1
|
Sehsah AI, Mousa A, Farouk G. A hybrid variational autoencoder and WGAN with gradient penalty for tertiary protein structure generation. Sci Rep 2025; 15:14191. [PMID: 40268976 PMCID: PMC12019360 DOI: 10.1038/s41598-025-94747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025] Open
Abstract
Elucidating the tertiary structure of proteins is important for understanding their functions and interactions. While deep neural networks have advanced the prediction of a protein's native structure from its amino acid sequence, the focus on a single-structure view limits understanding of the dynamic nature of protein molecules. Acquiring a multi-structure view of protein molecules remains a broader challenge in computational structural biology. Alternative representations, such as distance matrices, offer a compact and effective way to explore and generate realistic tertiary protein structures. This paper presents TP-VWGAN, a hybrid model to improve the realism of generating distance matrix representations of tertiary protein structures. The model integrates the probabilistic representation learning of the Variational Autoencoder (VAE) with the realistic data generation strength of the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP). The main modification of TP-VWGAN is incorporating residual blocks into its VAE architecture to improve its performance. The experimental results show that TP-VWGAN with and without residual blocks outperforms existing methods in generating realistic protein structures, but incorporating residual blocks enhances its ability to capture key structural features. Comparisons also demonstrate that the more accurately a model learns symmetry features in the generated distance matrices, the better it captures key structural features, as demonstrated through benchmarking against existing methods. This work moves us closer to more advanced deep generative models that can explore a broader range of protein structures and be applied to drug design and protein engineering. The code and data are available at https://github.com/aalaa-sehsah/tp-vwgan .
Collapse
Affiliation(s)
- Aalaa I Sehsah
- Department of Computer Science, Faculty of Computers and Information, Kafrelsheikh University, Kafr El Sheikh, 33516, Egypt.
| | - Afaf Mousa
- Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shebin El Kom, 32511, Egypt
| | - Gamal Farouk
- Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shebin El Kom, 32511, Egypt
| |
Collapse
|
2
|
Liu H, Zhuo C, Gao J, Zeng C, Zhao Y. AI-integrated network for RNA complex structure and dynamic prediction. BIOPHYSICS REVIEWS 2024; 5:041304. [PMID: 39512332 PMCID: PMC11540444 DOI: 10.1063/5.0237319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RNA complexes are essential components in many cellular processes. The functions of these complexes are linked to their tertiary structures, which are shaped by detailed interface information, such as binding sites, interface contact, and dynamic conformational changes. Network-based approaches have been widely used to analyze RNA complex structures. With their roots in the graph theory, these methods have a long history of providing insight into the static and dynamic properties of RNA molecules. These approaches have been effective in identifying functional binding sites and analyzing the dynamic behavior of RNA complexes. Recently, the advent of artificial intelligence (AI) has brought transformative changes to the field. These technologies have been increasingly applied to studying RNA complex structures, providing new avenues for understanding the complex interactions within RNA complexes. By integrating AI with traditional network analysis methods, researchers can build more accurate models of RNA complex structures, predict their dynamic behaviors, and even design RNA-based inhibitors. In this review, we introduce the integration of network-based methodologies with AI techniques to enhance the understanding of RNA complex structures. We examine how these advanced computational tools can be used to model and analyze the detailed interface information and dynamic behaviors of RNA molecules. Additionally, we explore the potential future directions of how AI-integrated networks can aid in the modeling and analyzing RNA complex structures.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
3
|
Zhao C, Wang S. AttCON: With better MSAs and attention mechanism for accurate protein contact map prediction. Comput Biol Med 2024; 169:107822. [PMID: 38091726 DOI: 10.1016/j.compbiomed.2023.107822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Protein contact map prediction is a critical and vital step in protein structure prediction, and its accuracy is highly contingent upon the feature representations of protein sequence information and the efficacy of deep learning models. In this paper, we propose an algorithm, DeepMSA+, to generate protein multiple sequence alignments (MSAs) and to construct feature representations based on co-evolutionary information and sequence information derived from MSAs. We also propose an improved deep learning model, AttCON, for training input features to predict protein contact map. The model incorporates an attention module, and by comparing different attention modules, we find a parameter-free attention module suitable for contact map prediction. Additionally, we use the Focal Loss function to better address the data imbalance issue in protein contact map. We also developed a weighted evaluation index (W score) for model evaluation, which takes into account a wide range of metrics. W score is comprehensive in its scope, with a particular focus on the precision of predictions for medium-range and long-range contacts. Experimental results show that AttCON achieves good precision results on datasets from CASP11 to CASP15. Compared to some state-of-the-art methods, it achieves an average improvement of over 5% in both medium-range and long-range predictions, and W score is improved by an average of 2 points.
