1
|
Wat LW, Svensson KJ. Novel secreted regulators of glucose and lipid metabolism in the development of metabolic diseases. Diabetologia 2024; 67:2626-2636. [PMID: 39180580 DOI: 10.1007/s00125-024-06253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/01/2024] [Indexed: 08/26/2024]
Abstract
The tight regulation of glucose and lipid metabolism is crucial for maintaining metabolic health. Dysregulation of these processes can lead to the development of metabolic diseases. Secreted factors, or hormones, play an essential role in the regulation of glucose and lipid metabolism, thus also playing an important role in the development of metabolic diseases such as type 2 diabetes and obesity. Given the important roles of secreted factors, there has been significant interest in identifying new secreted factors and new functions for existing secreted factors that control glucose and lipid metabolism. In this review, we evaluate novel secreted factors or novel functions of existing factors that regulate glucose and lipid metabolism discovered in the last decade, including secreted isoform of endoplasmic reticulum membrane complex subunit 10, vimentin, cartilage intermediate layer protein 2, isthmin-1, lipocalin-2, neuregulin-1 and neuregulin-4. We discuss their discovery, tissues of origin, mechanisms of action and sex differences, emphasising their potential to regulate metabolic processes central to diabetes. Additionally, we discuss the translational barriers, particularly the absence of identified receptors, that hamper their functional characterisation and further therapeutic development. Ultimately, the identification of new secreted factors may give insights into previously unidentified pathways of disease progression and mechanisms of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Nichols C, Do-Thi VA, Peltier DC. Noncanonical microprotein regulation of immunity. Mol Ther 2024; 32:2905-2929. [PMID: 38734902 PMCID: PMC11403233 DOI: 10.1016/j.ymthe.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
The immune system is highly regulated but, when dysregulated, suboptimal protective or overly robust immune responses can lead to immune-mediated disorders. The genetic and molecular mechanisms of immune regulation are incompletely understood, impeding the development of more precise diagnostics and therapeutics for immune-mediated disorders. Recently, thousands of previously unrecognized noncanonical microprotein genes encoded by small open reading frames have been identified. Many of these microproteins perform critical functions, often in a cell- and context-specific manner. Several microproteins are now known to regulate immunity; however, the vast majority are uncharacterized. Therefore, illuminating what is often referred to as the "dark proteome," may present opportunities to tune immune responses more precisely. Here, we review noncanonical microprotein biology, highlight recently discovered examples regulating immunity, and discuss the potential and challenges of modulating dysregulated immune responses by targeting microproteins.
Collapse
Affiliation(s)
- Cydney Nichols
- Morris Green Scholars Program, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Van Anh Do-Thi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daniel C Peltier
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
3
|
Koch TL, Torres JP, Baskin RP, Salcedo PF, Chase K, Olivera BM, Safavi-Hemami H. A toxin-based approach to neuropeptide and peptide hormone discovery. Front Mol Neurosci 2023; 16:1176662. [PMID: 37720554 PMCID: PMC10501145 DOI: 10.3389/fnmol.2023.1176662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Peptide hormones and neuropeptides form a diverse class of bioactive secreted molecules that control essential processes in animals. Despite breakthroughs in peptide discovery, many signaling peptides remain undiscovered. Recently, we demonstrated the use of somatostatin-mimicking toxins from cone snails to identify the invertebrate ortholog of somatostatin. Here, we show that this toxin-based approach can be systematically applied to discover other unknown secretory peptides that are likely to have signaling function. Using large sequencing datasets, we searched for homologies between cone snail toxins and secreted proteins from the snails' prey. We identified and confirmed expression of five toxin families that share strong similarities with unknown secretory peptides from mollusks and annelids and in one case also from ecdysozoans. Based on several lines of evidence we propose that these peptides likely act as signaling peptides that serve important physiological functions. Indeed, we confirmed that one of the identified peptides belongs to the family of crustacean hyperglycemic hormone, a peptide not previously observed in Spiralia. We propose that this discovery pipeline can be broadly applied to other systems in which one organism has evolved molecules to manipulate the physiology of another.
