1
|
Nandigrami P, Goldman ID, Fiser A. Mechanistic insights into mutation in the proton-coupled folate transporter (SLC46A1) causing hereditary folate malabsorption. J Biol Chem 2025; 301:108280. [PMID: 39924111 PMCID: PMC11929075 DOI: 10.1016/j.jbc.2025.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/17/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025] Open
Abstract
Hereditary folate malabsorption (HFM) is a rare, autosomal recessive disorder characterized by impaired intestinal absorption and impaired transport of folates across the choroid plexus into cerebral spinal fluid due to inactivating mutations in the human proton-coupled folate transporter (hPCFT) gene, which encodes the proton-coupled folate transporter (PCFT) SLC46A1. Understanding the structural impact of these mutations is crucial for elucidating the mechanistic basis for PCFT function and the pathophysiology of HFM. Recently, the cryo-electron microscopic structural characterization of the Gallus gallus PCFT was obtained, which shares significant sequence identity with hPCFT. We conducted molecular dynamics simulations of hPCFT based on this structure, to explore structural changes induced by functionally defective disease-causing and other mutant proteins and mutations that restore function. Simulations revealed that the mutually mechanistic basis for the loss of function is partial loss of structural integrity of hPCFT primarily manifested in an enlarged and distorted pore accompanied by loss of long-range contacts, less stable, fluctuating inner helices with reduced solvent accessibility, and a marked loss of ordered secondary structures. These changes are reversed by the introduction of compensatory mutations. These findings provide novel insights into the structural and functional consequences of PCFT mutations associated with HFM and provide correlations with kinetic and biochemical properties of the mutant proteins.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Departments of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Departments of Medicine, Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andras Fiser
- Departments of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
2
|
Nandigrami P, Fiser A. Assessing the functional impact of protein binding site definition. Protein Sci 2024; 33:e5026. [PMID: 38757384 PMCID: PMC11099757 DOI: 10.1002/pro.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Many biomedical applications, such as classification of binding specificities or bioengineering, depend on the accurate definition of protein binding interfaces. Depending on the choice of method used, substantially different sets of residues can be classified as belonging to the interface of a protein. A typical approach used to verify these definitions is to mutate residues and measure the impact of these changes on binding. Besides the lack of exhaustive data, this approach also suffers from the fundamental problem that a mutation introduces an unknown amount of alteration into an interface, which potentially alters the binding characteristics of the interface. In this study we explore the impact of alternative binding site definitions on the ability of a protein to recognize its cognate ligand using a pharmacophore approach, which does not affect the interface. The study also shows that methods for protein binding interface predictions should perform above approximately F-score = 0.7 accuracy level to capture the biological function of a protein.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Departments of Systems and Computational Biology, and BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Andras Fiser
- Departments of Systems and Computational Biology, and BiochemistryAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
3
|
Tomezsko PJ, Ford CT, Meyer AE, Michaleas AM, Jaimes R. Human cytokine and coronavirus nucleocapsid protein interactivity using large-scale virtual screens. FRONTIERS IN BIOINFORMATICS 2024; 4:1397968. [PMID: 38855143 PMCID: PMC11157076 DOI: 10.3389/fbinf.2024.1397968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Understanding the interactions between SARS-CoV-2 and the human immune system is paramount to the characterization of novel variants as the virus co-evolves with the human host. In this study, we employed state-of-the-art molecular docking tools to conduct large-scale virtual screens, predicting the binding affinities between 64 human cytokines against 17 nucleocapsid proteins from six betacoronaviruses. Our comprehensive in silico analyses reveal specific changes in cytokine-nucleocapsid protein interactions, shedding light on potential modulators of the host immune response during infection. These findings offer valuable insights into the molecular mechanisms underlying viral pathogenesis and may guide the future development of targeted interventions. This manuscript serves as insight into the comparison of deep learning based AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for protein-protein docking. We show the two methods are complementary in their predictive capabilities. We also introduce a novel algorithm for rapidly assessing the binding interface of protein-protein docks using graph edit distance: graph-based interface residue assessment function (GIRAF). The high-performance computational framework presented here will not only aid in accelerating the discovery of effective interventions against emerging viral threats, but extend to other applications of high throughput protein-protein screens.
