1
|
Song WL, Chen BZ, Feng L, Chen G, He SM, Hao B, Zhang GH, Dong Y, Yang SC. Telomere-to-telomere genome assembly and 3D chromatin architecture of Centella asiatica insight into evolution and genetic basis of triterpenoid saponin biosynthesis. HORTICULTURE RESEARCH 2025; 12:uhaf037. [PMID: 40236733 PMCID: PMC11997435 DOI: 10.1093/hr/uhaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/17/2025]
Abstract
Centella asiatica is renowned for its medicinal properties, particularly due to its triterpenoid saponins, such as asiaticoside and madecassoside, which are in excess demand for the cosmetic industry. However, comprehensive genomic resources for this species are lacking, which impedes the understanding of its biosynthetic pathways. Here, we report a telomere-to-telomere (T2T) C. asiatica genome. The genome size is 438.12 Mb with a contig N50 length of 54.12 Mb. The genome comprises 258.87 Mb of repetitive sequences and 25 200 protein-coding genes. Comparative genomic analyses revealed C. asiatica as an early-diverging genus within the Apiaceae family with a single whole-genome duplication (WGD, Apiaceae-ω) event following the ancient γ-triplication, contrasting with Apiaceae species that exhibit two WGD events (Apiaceae-α and Apiaceae-ω). We further constructed 3D chromatin structures, A/B compartments, and topologically associated domains (TADs) in C. asiatica leaves, elucidating the influence of chromatin organization on expression WGD-derived genes. Additionally, gene family and functional characterization analysis highlight the key role of CasiOSC03 in α-amyrin production while also revealing significant expansion and high expression of CYP716, CYP714, and UGT73 families involved in asiaticoside biosynthesis compared to other Apiaceae species. Notably, a unique and large UGT73 gene cluster, located within the same TAD, is potentially pivotal for enhancing triterpenoid saponin. Weighted gene coexpression network analysis (WGCNA) further highlighted the pathways modulated in response to methyl jasmonate (MeJA), offering insights into the regulatory networks governing saponin biosynthesis. This work not only provides a valuable genomic resource for C. asiatica but also sheds light on the molecular mechanisms driving the biosynthesis of pharmacologically important metabolites.
Collapse
Affiliation(s)
- Wan-ling Song
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Bao-zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kumming 650201, China
| | - Lei Feng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Si-mei He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Guang-hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Yang Dong
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Province Key Laboratory, Biological Big Data College, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Sheng-chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
- Honghe University, Mengzi, Yunnan 661199, China
| |
Collapse
|
2
|
Ali Z, Tan QW, Lim PK, Chen H, Pfeifer L, Julca I, Lee JM, Classen B, de Vries S, de Vries J, Vinter F, Alvarado C, Layens A, Mizrachi E, Motawie MS, Joergensen B, Ulvskov P, Van de Peer Y, Ho BC, Sibout R, Mutwil M. Comparative transcriptomics in ferns reveals key innovations and divergent evolution of the secondary cell walls. NATURE PLANTS 2025; 11:1028-1048. [PMID: 40269175 DOI: 10.1038/s41477-025-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species, resulting in high-quality transcriptome assemblies. These data enabled us to construct a time-calibrated phylogeny for ferns, encompassing all major clades, which revealed numerous instances of whole-genome duplication. We highlighted the distinctiveness of fern genetics, discovering that half of the identified gene families are unique to ferns. Our exploration of fern cell walls through biochemical and immunological analyses uncovered the presence of the lignin syringyl unit, along with evidence of its independent evolution in ferns. Additionally, the identification of an unusual sugar in fern cell walls suggests a divergent evolutionary trajectory in cell wall biochemistry, probably influenced by gene duplication and sub-functionalization. To facilitate further research, we have developed an online database that includes preloaded genomic and transcriptomic data for ferns and other land plants. We used this database to demonstrate the independent evolution of lignocellulosic gene modules in ferns. Our findings provide a comprehensive framework illustrating the unique evolutionary journey ferns have undertaken since diverging from the last common ancestor of euphyllophytes more than 360 million years ago.