Collapse
Affiliation(s)
- Che Zhao
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China; Yunnan Key Laboratory of Intelligent Systems and Computing, Yunnan University, Kunming, 650504, Yunnan, China.
| |
Collapse
|
4
|
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev 2023; 123:8736-8780. [PMID: 37384816 PMCID: PMC10999174 DOI: 10.1021/acs.chemrev.3c00189] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.
Collapse
Affiliation(s)
- Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Zailiang Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Ekaterina Merkurjev
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Improved inter-residue contact prediction via a hybrid generative model and dynamic loss function. Comput Struct Biotechnol J 2022; 20:6138-6148. [DOI: 10.1016/j.csbj.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
6
|
Kagaya Y, Flannery ST, Jain A, Kihara D. ContactPFP: Protein Function Prediction Using Predicted Contact Information. FRONTIERS IN BIOINFORMATICS 2022; 2. [PMID: 35875419 PMCID: PMC9302406 DOI: 10.3389/fbinf.2022.896295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Computational function prediction is one of the most important problems in bioinformatics as elucidating the function of genes is a central task in molecular biology and genomics. Most of the existing function prediction methods use protein sequences as the primary source of input information because the sequence is the most available information for query proteins. There are attempts to consider other attributes of query proteins. Among these attributes, the three-dimensional (3D) structure of proteins is known to be very useful in identifying the evolutionary relationship of proteins, from which functional similarity can be inferred. Here, we report a novel protein function prediction method, ContactPFP, which uses predicted residue-residue contact maps as input structural features of query proteins. Although 3D structure information is known to be useful, it has not been routinely used in function prediction because the 3D structure is not experimentally determined for many proteins. In ContactPFP, we overcome this limitation by using residue-residue contact prediction, which has become increasingly accurate due to rapid development in the protein structure prediction field. ContactPFP takes a query protein sequence as input and uses predicted residue-residue contact as a proxy for the 3D protein structure. To characterize how predicted contacts contribute to function prediction accuracy, we compared the performance of ContactPFP with several well-established sequence-based function prediction methods. The comparative study revealed the advantages and weaknesses of ContactPFP compared to contemporary sequence-based methods. There were many cases where it showed higher prediction accuracy. We examined factors that affected the accuracy of ContactPFP using several illustrative cases that highlight the strength of our method.
Collapse
Affiliation(s)
- Yuki Kagaya
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sean T. Flannery
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
- *Correspondence: Daisuke Kihara,
| |
Collapse
|
7
|
Lee D, Xiong D, Wierbowski S, Li L, Liang S, Yu H. Deep learning methods for 3D structural proteome and interactome modeling. Curr Opin Struct Biol 2022; 73:102329. [PMID: 35139457 PMCID: PMC8957610 DOI: 10.1016/j.sbi.2022.102329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/05/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022]
Abstract
Bolstered by recent methodological and hardware advances, deep learning has increasingly been applied to biological problems and structural proteomics. Such approaches have achieved remarkable improvements over traditional machine learning methods in tasks ranging from protein contact map prediction to protein folding, prediction of protein-protein interaction interfaces, and characterization of protein-drug binding pockets. In particular, emergence of ab initio protein structure prediction methods including AlphaFold2 has revolutionized protein structural modeling. From a protein function perspective, numerous deep learning methods have facilitated deconvolution of the exact amino acid residues and protein surface regions responsible for binding other proteins or small molecule drugs. In this review, we provide a comprehensive overview of recent deep learning methods applied in structural proteomics.
Collapse
Affiliation(s)
- Dongjin Lee
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shayne Wierbowski
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Le Li
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Siqi Liang
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Deep generative modeling for protein design. Curr Opin Struct Biol 2021; 72:226-236. [PMID: 34963082 DOI: 10.1016/j.sbi.2021.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022]
Abstract
Deep learning approaches have produced substantial breakthroughs in fields such as image classification and natural language processing and are making rapid inroads in the area of protein design. Many generative models of proteins have been developed that encompass all known protein sequences, model specific protein families, or extrapolate the dynamics of individual proteins. Those generative models can learn protein representations that are often more informative of protein structure and function than hand-engineered features. Furthermore, they can be used to quickly propose millions of novel proteins that resemble the native counterparts in terms of expression level, stability, or other attributes. The protein design process can further be guided by discriminative oracles to select candidates with the highest probability of having the desired properties. In this review, we discuss five classes of generative models that have been most successful at modeling proteins and provide a framework for model guided protein design.
Collapse
|