1
|
Zhang L, Wu K, Li H, Zhan M, Wang S, Song E, Zhang Q, He J, He X, Xu M, Deng H, Su Y, Liu Z, Yan Z, Tan P, He M, Weng S, Ge W, He J, Wang M. Vitellogenin receptor mediates heat adaptability of oocyte development in mud crabs and zebrafish. Nat Commun 2025; 16:3722. [PMID: 40253379 PMCID: PMC12009396 DOI: 10.1038/s41467-025-59035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
Climate-driven warming affects the reproduction of oviparous ectotherms. However, whether oviparous ectotherms possess a protection mechanism against heat stress for oocyte development, which is essential for maintaining the continuity of animal populations, is largely unknown. Under high temperatures, female mud crabs (Scylla paramamosain) typically have well-formed ovaries, while a few crabs were found to experience oocyte development failure. To investigate the heat stress protection mechanism of oocyte development in mud crabs, we construct a chromosome-level genome of this species and identify an enhancer of the vitellogenin receptor (VtgR) that stimulates its expression under high temperatures. Lacking this enhancer due to an intronic deletion leads to low VtgR expression in abnormal crabs, resulting in abnormal vitellogenic oocyte formation in these individuals when exposed to high temperatures. Furthermore, we identify a similar heat stress protection mechanism in zebrafish. Disruption of Lrp13, a VtgR-like protein in zebrafish, results in impaired vitellogenin absorption and ovarian degeneration in zebrafish exposed to high temperatures. Our results reveal a VtgR-mediated mechanism that protects vitellogenic oocyte formation against heat stress in mud crabs and zebrafish, contributing to their heat adaptability during oocyte development.
Collapse
Affiliation(s)
- Long Zhang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Kun Wu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Haoyang Li
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Minwen Zhan
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Sheng Wang
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Enhui Song
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Qi Zhang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Jian He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinyi He
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Menghuang Xu
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hengwei Deng
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingchun Su
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziwei Liu
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Zhuyue Yan
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Peipei Tan
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Mengyun He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Jianguo He
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China.
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Muhua Wang
- School of Marine Sciences, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, 519000, China.
- School of Life Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Jiang L, Quail MA, Fraser-Govil J, Wang H, Shi X, Oliver K, Mellado Gomez E, Yang F, Ning Z. The Bioinformatic Applications of Hi-C and Linked Reads. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae048. [PMID: 38905513 PMCID: PMC11580686 DOI: 10.1093/gpbjnl/qzae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/07/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Long-range sequencing grants insight into additional genetic information beyond what can be accessed by both short reads and modern long-read technology. Several new sequencing technologies, such as "Hi-C" and "Linked Reads", produce long-range datasets for high-throughput and high-resolution genome analyses, which are rapidly advancing the field of genome assembly, genome scaffolding, and more comprehensive variant identification. In this review, we focused on five major long-range sequencing technologies: high-throughput chromosome conformation capture (Hi-C), 10X Genomics Linked Reads, haplotagging, transposase enzyme linked long-read sequencing (TELL-seq), and single- tube long fragment read (stLFR). We detailed the mechanisms and data products of the five platforms and their important applications, evaluated the quality of sequencing data from different platforms, and discussed the currently available bioinformatics tools. This work will benefit the selection of appropriate long-range technology for specific biological studies.
Collapse
Affiliation(s)
- Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Michael A Quail
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jack Fraser-Govil
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Haipeng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Xuequn Shi
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Karen Oliver
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Esther Mellado Gomez
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Zemin Ning
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Dougan KE, Bellantuono AJ, Kahlke T, Abbriano RM, Chen Y, Shah S, Granados-Cifuentes C, van Oppen MJH, Bhattacharya D, Suggett DJ, Rodriguez-Lanetty M, Chan CX. Whole-genome duplication in an algal symbiont bolsters coral heat tolerance. SCIENCE ADVANCES 2024; 10:eadn2218. [PMID: 39028812 PMCID: PMC11259175 DOI: 10.1126/sciadv.adn2218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
The algal endosymbiont Durusdinium trenchii enhances the resilience of coral reefs under thermal stress. D. trenchii can live freely or in endosymbiosis, and the analysis of genetic markers suggests that this species has undergone whole-genome duplication (WGD). However, the evolutionary mechanisms that underpin the thermotolerance of this species are largely unknown. Here, we present genome assemblies for two D. trenchii isolates, confirm WGD in these taxa, and examine how selection has shaped the duplicated genome regions using gene expression data. We assess how the free-living versus endosymbiotic lifestyles have contributed to the retention and divergence of duplicated genes, and how these processes have enhanced the thermotolerance of D. trenchii. Our combined results suggest that lifestyle is the driver of post-WGD evolution in D. trenchii, with the free-living phase being the most important, followed by endosymbiosis. Adaptations to both lifestyles likely enabled D. trenchii to provide enhanced thermal stress protection to the host coral.