Collapse
Affiliation(s)
- Zahin Ali
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Jia Min Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | | | | | | | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bodil Joergensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Boon Chuan Ho
- Singapore Botanic Gardens, National Parks Board, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | | | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Wang J, Zhou Y, Zhang M, Li X, Liu T, Liu Y, Xie H, Wang K, Li P, Xu Z, Duan B. Resolving floral development dynamics using genome and single-cell temporal transcriptome of Dendrobium devonianum. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40238860 DOI: 10.1111/pbi.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/21/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Dendrobium devonianum, a species of the Orchidaceae family, is notable for its unique floral characteristics, which include two yellow spots and purple tips on its labellum, as well as fringed edges. However, the molecular mechanisms underlying flower pattern formation in D. devonianum remain poorly understood, hindering advancements in its breeding process. Here, a chromosome-scale genome of D. devonianum was presented for the first time, revealing two significant polyploidization events. Additionally, a high-resolution single-cell transcriptomic atlas was constructed, capturing 11 distinct cell clusters. Expression patterns of MADS-box genes were identified through temporal and spatial bulk RNA-Seq, revealing alignment with the ABCDE model of flower formation. Meanwhile, mass spectrometry imaging and scRNA analyses showed that the yellow spots were primarily associated with carotenoid biosynthesis gene expression, while the purple colour is predominantly linked to anthocyanin biosynthesis gene expression. These genes were mainly expressed in the epidermis and vascular cells. Developmental trajectory analyses of epidermal cells further uncovered a gene regulatory network and several transcription factors likely responsible for fringes formation along the labellum margin. This study provides valuable insights into the molecular mechanisms driving floral colour differentiation and structural traits in D. devonianum, contributing to a deeper understanding of orchid evolution, diversification and breeding.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmaceutical Science, Dali University, Dali, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Ying Zhou
- College of Pharmaceutical Science, Dali University, Dali, China
- Institute of Caulis Dendrobii Longling County, Baoshan, China
| | - Manchang Zhang
- Institute of Caulis Dendrobii Longling County, Baoshan, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
- Baoshan Food and Drug Inspection and Testing Center, Baoshan, China
| | - Xinping Li
- College of Pharmaceutical Science, Dali University, Dali, China
- College of Life Science, Northeast Forestry University, Harbin, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
| | - Tingxia Liu
- College of Pharmaceutical Science, Dali University, Dali, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
| | - Yinglin Liu
- College of Pharmaceutical Science, Dali University, Dali, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
| | - He Xie
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
- College of Life Science, Northeast Forestry University, Harbin, China
- International Joint Laboratory for the Development and Utilization of Traditional Chinese Medicine Resources in Yunnan Province, Baoshan, Dali, China
| |
Collapse
|
4
|
Zhang RG, Shang HY, Milne R, Almeida-Silva F, Chen H, Zhou MJ, Shu H, Jia KH, Van de Peer Y, Ma YP. SOI: robust identification of orthologous synteny with the Orthology Index and broad applications in evolutionary genomics. Nucleic Acids Res 2025; 53:gkaf320. [PMID: 40248914 PMCID: PMC12006799 DOI: 10.1093/nar/gkaf320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
With the explosive growth of whole-genome datasets, accurate detection of orthologous synteny has become crucial for reconstructing evolutionary history. However, current methods for identifying orthologous synteny face great limitations, particularly in scaling with varied polyploidy histories and accurately removing out-paralogous synteny. In this study, we developed a scalable and robust approach, based on the Orthology Index (OI), to effectively identify orthologous synteny. Our evaluation across a large-scale empirical dataset with diverse polyploidization events demonstrated the high reliability and robustness of the OI method. Simulation-based benchmarks further validated the accuracy of our method, showing its superior performance against existing methods across a wide range of scenarios. Additionally, we explored its broad applications in reconstructing the evolutionary histories of plant genomes, including the inference of polyploidy, identification of reticulation, and phylogenomics. In conclusion, OI offers a robust, interpretable, and scalable approach for identifying orthologous synteny, facilitating more accurate and efficient analyses in plant evolutionary genomics.