Collapse
Affiliation(s)
| | - Colby T. Ford
- Tuple LLC, Charlotte, NC, United States
- University of North Carolina at Charlotte, Department of Bioinformatics and Genomics, Charlotte, NC, United States
- University of North Carolina at Charlotte, Center for Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Charlotte, NC, United States
| | | | | | - Rafael Jaimes
- MIT Lincoln Laboratory, Lexington, MA, United States
| |
Collapse
|
4
|
Lorton BM, Warren C, Ilyas H, Nandigrami P, Hegde S, Cahill S, Lehman SM, Shabanowitz J, Hunt DF, Fiser A, Cowburn D, Shechter D. Glutamylation of Npm2 and Nap1 acidic disordered regions increases DNA mimicry and histone chaperone efficiency. iScience 2024; 27:109458. [PMID: 38571760 PMCID: PMC10987829 DOI: 10.1016/j.isci.2024.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/08/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.
Collapse
Affiliation(s)
- Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Humaira Ilyas
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Prithviraj Nandigrami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stephanie M. Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA 22908, USA
| | - Donald F. Hunt
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Andras Fiser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Lorton BM, Warren C, Ilyas H, Nandigrami P, Hegde S, Cahill S, Lehman SM, Shabanowitz J, Hunt DF, Fiser A, Cowburn D, Shechter D. Glutamylation of Npm2 and Nap1 acidic disordered regions increases DNA charge mimicry to enhance chaperone efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558337. [PMID: 37790377 PMCID: PMC10542154 DOI: 10.1101/2023.09.18.558337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.
Collapse
Affiliation(s)
- Benjamin M. Lorton
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher Warren
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Current address: Merck & Co., Inc., 2025 E Scott Ave., Rahway, NJ 07065
| | - Humaira Ilyas
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Prithviraj Nandigrami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sean Cahill
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Stephanie M Lehman
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
- GSK, Collegeville, Pennsylvania 19426
| | | | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904
- Departments of Chemistry and Pathology, University of Virginia, Charlottesville, VA 22904
| | - Andras Fiser
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
6
|
Grudman S, Fajardo JE, Fiser A. Optimal selection of suitable templates in protein interface prediction. Bioinformatics 2023; 39:btad510. [PMID: 37603727 PMCID: PMC10491951 DOI: 10.1093/bioinformatics/btad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/11/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023] Open
Abstract
MOTIVATION Molecular-level classification of protein-protein interfaces can greatly assist in functional characterization and rational drug design. The most accurate protein interface predictions rely on finding homologous proteins with known interfaces since most interfaces are conserved within the same protein family. The accuracy of these template-based prediction approaches depends on the correct choice of suitable templates. Choosing the right templates in the immunoglobulin superfamily (IgSF) is challenging because its members share low sequence identity and display a wide range of alternative binding sites despite structural homology. RESULTS We present a new approach to predict protein interfaces. First, template-specific, informative evolutionary profiles are established using a mutual information-based approach. Next, based on the similarity of residue level conservation scores derived from the evolutionary profiles, a query protein is hierarchically clustered with all available template proteins in its superfamily with known interface definitions. Once clustered, a subset of the most closely related templates is selected, and an interface prediction is made. These initial interface predictions are subsequently refined by extensive docking. This method was benchmarked on 51 IgSF proteins and can predict nontrivial interfaces of IgSF proteins with an average and median F-score of 0.64 and 0.78, respectively. We also provide a way to assess the confidence of the results. The average and median F-scores increase to 0.8 and 0.81, respectively, if 27% of low confidence cases and 17% of medium confidence cases are removed. Lastly, we provide residue level interface predictions, protein complexes, and confidence measurements for singletons in the IgSF. AVAILABILITY AND IMPLEMENTATION Source code is freely available at: https://gitlab.com/fiserlab.org/interdct_with_refinement.
Collapse
Affiliation(s)
- Steven Grudman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - J Eduardo Fajardo
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Nandigrami P, Fiser A. Assessing the functional impact of protein binding site definition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525812. [PMID: 36747792 PMCID: PMC9900911 DOI: 10.1101/2023.01.26.525812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Many biomedical applications, such as classification of binding specificities or bioengineering, depend on the accurate definition of protein binding interfaces. Depending on the choice of method used, substantially different sets of residues can be classified as belonging to the interface of a protein. A typical approach used to verify these definitions is to mutate residues and measure the impact of these changes on binding. Besides the lack of exhaustive data this approach generates, it also suffers from the fundamental problem that a mutation introduces an unknown amount of alteration into an interface, which potentially alters the binding characteristics of the interface. In this study we explore the impact of alternative binding site definitions on the ability of a protein to recognize its cognate ligand using a pharmacophore approach, which does not affect the interface. The study also provides guidance on the minimum expected accuracy of interface definition that is required to capture the biological function of a protein.
Collapse
Affiliation(s)
- Prithviraj Nandigrami
- Departments of Systems & Computational Biology, and Biochemistry, Albert Einstein College of Medicine 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Andras Fiser
- Departments of Systems & Computational Biology, and Biochemistry, Albert Einstein College of Medicine 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|