1
|
Peng D, Cahan P. OneSC: a computational platform for recapitulating cell state transitions. Bioinformatics 2024; 40:btae703. [PMID: 39570626 PMCID: PMC11630913 DOI: 10.1093/bioinformatics/btae703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
MOTIVATION Computational modeling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology, and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a lab. Recent advancements in single-cell RNA-sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico "synthetic" cells that faithfully mimic the temporal trajectories. RESULTS Here we present OneSC, a platform that can simulate cell state transitions using systems of stochastic differential equations govern by a regulatory network of core transcription factors (TFs). Different from many current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and terminal cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes, and monocytes). Finally, through the in silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations. AVAILABILITY AND IMPLEMENTATION OneSC is implemented as a Python package on GitHub (https://github.com/CahanLab/oneSC) and on Zenodo (https://zenodo.org/records/14052421).
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
2
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
3
|
Liu Y, Chang X, Liu X. Protocol for unsupervised inference of cell-cell communication using matrix decomposition. STAR Protoc 2024; 5:103006. [PMID: 38602871 PMCID: PMC11017344 DOI: 10.1016/j.xpro.2024.103006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024] Open
Abstract
Exploring cell-cell communication is pivotal for understanding biological processes in multicellular life forms. Here, we present a protocol that details the use of matrix decomposition to infer cell-cell communication (MDIC3) for unsupervised cell-cell communication inference. We describe steps for using the MDIC3 Python scripts to deduce cell-cell communication and identify key ligand-receptor pairs between a specific cell type pair from a single-cell gene expression dataset. This protocol has potential application in cell-cell communication inference on any species. For complete details on the use and execution of this protocol, please refer to Liu et al.1.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China.
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
4
|
Peng D, Cahan P. OneSC: A computational platform for recapitulating cell state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596831. [PMID: 38895453 PMCID: PMC11185539 DOI: 10.1101/2024.05.31.596831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Computational modelling of cell state transitions has been a great interest of many in the field of developmental biology, cancer biology and cell fate engineering because it enables performing perturbation experiments in silico more rapidly and cheaply than could be achieved in a wet lab. Recent advancements in single-cell RNA sequencing (scRNA-seq) allow the capture of high-resolution snapshots of cell states as they transition along temporal trajectories. Using these high-throughput datasets, we can train computational models to generate in silico 'synthetic' cells that faithfully mimic the temporal trajectories. Here we present OneSC, a platform that can simulate synthetic cells across developmental trajectories using systems of stochastic differential equations govern by a core transcription factors (TFs) regulatory network. Different from the current network inference methods, OneSC prioritizes on generating Boolean network that produces faithful cell state transitions and steady cell states that mimic real biological systems. Applying OneSC to real data, we inferred a core TF network using a mouse myeloid progenitor scRNA-seq dataset and showed that the dynamical simulations of that network generate synthetic single-cell expression profiles that faithfully recapitulate the four myeloid differentiation trajectories going into differentiated cell states (erythrocytes, megakaryocytes, granulocytes and monocytes). Finally, through the in-silico perturbations of the mouse myeloid progenitor core network, we showed that OneSC can accurately predict cell fate decision biases of TF perturbations that closely match with previous experimental observations.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, 21205, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| |
Collapse
|
5
|
Wei PJ, Guo Z, Gao Z, Ding Z, Cao RF, Su Y, Zheng CH. Inference of gene regulatory networks based on directed graph convolutional networks. Brief Bioinform 2024; 25:bbae309. [PMID: 38935070 PMCID: PMC11209731 DOI: 10.1093/bib/bbae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inferring gene regulatory network (GRN) is one of the important challenges in systems biology, and many outstanding computational methods have been proposed; however there remains some challenges especially in real datasets. In this study, we propose Directed Graph Convolutional neural network-based method for GRN inference (DGCGRN). To better understand and process the directed graph structure data of GRN, a directed graph convolutional neural network is conducted which retains the structural information of the directed graph while also making full use of neighbor node features. The local augmentation strategy is adopted in graph neural network to solve the problem of poor prediction accuracy caused by a large number of low-degree nodes in GRN. In addition, for real data such as E.coli, sequence features are obtained by extracting hidden features using Bi-GRU and calculating the statistical physicochemical characteristics of gene sequence. At the training stage, a dynamic update strategy is used to convert the obtained edge prediction scores into edge weights to guide the subsequent training process of the model. The results on synthetic benchmark datasets and real datasets show that the prediction performance of DGCGRN is significantly better than existing models. Furthermore, the case studies on bladder uroepithelial carcinoma and lung cancer cells also illustrate the performance of the proposed model.