Collapse
Affiliation(s)
- Ren-Gang Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Hong-Yun Shang
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Richard Ian Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB 9052 Ghent, Belgium
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB 9052 Ghent, Belgium
| | - Min-Jie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Heng Shu
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 101408, China
| | - Kai-Hua Jia
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB 9052 Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong-Peng Ma
- State Key Laboratory of Plant Diversity and Specialty Crops/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Xiao D, Liu J, Wang J, Yang X, Yang Y, Yu R, Wang C, Gao H, Wang Y, Liu Y, Fan D, Lin F. Chromosome-level de novo genome unveils the evolution of Gleditsia sinensis and thorns development. Genomics 2025; 117:111004. [PMID: 39863186 DOI: 10.1016/j.ygeno.2025.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/19/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Gleditsia sinensis Lam. (G. sinensis) as an important species within the Leguminosae family, has been utilized in Chinese medicine for centuries, and its thorns serve as a chief medicinal ingredient. The absence of a comprehensive genome database has hindered its in-depth research. In this investigation, a chromosome-level de novo genome assembly of G. sinensis 'Yulin No.1' was achieved, which harbors a 786.13 Mb sized genome with 36,408 protein-coding genes and experiences two WGD events. The comparative and evolutionary analysis unveiled the close phylogenetic relationship between G. sinensis and eight other Leguminosae species. The WGCNA and gene family analysis further indicated that GsinMYB was involved in the development of thorns. This investigation offered a high-level genome of G. sinensis, facilitating comparisons in Leguminosae species evolution and functional elucidation. It also provided key insights for further research on the molecular regulation mechanisms of thorn development in plants and the molecular breeding of G. sinensis.
Collapse
Affiliation(s)
- Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jiahao Liu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Yanping Liu
- Henan Academy of Forestry, Henan, Zhengzhou 450008, China.
| | - Dingchen Fan
- Henan Academy of Forestry, Henan, Zhengzhou 450008, China.
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Laboratory of Forest Silviculture and Tree Cultivation, Research Institute of Forestry, Chinese Academy of Forestry, China.
| |
Collapse
|
6
|
Almeida-Silva F, Van de Peer Y. doubletrouble: an R/Bioconductor package for the identification, classification, and analysis of gene and genome duplications. Bioinformatics 2025; 41:btaf043. [PMID: 39862387 PMCID: PMC11810640 DOI: 10.1093/bioinformatics/btaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 01/27/2025] Open
Abstract
SUMMARY Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly. Here, we present doubletrouble, an R/Bioconductor package that provides a comprehensive and robust framework for analyzing duplicated genes from genomic data. doubletrouble can detect and classify gene pairs as derived from six duplication modes (segmental, tandem, proximal, retrotransposon-derived, DNA transposon-derived, and dispersed duplications), calculate substitution rates, detect signatures of putative whole-genome duplication events, and visualize results as publication-ready figures. We applied doubletrouble to classify the duplicated gene repertoire in 822 eukaryotic genomes, and results were made available through a user-friendly web interface. AVAILABILITY AND IMPLEMENTATION doubletrouble is available on Bioconductor (https://bioconductor.org/packages/doubletrouble), and the source code is available in a GitHub repository (https://github.com/almeidasilvaf/doubletrouble). doubletroubledb is available online at https://almeidasilvaf.github.io/doubletroubledb/.
Collapse
Affiliation(s)
- Fabricio Almeida-Silva
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, Nanjing, China
| |
Collapse
|
7
|
Wang J, Wang X, Ma Y, Gao R, Wang Y, An Z, Tian Y, Wan H, Wei D, Wang F, Zheng B, Duan B, Xiang L, Dong G, Sun W, Xu Z. Lonicera caerulea genome reveals molecular mechanisms of freezing tolerance and anthocyanin biosynthesis. J Adv Res 2024:S2090-1232(24)00615-5. [PMID: 39732333 DOI: 10.1016/j.jare.