1
|
Martin GP, Pate A, Bladon S, Sperrin M, Riley RD. A decision-analytical perspective on incorporating multiple outcomes in the production of clinical prediction models: defining a taxonomy of risk estimands. BMC Med 2025; 23:142. [PMID: 40050803 PMCID: PMC11887178 DOI: 10.1186/s12916-025-03978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/28/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Clinical prediction models (CPMs) estimate an individual's risk of current or future outcome events, using information available about the individual at the time of prediction. While most CPMs are developed to predict a single outcome event, many clinical decisions require considering the risks of multiple outcome events. For example, decision-making for anticoagulation therapy involves assessing an individual's risks of both blood clot and bleeding, while decision-making around interventions for multimorbidity prevention requires an understanding of the risks of developing multiple long-term conditions. However, determining when and how to incorporate multiple outcomes into CPMs remains challenging. This article aims to raise awareness of multiple outcome prediction and present clinical examples where such prediction is essential to help inform individual decision-making. MAIN TEXT A range of analytical methods are available to develop multiple-outcome CPMs, but there are frequent malapropisms and heterogeneity in terminology across this literature, making it difficult to identify/compare possible methods. Selecting the appropriate method should depend on the intended risk estimand-the type of predicted risks that we wish the CPM to estimate-but this is often not defined or reported. Using clinical examples and a decision-analytical perspective, we present a taxonomy of risk estimands to frame different clinical contexts requiring multiple-outcome CPMs. We outline four levels of risk estimands: (i) single-outcome risk, (ii) competing-outcome risk, (iii) composite-outcome risk, and (iv) risk of multiple outcome combinations. We demonstrate how a decision-analytical and utility-theory lens can help define the risk estimand for a given clinical scenario, based on the model's intended use. CONCLUSIONS Clearly defining and reporting the risk estimand is essential for all prediction model studies. A decision-analytical framework aids in selecting the most appropriate estimand for a given prediction task and in determining when and how to incorporate multiple outcomes into CPM development.
Collapse
Affiliation(s)
- Glen P Martin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Alexander Pate
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siân Bladon
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Matthew Sperrin
- Division of Informatics, Imaging and Data Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard D Riley
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, Pasaniuc B, Gandal MJ. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet 2023; 55:2117-2128. [PMID: 38036788 PMCID: PMC10703692 DOI: 10.1038/s41588-023-01560-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Methods integrating genetics with transcriptomic reference panels prioritize risk genes and mechanisms at only a fraction of trait-associated genetic loci, due in part to an overreliance on total gene expression as a molecular outcome measure. This challenge is particularly relevant for the brain, in which extensive splicing generates multiple distinct transcript-isoforms per gene. Due to complex correlation structures, isoform-level modeling from cis-window variants requires methodological innovation. Here we introduce isoTWAS, a multivariate, stepwise framework integrating genetics, isoform-level expression and phenotypic associations. Compared to gene-level methods, isoTWAS improves both isoform and gene expression prediction, yielding more testable genes, and increased power for discovery of trait associations within genome-wide association study loci across 15 neuropsychiatric traits. We illustrate multiple isoTWAS associations undetectable at the gene-level, prioritizing isoforms of AKT3, CUL3 and HSPD1 in schizophrenia and PCLO with multiple disorders. Results highlight the importance of incorporating isoform-level resolution within integrative approaches to increase discovery of trait associations, especially for brain-relevant traits.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Daniel D Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Cindy Wen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jonatan L Hervoso
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael J Gandal
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Brain Institute at Penn Med and the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Garrido A, Santamaría E, Fernández-Irigoyen J, Soto M, Simonet C, Fernández M, Obiang D, Tolosa E, Martí MJ, Padmanabhan S, Malagelada C, Ezquerra M, Fernández-Santiago R. Differential Phospho-Signatures in Blood Cells Identify LRRK2 G2019S Carriers in Parkinson's Disease. Mov Disord 2022; 37:1004-1015. [PMID: 35049090 PMCID: PMC9306798 DOI: 10.1002/mds.28927] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Background The clinicopathological phenotype of G2019S LRRK2‐associated Parkinson's disease (L2PD) is similar to idiopathic Parkinson's disease (iPD), and G2019S LRRK2 nonmanifesting carriers (L2NMCs) are at increased risk for development of PD. With various therapeutic strategies in the clinical and preclinical pipeline, there is an urgent need to identify biomarkers that can aid early diagnosis and patient enrichment for ongoing and future LRRK2‐targeted trials. Objective The objective of this work was to investigate differential protein and phospho‐protein changes related to G2019S mutant LRRK2 in peripheral blood mononuclear cells from G2019S L2PD patients and G2019S L2NMCs, identify specific phospho‐protein changes associated with the G2019S mutation and with disease status, and compare findings with patients with iPD. Methods We performed an unbiased phospho‐proteomic study by isobaric label–based mass spectrometry using peripheral blood mononuclear cell group pools from a LRRK2 cohort from Spain encompassing patients with G2019S L2PD (n = 20), G2019S L2NMCs (n = 20), healthy control subjects (n = 30), patients with iPD (n = 15), patients with R1441G L2PD (n = 5), and R1441G L2NMCs (n = 3) (total N = 93). Results Comparing G2019S carriers with healthy controls, we identified phospho‐protein changes associated with the G2019S mutation. Moreover, we uncovered a specific G2019S phospho‐signature that changes with disease status and can discriminate patients with G2019S L2PD, G2019S L2NMCs, and healthy controls. Although patients with iPD showed a differential phospho‐proteomic profile, biological enrichment analyses revealed similar changes in deregulated pathways across the three groups. Conclusions We found a differential phospho‐signature associated with LRRK2 G2019S for which, consistent with disease status, the phospho‐profile from PD at‐risk G2019S L2NMCs was more similar to healthy controls than patients with G2019S L2PD with the manifested disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Alicia Garrido
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Enrique Santamaría
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Departamento de Salud, UPNA, IdiSNA, Pamplona, Navarra, Spain
| | - Marta Soto
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Cristina Simonet
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Manel Fernández
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease and Movement Disorders Group of the Institut de Neurociències (Universitat de Barcelona), Barcelona, Catalonia, Spain
| | - Donina Obiang
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Eduardo Tolosa
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - María-José Martí
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, New York, New York, USA
| | - Cristina Malagelada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Ezquerra
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Rubén Fernández-Santiago
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain.,Lab of Parkinson Disease & Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Histology Unit, Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|