Collapse
Affiliation(s)
- Pi-Jing Wei
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Ziqiang Guo
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zhen Gao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Zheng Ding
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Rui-Fen Cao
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Yansen Su
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| | - Chun-Hou Zheng
- Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, 230601, Anhui, China
| |
Collapse
|
6
|
Malekpour SA, Haghverdi L, Sadeghi M. Single-cell multi-omics analysis identifies context-specific gene regulatory gates and mechanisms. Brief Bioinform 2024; 25:bbae180. [PMID: 38653489 PMCID: PMC11036345 DOI: 10.1093/bib/bbae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in inferring context specific gene regulatory networks from single-cell RNA sequencing (scRNA-seq) data. This involves identifying the regulatory relationships between transcription factors (TFs) and genes in individual cells, and then characterizing these relationships at the level of specific cell types or cell states. In this study, we introduce scGATE (single-cell gene regulatory gate) as a novel computational tool for inferring TF-gene interaction networks and reconstructing Boolean logic gates involving regulatory TFs using scRNA-seq data. In contrast to current Boolean models, scGATE eliminates the need for individual formulations and likelihood calculations for each Boolean rule (e.g. AND, OR, XOR). By employing a Bayesian framework, scGATE infers the Boolean rule after fitting the model to the data, resulting in significant reductions in time-complexities for logic-based studies. We have applied assay for transposase-accessible chromatin with sequencing (scATAC-seq) data and TF DNA binding motifs to filter out non-relevant TFs in gene regulations. By integrating single-cell clustering with these external cues, scGATE is able to infer context specific networks. The performance of scGATE is evaluated using synthetic and real single-cell multi-omics data from mouse tissues and human blood, demonstrating its superiority over existing tools for reconstructing TF-gene networks. Additionally, scGATE provides a flexible framework for understanding the complex combinatorial and cooperative relationships among TFs regulating target genes by inferring Boolean logic gates among them.
Collapse
Affiliation(s)
- Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran
| | - Laleh Haghverdi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center (BIMSB-MDC) in the Helmholtz Association, Berlin, Germany
| | - Mehdi Sadeghi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, 1497716316, Tehran, Iran
| |
Collapse
|
7
|
Gao Z, Su Y, Xia J, Cao RF, Ding Y, Zheng CH, Wei PJ. DeepFGRN: inference of gene regulatory network with regulation type based on directed graph embedding. Brief Bioinform 2024; 25:bbae143. [PMID: 38581416 PMCID: PMC10998536 DOI: 10.1093/bib/bbae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/02/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.