Collapse
Affiliation(s)
- Katherine E. Dougan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yibi Chen
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sarah Shah
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Camila Granados-Cifuentes
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - David J. Suggett
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW 2007, Australia
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL 33099, USA
| | - Cheong Xin Chan
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Hiltunen Thorén M, Onuț-Brännström I, Alfjorden A, Pecková H, Swords F, Hooper C, Holzer AS, Bass D, Burki F. Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria. BMC Biol 2024; 22:103. [PMID: 38702750 PMCID: PMC11069148 DOI: 10.1186/s12915-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Present Address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius V. 20 A, Stockholm, SE-114 18, Sweden.
- Present Address: The Royal Swedish Academy of Sciences, Stockholm, SE-114 18, Sweden.
| | - Ioana Onuț-Brännström
- Present Address: Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
- Present Address: Natural History Museum, Oslo University, Oslo, 0562, Norway
| | - Anders Alfjorden
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Fiona Swords
- Marine Institute, Rinville, Oranmore, H91R673, Ireland
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Natural History Museum (NHM), Science, London, SW7 5BD, UK
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Bhattarai UR, Poulin R, Gemmell NJ, Dowle E. Genome assembly and annotation of the mermithid nematode Mermis nigrescens. G3 (BETHESDA, MD.) 2024; 14:jkae023. [PMID: 38301266 PMCID: PMC10989877 DOI: 10.1093/g3journal/jkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Genetic studies of nematodes have been dominated by Caenorhabditis elegans as a model species. A lack of genomic resources has limited the expansion of genetic research to other groups of nematodes. Here, we report a draft genome assembly of a mermithid nematode, Mermis nigrescens. Mermithidae are insect parasitic nematodes with hosts including a wide range of terrestrial arthropods. We sequenced, assembled, and annotated the whole genome of M. nigrescens using nanopore long reads and 10X Chromium link reads. The assembly is 524 Mb in size consisting of 867 scaffolds. The N50 value is 2.42 Mb, and half of the assembly is in the 30 longest scaffolds. The assembly BUSCO score from the eukaryotic database (eukaryota_odb10) indicates that the genome is 86.7% complete and 5.1% partial. The genome has a high level of heterozygosity (6.6%) with a repeat content of 83.98%. mRNA-seq reads from different sized nematodes (≤2 cm, 3.5-7 cm, and >7 cm body length) representing different developmental stages were also generated and used for the genome annotation. Using ab initio and evidence-based gene model predictions, 12,313 protein-coding genes and 24,186 mRNAs were annotated. These genomic resources will help researchers investigate the various aspects of the biology and host-parasite interactions of mermithid nematodes.
Collapse
Affiliation(s)
- Upendra R Bhattarai
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Eddy Dowle
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
6
|
Shah S, Dougan KE, Chen Y, Lo R, Laird G, Fortuin MDA, Rai SK, Murigneux V, Bellantuono AJ, Rodriguez-Lanetty M, Bhattacharya D, Chan CX. Massive genome reduction predates the divergence of Symbiodiniaceae dinoflagellates. THE ISME JOURNAL 2024; 18:wrae059. [PMID: 38655774 PMCID: PMC11114475 DOI: 10.1093/ismejo/wrae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Dinoflagellates in the family Symbiodiniaceae are taxonomically diverse, predominantly symbiotic lineages that are well-known for their association with corals. The ancestor of these taxa is believed to have been free-living. The establishment of symbiosis (i.e. symbiogenesis) is hypothesized to have occurred multiple times during Symbiodiniaceae evolution, but its impact on genome evolution of these taxa is largely unknown. Among Symbiodiniaceae, the genus Effrenium is a free-living lineage that is phylogenetically positioned between two robustly supported groups of genera within which symbiotic taxa have emerged. The apparent lack of symbiogenesis in Effrenium suggests that the ancestral features of Symbiodiniaceae may have been retained in this lineage. Here, we present de novo assembled genomes (1.2-1.9 Gbp in size) and transcriptome data from three isolates of Effrenium voratum and conduct a comparative analysis that includes 16 Symbiodiniaceae taxa and the other dinoflagellates. Surprisingly, we find that genome reduction, which is often associated with a symbiotic lifestyle, predates the origin of Symbiodiniaceae. The free-living lifestyle distinguishes Effrenium from symbiotic Symbiodiniaceae vis-à-vis their longer introns, more-extensive mRNA editing, fewer (~30%) lineage-specific gene sets, and lower (~10%) level of pseudogenization. These results demonstrate how genome reduction and the adaptation to distinct lifestyles intersect to drive diversification and genome evolution of Symbiodiniaceae.