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown. OBJECTIVES Here, a chromosome-scale genome of L. caerulea was presented, aiming to examine the genetic foundations that underlie these characteristics of blue honeysuckle. METHODS The PacBio HiFi reads and Hi-C data were used to construct high-quality genome of blue honeysuckle. Comparative genomic and transcriptomic analyses were conducted to elucidate the molecular mechanisms of freezing tolerance and anthocyanin biosynthesis. RESULTS Comparative genomics analysis between L. caerulea and L. japonica revealed that the dynamic changes of duplicated genes contributed to their phytochemical reconstruction and environmental adaptation. Moreover, the ABA and ICE-CBF-COR signaling pathways were closely correlated to the freezing tolerance of L. caerulea. Genome-wide identification and biochemical function indicated that three anthocyanin 3',5'-O-methyltransferases (LcOMT2, LcOMT14, and LcOMT20) and two 3'-O-glycosyltransferases (LcUGT78X1 and LcUGT95P1) were responsible for anthocyanin biosynthesis. In addition, LcUGT78X1 was regarded as the potent glycosyltransferase for the accumulation of cyanidin-3-glucoside in L. caerulea. CONCLUSION This research elucidates the crucial roles of the ABA and ICE-CBF-COR signaling pathways in enhancing freezing tolerance, while also identifying highly efficient anthocyanin biosynthetic enzymes in L. caerulea. These findings advance the understanding of environmental adaptation and phytochemical production in Lonicera species.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaotong Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongmiao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dianwen Wei
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Feng Wang
- Heilongjiang Fengran Agricultural Group, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
8
|
Dunn T, Sethuraman A. Accurate Inference of the Polyploid Continuum Using Forward-Time Simulations. Mol Biol Evol 2024; 41:msae241. [PMID: 39549274 DOI: 10.1093/molbev/msae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Multiple rounds of whole-genome duplication (WGD) followed by diploidization have occurred throughout the evolutionary history of angiosperms. Much work has been done to model the genomic consequences and evolutionary significance of WGD. While researchers have historically modeled polyploids as either allopolyploids or autopolyploids, the variety of natural polyploids span a continuum of differentiation across multiple parameters, such as the extent of polysomic versus disomic inheritance, and the degree of genetic differentiation between the ancestral lineages. Here we present a forward-time polyploid genome evolution simulator called SpecKS. SpecKS models polyploid speciation as originating from a 2D continuum, whose dimensions account for both the level of genetic differentiation between the ancestral parental genomes, as well the time lag between ancestral speciation and their subsequent reunion in the derived polyploid. Using extensive simulations, we demonstrate that changes in initial conditions along either dimension of the 2D continuum deterministically affect the shape of the Ks histogram. Our findings indicate that the error in the common method of estimating WGD time from the Ks histogram peak scales with the degree of allopolyploidy, and we present an alternative, accurate estimation method that is independent of the degree of allopolyploidy. Lastly, we use SpecKS to derive tests that infer both the lag time between parental divergence and WGD time, and the diversity of the ancestral species, from an input Ks histogram. We apply the latter test to transcriptomic data from over 200 species across the plant kingdom, the results of which are concordant with the prevailing theory that the majority of angiosperm lineages are derived from diverse parental genomes and may be of allopolyploid origin.
Collapse
Affiliation(s)
- Tamsen Dunn
- Department of Biology, San Diego State University, San Diego, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Arun Sethuraman
- Department of Biology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
9
|
Chen BZ, Li DW, Luo KY, Jiu ST, Dong X, Wang WB, Li XZ, Hao TT, Lei YH, Guo DZ, Liu XT, Duan SC, Zhu YF, Chen W, Dong Y, Yu WB. Chromosome-level assembly of Lindenbergia philippensis and comparative genomic analyses shed light on genome evolution in Lamiales. FRONTIERS IN PLANT SCIENCE 2024; 15:1444234. [PMID: 39157518 PMCID: PMC11327160 DOI: 10.3389/fpls.2024.1444234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Wei Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kai-Yong Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Song-Tao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Zhen Li
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ya-Hui Lei
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Da-Zhong Guo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xu-Tao Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sheng-Chang Duan
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yi-Fan Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wei Chen
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
10
|
Feng K, Walker JF, Marx HE, Yang Y, Brockington SF, Moore MJ, Rabeler RK, Smith SA. The link between ancient whole-genome duplications and cold adaptations in the Caryophyllaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16350. [PMID: 38825760 DOI: 10.1002/ajb2.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024]
Abstract
PREMISE The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.