Collapse
Affiliation(s)
- Zhen Gao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yansen Su
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Junfeng Xia
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Rui-Fen Cao
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Yun Ding
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chun-Hou Zheng
- The Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Artificial Intelligence, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Pi-Jing Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
8
|
Liu Y, Zhang Y, Chang X, Liu X. MDIC3: Matrix decomposition to infer cell-cell communication. PATTERNS (NEW YORK, N.Y.) 2024; 5:100911. [PMID: 38370122 PMCID: PMC10873161 DOI: 10.1016/j.patter.2023.100911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/31/2023] [Accepted: 12/08/2023] [Indexed: 02/20/2024]
Abstract
Crosstalk among cells is vital for maintaining the biological function and intactness of systems. Most existing methods for investigating cell-cell communications are based on ligand-receptor (L-R) expression, and they focus on the study between two cells. Thus, the final communication inference results are particularly sensitive to the completeness and accuracy of the prior biological knowledge. Because existing L-R research focuses mainly on humans, most existing methods can only examine cell-cell communication for humans. As far as we know, there is currently no effective method to overcome this species limitation. Here, we propose MDIC3 (matrix decomposition to infer cell-cell communication), an unsupervised tool to investigate cell-cell communication in any species, and the results are not limited by specific L-R pairs or signaling pathways. By comparing it with existing methods for the inference of cell-cell communication, MDIC3 obtained better performance in both humans and mice.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Yuelei Zhang
- School of Mathematics and Statistics, Shandong University, Weihai 364209, China
| | - Xiao Chang
- Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Xiaoping Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Marku M, Pancaldi V. From time-series transcriptomics to gene regulatory networks: A review on inference methods. PLoS Comput Biol 2023; 19:e1011254. [PMID: 37561790 PMCID: PMC10414591 DOI: 10.1371/journal.pcbi.1011254] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Inference of gene regulatory networks has been an active area of research for around 20 years, leading to the development of sophisticated inference algorithms based on a variety of assumptions and approaches. With the ever increasing demand for more accurate and powerful models, the inference problem remains of broad scientific interest. The abstract representation of biological systems through gene regulatory networks represents a powerful method to study such systems, encoding different amounts and types of information. In this review, we summarize the different types of inference algorithms specifically based on time-series transcriptomics, giving an overview of the main applications of gene regulatory networks in computational biology. This review is intended to give an updated reference of regulatory networks inference tools to biologists and researchers new to the topic and guide them in selecting the appropriate inference method that best fits their questions, aims, and experimental data.
Collapse
Affiliation(s)
- Malvina Marku
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Barcelona Supercomputing Center, Barcelona, Spain
| |
Collapse
|
10
|
Liu J, Tao Y, Lan R, Zhong J, Liu R, Chen P. Identifying the critical state of cancers by single-sample Markov flow entropy. PeerJ 2023; 11:e15695. [PMID: 37520244 PMCID: PMC10373650 DOI: 10.7717/peerj.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/14/2023] [Indexed: 08/01/2023] Open
Abstract
Background The progression of complex diseases sometimes undergoes a drastic critical transition, at which the biological system abruptly shifts from a relatively healthy state (before-transition stage) to a disease state (after-transition stage). Searching for such a critical transition or critical state is crucial to provide timely and effective scientific treatment to patients. However, in most conditions where only a small sample size of clinical data is available, resulting in failure when detecting the critical states of complex diseases, particularly only single-sample data. Methods In this study, different from traditional methods that require multiple samples at each time, a model-free computational method, single-sample Markov flow entropy (sMFE), provides a solution to the identification problem of critical states/pre-disease states of complex diseases, solely based on a single-sample. Our proposed method was employed to characterize the dynamic changes of complex diseases from the perspective of network entropy. Results The proposed approach was verified by unmistakably identifying the critical state just before the occurrence of disease deterioration for four tumor datasets from The Cancer Genome Atlas (TCGA) database. In addition, two new prognostic biomarkers, optimistic sMFE (O-sMFE) and pessimistic sMFE (P-sMFE) biomarkers, were identified by our method and enable the prognosis evaluation of tumors. Conclusions The proposed method has shown its capability to accurately detect pre-disease states of four cancers and provide two novel prognostic biomarkers, O-sMFE and P-sMFE biomarkers, to facilitate the personalized prognosis of patients. This is a remarkable achievement that could have a major impact on the diagnosis and treatment of complex diseases.