Collapse
Affiliation(s)
- Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosalyn Lo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gemma Laird
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael D A Fortuin
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Subash K Rai
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Valentine Murigneux
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony J Bellantuono
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Mauricio Rodriguez-Lanetty
- Biomolecular Science Institute, Department of Biological Sciences, Florida International University, Miami, FL 33099, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Guichard A, Legeai F, Tagu D, Lemaitre C. MTG-Link: leveraging barcode information from linked-reads to assemble specific loci. BMC Bioinformatics 2023; 24:284. [PMID: 37452278 PMCID: PMC10347852 DOI: 10.1186/s12859-023-05395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Local assembly with short and long reads has proven to be very useful in many applications: reconstruction of the sequence of a locus of interest, gap-filling in draft assemblies, as well as alternative allele reconstruction of large Structural Variants. Whereas linked-read technologies have a great potential to assemble specific loci as they provide long-range information while maintaining the power and accuracy of short-read sequencing, there is a lack of local assembly tools for linked-read data. RESULTS We present MTG-Link, a novel local assembly tool dedicated to linked-reads. The originality of the method lies in its read subsampling step which takes advantage of the barcode information contained in linked-reads mapped in flanking regions. We validated our approach on several datasets from different linked-read technologies. We show that MTG-Link is able to assemble successfully large sequences, up to dozens of Kb. We also demonstrate that the read subsampling step of MTG-Link considerably improves the local assembly of specific loci compared to other existing short-read local assembly tools. Furthermore, MTG-Link was able to fully characterize large insertion variants and deletion breakpoints in a human genome and to reconstruct dark regions in clinically-relevant human genes. It also improved the contiguity of a 1.3 Mb locus of biological interest in several individual genomes of the mimetic butterfly Heliconius numata. CONCLUSIONS MTG-Link is an efficient local assembly tool designed for different linked-read sequencing technologies. MTG-Link source code is available at https://github.com/anne-gcd/MTG-Link and as a Bioconda package.
Collapse
Affiliation(s)
- Anne Guichard
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
- Univ Rennes, Inria, CNRS, IRISA, 35000, Rennes, France.
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
- Univ Rennes, Inria, CNRS, IRISA, 35000, Rennes, France
| | - Denis Tagu
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | |
Collapse
|
8
|
Luo J, Guan T, Chen G, Yu Z, Zhai H, Yan C, Luo H. SLHSD: hybrid scaffolding method based on short and long reads. Brief Bioinform 2023; 24:7152317. [PMID: 37141142 DOI: 10.1093/bib/bbad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/08/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
In genome assembly, scaffolding can obtain more complete and continuous scaffolds. Current scaffolding methods usually adopt one type of read to construct a scaffold graph and then orient and order contigs. However, scaffolding with the strengths of two or more types of reads seems to be a better solution to some tricky problems. Combining the advantages of different types of data is significant for scaffolding. Here, a hybrid scaffolding method (SLHSD) is present that simultaneously leverages the precision of short reads and the length advantage of long reads. Building an optimal scaffold graph is an important foundation for getting scaffolds. SLHSD uses a new algorithm that combines long and short read alignment information to determine whether to add an edge and how to calculate the edge weight in a scaffold graph. In addition, SLHSD develops a strategy to ensure that edges with high confidence can be added to the graph with priority. Then, a linear programming model is used to detect and remove remaining false edges in the graph. We compared SLHSD with other scaffolding methods on five datasets. Experimental results show that SLHSD outperforms other methods. The open-source code of SLHSD is available at https://github.com/luojunwei/SLHSD.