Collapse
Affiliation(s)
- Keyi Feng
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Joseph F Walker
- Department of Biological Sciences, University of Illinois Chicago, Chicago, 60607, IL, USA
| | - Hannah E Marx
- Department of Biology, University of New Mexico, Albuquerque, 87131, NM, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, 55108, MN, USA
| | | | - Michael J Moore
- Department of Biology, Oberlin College, Oberlin, 44074, OH, USA
| | - Richard K Rabeler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|
11
|
Barker MS, Jiao Y, Glennon KL. Doubling down on polyploid discoveries: Global advances in genomics and ecological impacts of polyploidy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16395. [PMID: 39164922 DOI: 10.1002/ajb2.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
All flowering plants are now recognized as diploidized paleopolyploids (Jiao et al., 2011; One Thousand Plant Transcriptomes Initiative, 2019), and polyploid species comprise approximately 30% of contemporary plant species (Wood et al., 2009; Barker et al., 2016a). A major implication of these discoveries is that, to appreciate the evolution of plant diversity, we need to understand the fundamental biology of polyploids and diploidization. This need is broadly recognized by our community as there is a continued, growing interest in polyploidy as a research topic. Over the past 25 years, the sequencing and analysis of plant genomes has revolutionized our understanding of the importance of polyploid speciation to the evolution of land plants.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, 85721, AZ, USA
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
McKibben MTW, Finch G, Barker MS. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny. AMERICAN JOURNAL OF BOTANY 2024; 111:e16378. [PMID: 39039654 DOI: 10.1002/ajb2.16378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024]
Abstract
PREMISE The history of angiosperms is marked by repeated rounds of ancient whole-genome duplications (WGDs). Here we used state-of-the-art methods to provide an up-to-date view of the distribution of WGDs in the history of angiosperms that considers both uncertainty introduced by different WGD inference methods and different underlying species-tree hypotheses. METHODS We used the distribution synonymous divergences (Ks) of paralogs and orthologs from transcriptomic and genomic data to infer and place WGDs across two hypothesized angiosperm phylogenies. We further tested these WGD hypotheses with syntenic inferences and Bayesian models of duplicate gene gain and loss. RESULTS The predicted number of WGDs in the history of angiosperms (~170) based on the current taxon sampling is largely similar across different inference methods, but varies in the precise placement of WGDs on the phylogeny. Ks-based methods often yield alternative hypothesized WGD placements due to variation in substitution rates among lineages. Phylogenetic models of duplicate gene gain and loss are more robust to topological variation. However, errors in species-tree inference can still produce spurious WGD hypotheses, regardless of method used. CONCLUSIONS Here we showed that different WGD inference methods largely agree on an average of 3.5 WGD in the history of individual angiosperm species. However, the precise placement of WGDs on the phylogeny is subject to the WGD inference method and tree topology. As researchers continue to test hypotheses regarding the impacts ancient WGDs have on angiosperm evolution, it is important to consider the uncertainty of the phylogeny as well as WGD inference methods.
Collapse
Affiliation(s)
- Michael T W McKibben
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Geoffrey Finch
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Li Q, Dai Y, Huang XC, Sun L, Wang K, Guo X, Xu D, Wan D, An L, Wang Z, Tang H, Qi Q, Zeng H, Qin M, Xue JY, Zhao Y. The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins. Acta Pharm Sin B 2024; 14:3760-3773. [PMID: 39220882 PMCID: PMC11365381 DOI: 10.1016/j.apsb.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Digao Wan
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Latai An
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Chen H, Zwaenepoel A, Van de Peer Y. wgd v2: a suite of tools to uncover and date ancient polyploidy and whole-genome duplication. Bioinformatics 2024; 40:btae272. [PMID: 38632086 PMCID: PMC11078771 DOI: 10.1093/bioinformatics/btae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
MOTIVATION Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant. RESULTS Here, we present a major update of a previously developed tool wgd, namely wgd v2, to look for remnants of ancient polyploidy, or WGD. We implemented novel and improved previously developed tools to (a) construct KS age distributions for the whole-paranome (collection of all duplicated genes in a genome), (b) unravel intragenomic and intergenomic collinearity resulting from WGDs, (c) fit mixture models to age distributions of gene duplicates, (d) correct substitution rate variation for phylogenetic placement of WGDs, and (e) date ancient WGDs via phylogenetic dating of WGD-retained gene duplicates. The applicability and feasibility of wgd v2 for the identification and the relative and absolute dating of ancient WGDs is demonstrated using different plant genomes. AVAILABILITY AND IMPLEMENTATION wgd v2 is open source and available at https://github.com/heche-psb/wgd.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
| | - Arthur Zwaenepoel
- UMR 8198, Evo-Eco-Paleo, University of Lille, CNRS, Lille, F-59000, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
An Z, Gao R, Chen S, Tian Y, Li Q, Tian L, Zhang W, Kong L, Zheng B, Hao L, Xin T, Yao H, Wang Y, Song W, Hua X, Liu C, Song J, Fan H, Sun W, Chen S, Xu Z. Lineage-Specific CYP80 Expansion and Benzylisoquinoline Alkaloid Diversity in Early-Diverging Eudicots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309990. [PMID: 38477432 PMCID: PMC11109638 DOI: 10.1002/advs.202309990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Menispermaceae species, as early-diverging eudicots, can synthesize valuable benzylisoquinoline alkaloids (BIAs) like bisbenzylisoquinoline alkaloids (bisBIAs) and sinomenines with a wide range of structural diversity. However, the evolutionary mechanisms responsible for their chemo-diversity are not well understood. Here, a chromosome-level genome assembly of Menispermum dauricum is presented and demonstrated the occurrence of two whole genome duplication (WGD) events that are shared by Ranunculales and specific to Menispermum, providing a model for understanding chromosomal evolution in early-diverging eudicots. The biosynthetic pathway for diverse BIAs in M. dauricum is reconstructed by analyzing the transcriptome and metabolome. Additionally, five catalytic enzymes - one norcoclaurine synthase (NCS) and four cytochrome P450 monooxygenases (CYP450s) - from M. dauricum are responsible for the formation of the skeleton, hydroxylated modification, and C-O/C-C phenol coupling of BIAs. Notably, a novel leaf-specific MdCYP80G10 enzyme that catalyzes C2'-C4a phenol coupling of (S)-reticuline into sinoacutine, the enantiomer of morphinan compounds, with predictable stereospecificity is discovered. Moreover, it is found that Menispermum-specific CYP80 gene expansion, as well as tissue-specific expression, has driven BIA diversity in Menispermaceae as compared to other Ranunculales species. This study sheds light on WGD occurrences in early-diverging eudicots and the evolution of diverse BIA biosynthesis.