Collapse
Affiliation(s)
- Juntan Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yuan Tao
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Ruoqi Lan
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jiayuan Zhong
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
- School of Mathematics and Big Data, Foshan University, Foshan, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou, Guangdong Province, China
- Pazhou Lab, Guangzhou, Guangdong Province, China
| |
Collapse
|
11
|
Nakulugamuwa Gamage H, Chetty M, Lim S, Hallinan J. MICFuzzy: A maximal information content based fuzzy approach for reconstructing genetic networks. PLoS One 2023; 18:e0288174. [PMID: 37418430 PMCID: PMC10328247 DOI: 10.1371/journal.pone.0288174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
In systems biology, the accurate reconstruction of Gene Regulatory Networks (GRNs) is crucial since these networks can facilitate the solving of complex biological problems. Amongst the plethora of methods available for GRN reconstruction, information theory and fuzzy concepts-based methods have abiding popularity. However, most of these methods are not only complex, incurring a high computational burden, but they may also produce a high number of false positives, leading to inaccurate inferred networks. In this paper, we propose a novel hybrid fuzzy GRN inference model called MICFuzzy which involves the aggregation of the effects of Maximal Information Coefficient (MIC). This model has an information theory-based pre-processing stage, the output of which is applied as an input to the novel fuzzy model. In this preprocessing stage, the MIC component filters relevant genes for each target gene to significantly reduce the computational burden of the fuzzy model when selecting the regulatory genes from these filtered gene lists. The novel fuzzy model uses the regulatory effect of the identified activator-repressor gene pairs to determine target gene expression levels. This approach facilitates accurate network inference by generating a high number of true regulatory interactions while significantly reducing false regulatory predictions. The performance of MICFuzzy was evaluated using DREAM3 and DREAM4 challenge data, and the SOS real gene expression dataset. MICFuzzy outperformed the other state-of-the-art methods in terms of F-score, Matthews Correlation Coefficient, Structural Accuracy, and SS_mean, and outperformed most of them in terms of efficiency. MICFuzzy also had improved efficiency compared with the classical fuzzy model since the design of MICFuzzy leads to a reduction in combinatorial computation.
Collapse
Affiliation(s)
| | - Madhu Chetty
- Health Innovation and Transformation Centre, Federation University, Churchill, Victoria, Australia
| | - Suryani Lim
- Health Innovation and Transformation Centre, Federation University, Churchill, Victoria, Australia
| | | |
Collapse
|
12
|
Li L, Sun L, Chen G, Wong CW, Ching WK, Liu ZP. LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data. Bioinformatics 2023; 39:btad256. [PMID: 37079737 PMCID: PMC10172039 DOI: 10.1093/bioinformatics/btad256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
MOTIVATION From a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe the updated logic rules of regulation in GRNs to obtain their dynamics. Moreover, some inference methods also fail to deal with the over-fitting problem caused by the noise in time series data. RESULTS In this article, we propose a novel embedded Boolean threshold network method called LogBTF, which effectively infers GRN by integrating regularized logistic regression and Boolean threshold function. First, the continuous gene expression values are converted into Boolean values and the elastic net regression model is adopted to fit the binarized time series data. Then, the estimated regression coefficients are applied to represent the unknown Boolean threshold function of the candidate Boolean threshold network as the dynamical equations. To overcome the multi-collinearity and over-fitting problems, a new and effective approach is designed to optimize the network topology by adding a perturbation design matrix to the input data and thereafter setting sufficiently small elements of the output coefficient vector to zeros. In addition, the cross-validation procedure is implemented into the Boolean threshold network model framework to strengthen the inference capability. Finally, extensive experiments on one simulated Boolean value dataset, dozens of simulation datasets, and three real single-cell RNA sequencing datasets demonstrate that the LogBTF method can infer GRNs from time series data more accurately than some other alternative methods for GRN inference. AVAILABILITY AND IMPLEMENTATION The source data and code are available at https://github.com/zpliulab/LogBTF.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Liangjie Sun
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Guangyi Chen
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| | - Chi-Wing Wong
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Wai-Ki Ching
- Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
13
|
Reagor CC, Velez-Angel N, Hudspeth AJ. Depicting pseudotime-lagged causality across single-cell trajectories for accurate gene-regulatory inference. PNAS NEXUS 2023; 2:pgad113. [PMID: 37113980 PMCID: PMC10129065 DOI: 10.1093/pnasnexus/pgad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Identifying the causal interactions in gene-regulatory networks requires an accurate understanding of the time-lagged relationships between transcription factors and their target genes. Here we describe DELAY (short for Depicting Lagged Causality), a convolutional neural network for the inference of gene-regulatory relationships across pseudotime-ordered single-cell trajectories. We show that combining supervised deep learning with joint probability matrices of pseudotime-lagged trajectories allows the network to overcome important limitations of ordinary Granger causality-based methods, for example, the inability to infer cyclic relationships such as feedback loops. Our network outperforms several common methods for inferring gene regulation and, when given partial ground-truth labels, predicts novel regulatory networks from single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing (scATAC-seq) data sets. To validate this approach, we used DELAY to identify important genes and modules in the regulatory network of auditory hair cells, as well as likely DNA-binding partners for two hair cell cofactors (Hist1h1c and Ccnd1) and a novel binding sequence for the hair cell-specific transcription factor Fiz1. We provide an easy-to-use implementation of DELAY under an open-source license at https://github.com/calebclayreagor/DELAY.
