1
|
Downie CG, Highland HM, Alotaibi M, Welch BM, Howard AG, Cheng S, Miller N, Jain M, Kaplan RC, Lilly AG, Long T, Sofer T, Thyagarajan B, Yu B, North KE, Avery CL. Genome-wide association study reveals shared and distinct genetic architecture of fatty acids and oxylipins in the Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2025; 6:100390. [PMID: 39644095 PMCID: PMC11751521 DOI: 10.1016/j.xhgg.2024.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Bioactive fatty acid-derived oxylipin molecules play key roles mediating inflammation and oxidative stress. Circulating levels of fatty acids and oxylipins are influenced by environmental and genetic factors; characterizing the genetic architecture of bioactive lipids could yield new insights into underlying biology. We performed a genome-wide association study (GWAS) of 81 fatty acids and oxylipins in 11,584 Hispanic Community Health Study/Study of Latinos (HCHS/SOL) participants with genetic and lipidomic data measured at study baseline (58.6% female, mean age = 46.1 years (standard deviation 13.8)). Additionally, given the effects of central obesity on inflammation, we examined interactions with waist circumference using two-degree-of-freedom joint tests. Thirty-three of the 81 oxylipins and fatty acids were significantly heritable (heritability range: 0-32.7%). Forty (49.4%) oxylipins and fatty acids had at least one genome-wide significant (p < 6.94E-11) variant resulting in 19 independent genetic loci. Six loci (lead variant minor allele frequency [MAF] range: 0.08-0.50), including desaturase-encoding FADS and OATP1B1 transporter protein-encoding SLCO1B1, exhibited associations with two or more fatty acids and oxylipins. At several of these loci, there was evidence of colocalization of the top variant across fatty acids and oxylipins. The remaining loci were only associated with one oxylipin or fatty acid and included several CYP loci. We also identified an additional rare variant (MAF = 0.002) near CARS2 in two-degree-of-freedom tests. Our analyses revealed shared and distinct genetic architecture underlying fatty acids and oxylipins, providing insights into genetic factors and motivating work to characterize these compounds and elucidate their roles in disease.
Collapse
Affiliation(s)
- Carolina G Downie
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mona Alotaibi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, San Diego, CA, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, Reno, NV, USA
| | - Annie Green Howard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Mohit Jain
- Sapient Bioanalytics, San Diego, CA, USA; Departments of Medicine and Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Public Health Sciences Division, Fred Hutchison Cancer Center, Seattle, WA, USA
| | - Adam G Lilly
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tao Long
- Sapient Bioanalytics, San Diego, CA, USA
| | - Tamar Sofer
- CardioVascular Institute (CVI), Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Ghasemi S, Becker T, Grabe HJ, Teumer A. Discovery of novel eGFR-associated multiple independent signals using a quasi-adaptive method. Front Genet 2022; 13:997302. [PMID: 36386835 PMCID: PMC9660290 DOI: 10.3389/fgene.2022.997302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
A decreased estimated glomerular filtration rate (eGFR) leading to chronic kidney disease is a significant public health problem. Kidney function is a heritable trait, and recent application of genome-wide association studies (GWAS) successfully identified multiple eGFR-associated genetic loci. To increase statistical power for detecting independent associations in GWAS loci, we improved our recently developed quasi-adaptive method estimating SNP-specific alpha levels for the conditional analysis, and applied it to the GWAS meta-analysis results of eGFR among 783,978 European-ancestry individuals. Among known eGFR loci, we revealed 19 new independent association signals that were subsequently replicated in the United Kingdom Biobank (n = 408,608). These associations have remained undetected by conditional analysis using the established conservative genome-wide significance level of 5 × 10-8. Functional characterization of known index SNPs and novel independent signals using colocalization of conditional eGFR association results and gene expression in cis across 51 human tissues identified two potentially causal genes across kidney tissues: TSPAN33 and TFDP2, and three candidate genes across other tissues: SLC22A2, LRP2, and CDKN1C. These colocalizations were not identified in the original GWAS. By applying our improved quasi-adaptive method, we successfully identified additional genetic variants associated with eGFR. Considering these signals in colocalization analyses can increase the precision of revealing potentially functional genes of GWAS loci.
Collapse
Affiliation(s)
- Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Tim Becker
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases DZNE, Site Rostock/Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|