Collapse
Affiliation(s)
- Zhoujie An
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Ya Tian
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Qi Li
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lixia Tian
- School of Pharmaceutical SciencesGuizhou UniversityGuiyang550025China
| | - Wanran Zhang
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lingzhe Kong
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Baojiang Zheng
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Lijun Hao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Yu Wang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wei Song
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Xin Hua
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Chengwei Liu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese MedicineInstitute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700China
- Institute of HerbgenomicsChengdu University of Traditional Chinese MedicineChengdu611137China
| | - Zhichao Xu
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration (Northeast Forestry University)Ministry of EducationHarbin150040China
- College of Life ScienceNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
16
|
Xu Z, Chen S, Wang Y, Tian Y, Wang X, Xin T, Li Z, Hua X, Tan S, Sun W, Pu X, Yao H, Gao R, Song J. Crocus genome reveals the evolutionary origin of crocin biosynthesis. Acta Pharm Sin B 2024; 14:1878-1891. [PMID: 38572115 PMCID: PMC10985130 DOI: 10.1016/j.apsb.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/22/2023] [Accepted: 11/09/2023] [Indexed: 04/05/2024] Open
Abstract
Crocus sativus (saffron) is a globally autumn-flowering plant, and its stigmas are the most expensive spice and valuable herb medicine. Crocus specialized metabolites, crocins, are biosynthesized in distant species, Gardenia (eudicot) and Crocus (monocot), and the evolution of crocin biosynthesis remains poorly understood. With the chromosome-level Crocus genome assembly, we revealed that two rounds of lineage-specific whole genome triplication occurred, contributing important roles in the production of carotenoids and apocarotenoids. According to the kingdom-wide identification, phylogenetic analysis, and functional assays of carotenoid cleavage dioxygenases (CCDs), we deduced that the duplication, site positive selection, and neofunctionalization of Crocus-specific CCD2 from CCD1 members are responsible for the crocin biosynthesis. In addition, site mutation of CsCCD2 revealed the key amino acids, including I143, L146, R161, E181, T259, and S292 related to the catalytic activity of zeaxanthin cleavage. Our study provides important insights into the origin and evolution of plant specialized metabolites, which are derived by duplication events of biosynthetic genes.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shanshan Chen
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Yalin Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaotong Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Zishan Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shengnan Tan
- Analysis and Testing Center of Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Xiangdong Pu
- School of Pharmacy, Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing 100700, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- State Key Laboratory of Basis and New Drug Development of Natural and Nuclear Drugs, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| |
Collapse
|
17
|
Ma X, Vanneste S, Chang J, Ambrosino L, Barry K, Bayer T, Bobrov AA, Boston L, Campbell JE, Chen H, Chiusano ML, Dattolo E, Grimwood J, He G, Jenkins J, Khachaturyan M, Marín-Guirao L, Mesterházy A, Muhd DD, Pazzaglia J, Plott C, Rajasekar S, Rombauts S, Ruocco M, Scott A, Tan MP, Van de Velde J, Vanholme B, Webber J, Wong LL, Yan M, Sung YY, Novikova P, Schmutz J, Reusch TBH, Procaccini G, Olsen JL, Van de Peer Y. Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment. NATURE PLANTS 2024; 10:240-255. [PMID: 38278954 PMCID: PMC7615686 DOI: 10.1038/s41477-023-01608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024]
Abstract
We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the 'savannahs of the sea' are of major concern in times of climate change and loss of biodiversity.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jiyang Chang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Luca Ambrosino
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Kerrie Barry
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Till Bayer
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
| | | | - LoriBeth Boston
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Justin E Campbell
- Coastlines and Oceans Division, Institute of Environment, Florida International University-Biscayne Bay Campus, Miami, FL, USA
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Maria Luisa Chiusano
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Agricultural Sciences, University Federico II of Naples, Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Guifen He
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Lázaro Marín-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Attila Mesterházy
- Centre for Ecological Research, Wetland Ecology Research Group, Debrecen, Hungary
| | - Danish-Daniel Muhd
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- National Biodiversity Future Centre, Palermo, Italy
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Fano Marine Center, Fano, Italy
| | - Alison Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Jozefien Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Bartel Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Li Lian Wong
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Mi Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Polina Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jeremy Schmutz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany.