Collapse
Affiliation(s)
| | - Nicolas Velez-Angel
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
14
|
Mao G, Zeng R, Peng J, Zuo K, Pang Z, Liu J. Reconstructing gene regulatory networks of biological function using differential equations of multilayer perceptrons. BMC Bioinformatics 2022; 23:503. [PMID: 36434499 PMCID: PMC9700916 DOI: 10.1186/s12859-022-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Building biological networks with a certain function is a challenge in systems biology. For the functionality of small (less than ten nodes) biological networks, most methods are implemented by exhausting all possible network topological spaces. This exhaustive approach is difficult to scale to large-scale biological networks. And regulatory relationships are complex and often nonlinear or non-monotonic, which makes inference using linear models challenging. RESULTS In this paper, we propose a multi-layer perceptron-based differential equation method, which operates by training a fully connected neural network (NN) to simulate the transcription rate of genes in traditional differential equations. We verify whether the regulatory network constructed by the NN method can continue to achieve the expected biological function by verifying the degree of overlap between the regulatory network discovered by NN and the regulatory network constructed by the Hill function. And we validate our approach by adapting to noise signals, regulator knockout, and constructing large-scale gene regulatory networks using link-knockout techniques. We apply a real dataset (the mesoderm inducer Xenopus Brachyury expression) to construct the core topology of the gene regulatory network and find that Xbra is only strongly expressed at moderate levels of activin signaling. CONCLUSION We have demonstrated from the results that this method has the ability to identify the underlying network topology and functional mechanisms, and can also be applied to larger and more complex gene network topologies.
Collapse
Affiliation(s)
- Guo Mao
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ruigeng Zeng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jintao Peng
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Ke Zuo
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Zhengbin Pang
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China
| | - Jie Liu
- grid.412110.70000 0000 9548 2110Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Deya Road, Changsha, 410073 China ,grid.412110.70000 0000 9548 2110Laboratory of Software Engineering for Complex System, National University of Defense Technology, Deya Road, Changsha, 410073 China
| |
Collapse
|
15
|
Chen G, Liu ZP. Inferring causal gene regulatory network via GreyNet: From dynamic grey association to causation. Front Bioeng Biotechnol 2022; 10:954610. [PMID: 36237217 PMCID: PMC9551017 DOI: 10.3389/fbioe.2022.954610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Gene regulatory network (GRN) provides abundant information on gene interactions, which contributes to demonstrating pathology, predicting clinical outcomes, and identifying drug targets. Existing high-throughput experiments provide rich time-series gene expression data to reconstruct the GRN to further gain insights into the mechanism of organisms responding to external stimuli. Numerous machine-learning methods have been proposed to infer gene regulatory networks. Nevertheless, machine learning, especially deep learning, is generally a “black box,” which lacks interpretability. The causality has not been well recognized in GRN inference procedures. In this article, we introduce grey theory integrated with the adaptive sliding window technique to flexibly capture instant gene–gene interactions in the uncertain regulatory system. Then, we incorporate generalized multivariate Granger causality regression methods to transform the dynamic grey association into causation to generate directional regulatory links. We evaluate our model on the DREAM4 in silico benchmark dataset and real-world hepatocellular carcinoma (HCC) time-series data. We achieved competitive results on the DREAM4 compared with other state-of-the-art algorithms and gained meaningful GRN structure on HCC data respectively.
Collapse
Affiliation(s)
- Guangyi Chen
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong, China
- Center for Intelligent Medicine, Shandong University, Jinan, Shandong, China
- *Correspondence: Zhi-Ping Liu,
| |
Collapse
|