Collapse
Affiliation(s)
- Junwei Luo
- School of Software, Henan Polytechnic University, Jiaozuo 454003, China
| | - Ting Guan
- School of Software, Henan Polytechnic University, Jiaozuo 454003, China
| | - Guolin Chen
- School of Software, Henan Polytechnic University, Jiaozuo 454003, China
| | - Zhonghua Yu
- School of Software, Henan Polytechnic University, Jiaozuo 454003, China
| | - Haixia Zhai
- School of Software, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng 475001, China
| | - Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng 475001, China
| |
Collapse
|
9
|
Waizumi R, Tsubota T, Jouraku A, Kuwazaki S, Yokoi K, Iizuka T, Yamamoto K, Sezutsu H. Highly accurate genome assembly of an improved high-yielding silkworm strain, Nichi01. G3 (BETHESDA, MD.) 2023; 13:jkad044. [PMID: 36814357 PMCID: PMC10085791 DOI: 10.1093/g3journal/jkad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
The silkworm (Bombyx mori) is an important lepidopteran model insect and an industrial domestic animal traditionally used for silk production. Here, we report the genome assembly of an improved Japanese strain Nichi01, in which the cocoon yield is comparable to that of commercial silkworm strains. The integration of PacBio Sequel II long-read and ddRAD-seq-based high-density genetic linkage map achieved the highest quality genome assembly of silkworms to date; 22 of the 28 pseudomolecules contained telomeric repeats at both ends, and only four gaps were present in the assembly. A total of 452 Mbp of the assembly with an N50 of 16.614 Mbp covered 99.3% of the complete orthologs of the lepidopteran core genes. Although the genome sequence of Nichi01 and that of the previously reported low-yielding tropical strain p50T assured their accuracy in most regions, we corrected several regions, misassembled in p50T, in our assembly. A total of 18,397 proteins were predicted using over 95 Gb of mRNA-seq derived from 10 different organs, covering 96.9% of the complete orthologs of the lepidopteran core genes. The final assembly and annotation files are available in KAIKObase (https://kaikobase.dna.affrc.go.jp/index.html) along with a genome browser and BLAST searching service, which would facilitate further studies and the breeding of silkworms and other insects.
Collapse
Affiliation(s)
- Ryusei Waizumi
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Takuya Tsubota
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Akiya Jouraku
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Seigo Kuwazaki
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kakeru Yokoi
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuya Iizuka
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kimiko Yamamoto
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Hideki Sezutsu
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
10
|
Bhattarai UR, Katuwal M, Poulin R, Gemmell NJ, Dowle E. Genome assembly and annotation of the European earwig Forficula auricularia (subspecies B). G3 (BETHESDA, MD.) 2022; 12:jkac199. [PMID: 35972389 PMCID: PMC9526046 DOI: 10.1093/g3journal/jkac199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022]
Abstract
The European earwig Forficula auricularia is an important model for studies of maternal care, sexual selection, sociality, and host-parasite interactions. However, detailed genetic investigations of this species are hindered by a lack of genomic resources. Here, we present a high-quality hybrid genome assembly for Forficula auricularia using Nanopore long-reads and 10× linked-reads. The final assembly is 1.06 Gb in length with 31.03% GC content. It consists of 919 scaffolds with an N50 of 12.55 Mb. Half of the genome is present in only 20 scaffolds. Benchmarking Universal Single-Copy Orthologs scores are ∼90% from 3 sets of single-copy orthologs (eukaryotic, insect, and arthropod). The total repeat elements in the genome are 64.62%. The MAKER2 pipeline annotated 12,876 protein-coding genes and 21,031 mRNAs. Phylogenetic analysis revealed the assembled genome as that of species B, one of the 2 known genetic subspecies of Forficula auricularia. The genome assembly, annotation, and associated resources will be of high value to a large and diverse group of researchers working on dermapterans.
Collapse
Affiliation(s)
| | - Mandira Katuwal
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Eddy Dowle
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
11
|
Hiltunen M, Ament-Velásquez SL, Johannesson H. The Assembled and Annotated Genome of the Fairy-Ring Fungus Marasmius oreades. Genome Biol Evol 2021; 13:evab126. [PMID: 34051082 PMCID: PMC8290104 DOI: 10.1093/gbe/evab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Marasmius oreades is a basidiomycete fungus that grows in so called "fairy rings," which are circular, underground mycelia common in lawns across temperate areas of the world. Fairy rings can be thought of as natural, long-term evolutionary experiments. As each ring has a common origin and expands radially outwards over many years, different sectors will independently accumulate mutations during growth. The genotype can be followed to the next generation, as mushrooms producing the sexual spores are formed seasonally at the edge of the ring. Here, we present new genomic data from 95 single-spore isolates of the species, which we used to construct a genetic linkage map and an updated version of the genome assembly. The 44-Mb assembly was anchored to 11 linkage groups, producing chromosome-length scaffolds. Gene annotation revealed 13,891 genes, 55% of which contained a pfam domain. The repetitive fraction of the genome was 22%, and dominated by retrotransposons and DNA elements of the KDZ and Plavaka groups. The level of assembly contiguity we present is so far rare in mushroom-forming fungi, and we expect studies of genomics, transposons, phylogenetics, and evolution to be facilitated by the data we present here of the iconic fairy-ring mushroom.
Collapse
Affiliation(s)
- Markus Hiltunen
- Department of Organismal Biology, Uppsala University, Sweden
| | | | | |
Collapse
|