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
- National Biodiversity Future Centre, Palermo, Italy.
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
18
|
Fleck SJ, Tomlin C, da Silva Coelho FA, Richter M, Danielson ES, Backenstose N, Krabbenhoft T, Lindqvist C, Albert VA. High quality genomes produced from single MinION flow cells clarify polyploid and demographic histories of critically endangered Fraxinus (ash) species. Commun Biol 2024; 7:54. [PMID: 38184717 PMCID: PMC10771460 DOI: 10.1038/s42003-023-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
With populations of threatened and endangered species declining worldwide, efforts are being made to generate high quality genomic records of these species before they are lost forever. Here, we demonstrate that data from single Oxford Nanopore Technologies (ONT) MinION flow cells can, even in the absence of highly accurate short DNA-read polishing, produce high quality de novo plant genome assemblies adequate for downstream analyses, such as synteny and ploidy evaluations, paleodemographic analyses, and phylogenomics. This study focuses on three North American ash tree species in the genus Fraxinus (Oleaceae) that were recently added to the International Union for Conservation of Nature (IUCN) Red List as critically endangered. Our results support a hexaploidy event at the base of the Oleaceae as well as a subsequent whole genome duplication shared by Syringa, Osmanthus, Olea, and Fraxinus. Finally, we demonstrate the use of ONT long-read sequencing data to reveal patterns in demographic history.
Collapse
Affiliation(s)
- Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Crystal Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Nathan Backenstose
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Trevor Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
19
|
Hao F, Liu X, Zhou B, Tian Z, Zhou L, Zong H, Qi J, He J, Zhang Y, Zeng P, Li Q, Wang K, Xia K, Guo X, Li L, Shao W, Zhang B, Li S, Yang H, Hui L, Chen W, Peng L, Liu F, Rong ZQ, Peng Y, Zhu W, McCallum JA, Li Z, Xu X, Yang H, Macknight RC, Wang W, Cai J. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat Genet 2023; 55:1976-1986. [PMID: 37932434 DOI: 10.1038/s41588-023-01546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Keke Xia
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
- BGI Research, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | | | - Shengkang Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Haifeng Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Linchong Hui
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Wei Chen
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenbo Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - John A McCallum
- The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | | | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
20
|
Zhou X, Peng T, Zeng Y, Cai Y, Zuo Q, Zhang L, Dong S, Liu Y. Chromosome-level genome assembly of Niphotrichum japonicum provides new insights into heat stress responses in mosses. FRONTIERS IN PLANT SCIENCE 2023; 14:1271357. [PMID: 37920716 PMCID: PMC10619864 DOI: 10.3389/fpls.2023.1271357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
With a diversity of approximately 22,000 species, bryophytes (hornworts, liverworts, and mosses) represent a major and diverse lineage of land plants. Bryophytes can thrive in many extreme environments as they can endure the stresses of drought, heat, and cold. The moss Niphotrichum japonicum (Grimmiaceae, Grimmiales) can subsist for extended periods under heat and drought conditions, providing a good candidate for studying the genetic basis underlying such high resilience. Here, we de novo assembled the genome of N. japonicum using Nanopore long reads combined with Hi-C scaffolding technology to anchor the 191.61 Mb assembly into 14 pseudochromosomes. The genome structure of N. japonicum's autosomes is mostly conserved and highly syntenic, in contrast to the sparse and disordered genes present in its sex chromosome. Comparative genomic analysis revealed the presence of 10,019 genes exclusively in N. japonicum. These genes may contribute to the species-specific resilience, as demonstrated by the gene ontology (GO) enrichment. Transcriptome analysis showed that 37.44% (including 3,107 unique genes) of the total annotated genes (26,898) exhibited differential expression as a result of heat-induced stress, and the mechanisms that respond to heat stress are generally conserved across plants. These include the upregulation of HSPs, LEAs, and reactive oxygen species (ROS) scavenging genes, and the downregulation of PPR genes. N. japonicum also appears to have distinctive thermal mechanisms, including species-specific expansion and upregulation of the Self-incomp_S1 gene family, functional divergence of duplicated genes, structural clusters of upregulated genes, and expression piggybacking of hub genes. Overall, our study highlights both shared and species-specific heat tolerance strategies in N. japonicum, providing valuable insights into the heat tolerance mechanism and the evolution of resilient plants.
