molecular mechanisms of AD, other diseases, or biological systems at the single cell level.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Peng Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Yonejung Yoon
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| | - Miranda E. Orr
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
44
|
Deshpande A, Chu LF, Stewart R, Gitter A. Network inference with Granger causality ensembles on single-cell transcriptomics. Cell Rep 2022; 38:110333. [PMID: 35139376 PMCID: PMC9093087 DOI: 10.1016/j.celrep.2022.110333] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/19/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Cellular gene expression changes throughout a dynamic biological process, such as differentiation. Pseudotimes estimate cells' progress along a dynamic process based on their individual gene expression states. Ordering the expression data by pseudotime provides information about the underlying regulator-gene interactions. Because the pseudotime distribution is not uniform, many standard mathematical methods are inapplicable for analyzing the ordered gene expression states. Here we present single-cell inference of networks using Granger ensembles (SINGE), an algorithm for gene regulatory network inference from ordered single-cell gene expression data. SINGE uses kernel-based Granger causality regression to smooth irregular pseudotimes and missing expression values. It aggregates predictions from an ensemble of regression analyses to compile a ranked list of candidate interactions between transcriptional regulators and target genes. In two mouse embryonic stem cell differentiation datasets, SINGE outperforms other contemporary algorithms. However, a more detailed examination reveals caveats about poor performance for individual regulators and uninformative pseudotimes.
Collapse
Affiliation(s)
- Atul Deshpande
- Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Anthony Gitter
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53792, USA.
| |
Collapse
|
45
|
Wu G, Li Y. Distinct characteristics of correlation analysis at the single-cell and the population level. Stat Appl Genet Mol Biol 2022; 21:sagmb-2022-0015. [PMID: 35918809 DOI: 10.1515/sagmb-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Correlation analysis is widely used in biological studies to infer molecular relationships within biological networks. Recently, single-cell analysis has drawn tremendous interests, for its ability to obtain high-resolution molecular phenotypes. It turns out that there is little overlap of co-expressed genes identified in single-cell level investigations with that of population level investigations. However, the nature of the relationship of correlations between single-cell and population levels remains unclear. In this manuscript, we aimed to unveil the origin of the differences between the correlation coefficients at the single-cell level and that at the population level, and bridge the gap between them. Through developing formulations to link correlations at the single-cell and the population level, we illustrated that aggregated correlations could be stronger, weaker or equal to the corresponding individual correlations, depending on the variations and the correlations within the population. When the correlation within the population is weaker than the individual correlation, the aggregated correlation is stronger than the corresponding individual correlation. Besides, our data indicated that aggregated correlation is more likely to be stronger than the corresponding individual correlation, and it was rare to find gene-pairs exclusively strongly correlated at the single-cell level. Through a bottom-up approach to model interactions between molecules in a signaling cascade or a multi-regulator-controlled gene expression, we surprisingly found that the existence of interaction between two components could not be excluded simply based on their low correlation coefficients, suggesting a reconsideration of connectivity within biological networks which was derived solely from correlation analysis. We also investigated the impact of technical random measurement errors on the correlation coefficients for the single-cell level and the population level. The results indicate that the aggregated correlation is relatively robust and less affected. Because of the heterogeneity among single cells, correlation coefficients calculated based on data of the single-cell level might be different from that of the population level. Depending on the specific question we are asking, proper sampling and normalization procedure should be done before we draw any conclusions.