Collapse
Affiliation(s)
- Thomas Lund Koch
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Joshua P. Torres
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert P. Baskin
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Paula Flórez Salcedo
- Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Baldomero M. Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Helena Safavi-Hemami
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Uncharacterized Proteins CxORFx: Subinteractome Analysis and Prognostic Significance in Cancers. Int J Mol Sci 2023; 24:10190. [PMID: 37373333 DOI: 10.3390/ijms241210190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Functions of about 10% of all the proteins and their associations with diseases are poorly annotated or not annotated at all. Among these proteins, there is a group of uncharacterized chromosome-specific open-reading frame genes (CxORFx) from the 'Tdark' category. The aim of the work was to reveal associations of CxORFx gene expression and ORF proteins' subinteractomes with cancer-driven cellular processes and molecular pathways. We performed systems biology and bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR, PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome of each ORF protein was revealed using ten different data sources on physical protein-protein interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of 219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found. Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The results obtained expand the understanding of the possible functions of the poorly annotated CxORFx in the cancer context.
Collapse
Affiliation(s)
- Pavel Ershov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | - Yuri Mezentsev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
6
|
Martinez TF, Lyons-Abbott S, Bookout AL, De Souza EV, Donaldson C, Vaughan JM, Lau C, Abramov A, Baquero AF, Baquero K, Friedrich D, Huard J, Davis R, Kim B, Koch T, Mercer AJ, Misquith A, Murray SA, Perry S, Pino LK, Sanford C, Simon A, Zhang Y, Zipp G, Bizarro CV, Shokhirev MN, Whittle AJ, Searle BC, MacCoss MJ, Saghatelian A, Barnes CA. Profiling mouse brown and white adipocytes to identify metabolically relevant small ORFs and functional microproteins. Cell Metab 2023; 35:166-183.e11. [PMID: 36599300 PMCID: PMC9889109 DOI: 10.1016/j.cmet.2022.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
Microproteins (MPs) are a potentially rich source of uncharacterized metabolic regulators. Here, we use ribosome profiling (Ribo-seq) to curate 3,877 unannotated MP-encoding small ORFs (smORFs) in primary brown, white, and beige mouse adipocytes. Of these, we validated 85 MPs by proteomics, including 33 circulating MPs in mouse plasma. Analyses of MP-encoding mRNAs under different physiological conditions (high-fat diet) revealed that numerous MPs are regulated in adipose tissue in vivo and are co-expressed with established metabolic genes. Furthermore, Ribo-seq provided evidence for the translation of Gm8773, which encodes a secreted MP that is homologous to human and chicken FAM237B. Gm8773 is highly expressed in the arcuate nucleus of the hypothalamus, and intracerebroventricular administration of recombinant mFAM237B showed orexigenic activity in obese mice. Together, these data highlight the value of this adipocyte MP database in identifying MPs with roles in fundamental metabolic and physiological processes such as feeding.
Collapse
Affiliation(s)
- Thomas F Martinez
- Department of Pharmaceutical Sciences, Department of Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | | | - Angie L Bookout
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Eduardo V De Souza
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90616-900, Brazil; Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cynthia Donaldson
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Calvin Lau
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ariel Abramov
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Arian F Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Karalee Baquero
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Dave Friedrich
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Justin Huard
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ray Davis
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Bong Kim
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ty Koch
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Aaron J Mercer
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Ayesha Misquith
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Sara A Murray
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Sakara Perry
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Lindsay K Pino
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Alex Simon
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Yu Zhang
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Garrett Zipp
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA
| | - Cristiano V Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90616-900, Brazil
| | - Maxim N Shokhirev
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Brian C Searle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Christopher A Barnes
- Novo Nordisk Research Center Seattle, Inc., Seattle, WA, USA; Velia Therapeutics, Inc., San Diego, CA, USA.
| |
Collapse
|