Collapse
Affiliation(s)
- Guoyu Wu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- NMPA Key Laboratory for Technology Research and Evaluation of Pharmacovigilance, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuchao Li
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- MegaLab, MegaRobo Technologies Co., Ltd, Beijing, China
| |
Collapse
|
46
|
Nakajima N, Hayashi T, Fujiki K, Shirahige K, Akiyama T, Akutsu T, Nakato R. Codependency and mutual exclusivity for gene community detection from sparse single-cell transcriptome data. Nucleic Acids Res 2021; 49:e104. [PMID: 34291282 PMCID: PMC8501962 DOI: 10.1093/nar/gkab601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/25/2021] [Accepted: 07/04/2021] [Indexed: 12/04/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) can be used to characterize cellular heterogeneity in thousands of cells. The reconstruction of a gene network based on coexpression patterns is a fundamental task in scRNA-seq analyses, and the mutual exclusivity of gene expression can be critical for understanding such heterogeneity. Here, we propose an approach for detecting communities from a genetic network constructed on the basis of coexpression properties. The community-based comparison of multiple coexpression networks enables the identification of functionally related gene clusters that cannot be fully captured through differential gene expression-based analysis. We also developed a novel metric referred to as the exclusively expressed index (EEI) that identifies mutually exclusive gene pairs from sparse scRNA-seq data. EEI quantifies and ranks the exclusive expression levels of all gene pairs from binary expression patterns while maintaining robustness against a low sequencing depth. We applied our methods to glioblastoma scRNA-seq data and found that gene communities were partially conserved after serum stimulation despite a considerable number of differentially expressed genes. We also demonstrate that the identification of mutually exclusive gene sets with EEI can improve the sensitivity of capturing cellular heterogeneity. Our methods complement existing approaches and provide new biological insights, even for a large, sparse dataset, in the single-cell analysis field.
Collapse
Affiliation(s)
- Natsu Nakajima
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoatsu Hayashi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsunori Fujiki
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Ryuichiro Nakato
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
47
|
Raharinirina NA, Peppert F, von Kleist M, Schütte C, Sunkara V. Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments. PATTERNS 2021; 2:100332. [PMID: 34553172 PMCID: PMC8441581 DOI: 10.1016/j.patter.2021.100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference methods. Single-cell RNA-seq temporal snapshot data for detecting regulation Challenges in data pre-processing, feature extraction, and network inference for GRNs Encoding of regulatory information in higher-order raw moments Non-linear least-squares inference for temporal scRNA-seq snapshot data
Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. A recent benchmark of 12 GRN methods demonstrated that the algorithms struggled to predict the ground-truth GRNs and speculated that the low performance was due to the insufficient resolution in the scRNA-seq data. Rather than proposing another method, this paper focuses on how to decompose a GRN problem into three subproblems (pre-processing, feature extraction, and inference), so that the gene regulatory information is preserved in each step. Subsequently, we discuss how to best approach each of the three subproblems.
Collapse
Affiliation(s)
| | - Felix Peppert
- Explainable A.I. for Biology, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Max von Kleist
- MF1 Bioinformatics, Methods Development and Research Infrastructure, Robert Koch Institute, 13353 Berlin, Germany
| | - Christof Schütte
- Mathematics of Complex Systems, Zuse Institute Berlin, 14195 Berlin, Germany.,Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Vikram Sunkara
- Mathematics of Complex Systems, Zuse Institute Berlin, 14195 Berlin, Germany.,Explainable A.I. for Biology, Zuse Institute Berlin, 14195 Berlin, Germany
| |
Collapse
|
48
|
Mitra R, MacLean AL. RVAgene: Generative modeling of gene expression time series data. Bioinformatics 2021; 37:3252-3262. [PMID: 33974008 PMCID: PMC8504625 DOI: 10.1093/bioinformatics/btab260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/04/2022] Open
Abstract
Motivation Methods to model dynamic changes in gene expression at a genome-wide level are not currently sufficient for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large datasets and have been used effectively to characterize features of single-cell datasets. Here, we extend these methods for use with gene expression time series data. Results We present RVAgene: a recurrent variational autoencoder to model gene expression dynamics. RVAgene learns to accurately and efficiently reconstruct temporal gene profiles. It also learns a low dimensional representation of the data via a recurrent encoder network that can be used for biological feature discovery, and from which we can generate new gene expression data by sampling the latent space. We test RVAgene on simulated and real biological datasets, including embryonic stem cell differentiation and kidney injury response dynamics. In all cases, RVAgene accurately reconstructed complex gene expression temporal profiles. Via cross validation, we show that a low-error latent space representation can be learnt using only a fraction of the data. Through clustering and gene ontology term enrichment analysis on the latent space, we demonstrate the potential of RVAgene for unsupervised discovery. In particular, RVAgene identifies new programs of shared gene regulation of Lox family genes in response to kidney injury. Availability and implementation All datasets analyzed in this manuscript are publicly available and have been published previously. RVAgene is available in Python, at GitHub: https://github.com/maclean-lab/RVAgene; Zenodo archive: http://doi.org/10.5281/zenodo.4271097. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Raktim Mitra
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA-90007, USA
| | - Adam L MacLean
- Quantitative and Computational Biology, University of Southern California, Los Angeles, CA-90007, USA
| |
Collapse
|
49
|
Kuksin M, Morel D, Aglave M, Danlos FX, Marabelle A, Zinovyev A, Gautheret D, Verlingue L. Applications of single-cell and bulk RNA sequencing in onco-immunology. Eur J Cancer 2021; 149:193-210. [PMID: 33866228 DOI: 10.1016/j.ejca.2021.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
The rising interest for precise characterization of the tumour immune contexture has recently brought forward the high potential of RNA sequencing (RNA-seq) in identifying molecular mechanisms engaged in the response to immunotherapy. In this review, we provide an overview of the major principles of single-cell and conventional (bulk) RNA-seq applied to onco-immunology. We describe standard preprocessing and statistical analyses of data obtained from such techniques and highlight some computational challenges relative to the sequencing of individual cells. We notably provide examples of gene expression analyses such as differential expression analysis, dimensionality reduction, clustering and enrichment analysis. Additionally, we used public data sets to exemplify how deconvolution algorithms can identify and quantify multiple immune subpopulations from either bulk or single-cell RNA-seq. We give examples of machine and deep learning models used to predict patient outcomes and treatment effect from high-dimensional data. Finally, we balance the strengths and weaknesses of single-cell and bulk RNA-seq regarding their applications in the clinic.
Collapse
Affiliation(s)
- Maria Kuksin
- ENS de Lyon, 15 Parvis René Descartes, 69007, Lyon, France; Département d'Innovations Thérapeutiques et Essais Précoces (DITEP), Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Daphné Morel
- Département d'Innovations Thérapeutiques et Essais Précoces (DITEP), Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94800, Villejuif, France; Département de Radiothérapie, Gustave Roussy Cancer Campus, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France; INSERM UMR1030, Molecular Radiotherapy and Therapeutic Innovations, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | - Marine Aglave
- INSERM US23, CNRS UMS 3655, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94800, Villejuif, France
| | | | - Aurélien Marabelle
- Département d'Innovations Thérapeutiques et Essais Précoces (DITEP), Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94800, Villejuif, France; INSERM U1015, Gustave Roussy, Université Paris Saclay, France
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, F-75005, Paris, France; INSERM, U900, F-75005, Paris, France; MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006, Paris, France; Laboratory of Advanced Methods for High-dimensional Data Analysis, Lobachevsky University, 603000, Nizhny Novgorod, Russia
| | - Daniel Gautheret
- Institute for Integrative Biology of the Cell, UMR 9198, CEA, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France; IHU PRISM, Gustave Roussy Cancer Campus, Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France; Université Paris-Saclay, France
| | - Loïc Verlingue
- Département d'Innovations Thérapeutiques et Essais Précoces (DITEP), Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94800, Villejuif, France; INSERM UMR1030, Molecular Radiotherapy and Therapeutic Innovations, Gustave Roussy, 114 rue Edouard Vaillant, 94800, Villejuif, France; Institut Curie, PSL Research University, F-75005, Paris, France; Université Paris-Saclay, France.
| |
Collapse
|
50
|
Osorio D, Zhong Y, Li G, Huang JZ, Cai JJ. scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data. PATTERNS (NEW YORK, N.Y.) 2020; 1:100139. [PMID: 33336197 PMCID: PMC7733883 DOI: 10.1016/j.patter.2020.100139] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023]
Abstract
We present scTenifoldNet-a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment-for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities.
Collapse
Affiliation(s)
- Daniel Osorio
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yan Zhong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Guanxun Li
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Jianhua Z. Huang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Interdisciplinary Program of Genetics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|