Collapse
Affiliation(s)
- Xuping Zhou
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Peng
- Colleage of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Yuying Zeng
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Cai
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zuo
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Li Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Shanshan Dong
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
| | - Yang Liu
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| |
Collapse
|
21
|
Rey MD, Labella-Ortega M, Guerrero-Sánchez VM, Carleial R, Castillejo MÁ, Ruggieri V, Jorrín-Novo JV. A first draft genome of holm oak ( Quercus ilex subsp. ballota), the most representative species of the Mediterranean forest and the Spanish agrosylvopastoral ecosystem " dehesa". Front Mol Biosci 2023; 10:1242943. [PMID: 37905231 PMCID: PMC10613499 DOI: 10.3389/fmolb.2023.1242943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
The holm oak (Quercus ilex subsp. ballota) is the most representative species of the Mediterranean Basin and the agrosylvopastoral Spanish "dehesa" ecosystem. Being part of our life, culture, and subsistence since ancient times, it has significant environmental and economic importance. More recently, there has been a renewed interest in using the Q. ilex acorn as a functional food due to its nutritional and nutraceutical properties. However, the holm oak and its related ecosystems are threatened by different factors, with oak decline syndrome and climate change being the most worrying in the short and medium term. Breeding programs informed by the selection of elite genotypes seem to be the most plausible biotechnological solution to rescue populations under threat. To achieve this and other downstream analyses, we need a high-quality and well-annotated Q. ilex reference genome. Here, we introduce the first draft genome assembly of Q. ilex using long-read sequencing (PacBio). The assembled nuclear haploid genome had 530 contigs totaling 842.2 Mbp (N50 = 3.3 Mbp), of which 448.7 Mb (53%) were repetitive sequences. We annotated 39,443 protein-coding genes of which 94.80% were complete and single-copy genes. Phylogenetic analyses showed no evidence of a recent whole-genome duplication, and high synteny of the 12 chromosomes between Q. ilex and Quercus lobata and between Q. ilex and Quercus robur. The chloroplast genome size was 142.3 Kbp with 149 protein-coding genes successfully annotated. This first draft should allow for the validation of omics data as well as the identification and functional annotation of genes related to phenotypes of interest such as those associated with resilience against oak decline syndrome and climate change and higher acorn productivity and nutraceutical value.
Collapse
Affiliation(s)
- María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Víctor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | | | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Valentino Ruggieri
- Biomeets Consulting ITNIG—Carrer d’ Alaba 61 08005 Catalonia, Barcelona, Spain
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| |
Collapse
|
22
|
Chen H, Zwaenepoel A. Inference of Ancient Polyploidy from Genomic Data. Methods Mol Biol 2023; 2545:3-18. [PMID: 36720805 DOI: 10.1007/978-1-0716-2561-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Whole-genome sequence data have revealed that numerous eukaryotic organisms derive from distant polyploid ancestors, even when these same organisms are genetically and karyotypically diploid. Such ancient whole-genome duplications (WGDs) have been important for long-term genome evolution and are often speculatively associated with important evolutionary events such as key innovations, adaptive radiations, or survival after mass extinctions. Clearly, reliable methods for unveiling ancient WGDs are key toward furthering understanding of the long-term evolutionary significance of polyploidy. In this chapter, we describe a set of basic established comparative genomics approaches for the inference of ancient WGDs from genomic data based on empirical age distributions and collinearity analyses, explain the principles on which they are based, and illustrate a basic workflow using the software "wgd," geared toward a typical exploratory analysis of a newly obtained genome sequence.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
| |
Collapse
|
23
|
Chen H, Fang Y, Zwaenepoel A, Huang S, Van de Peer Y, Li Z. Revisiting ancient polyploidy in leptosporangiate ferns. THE NEW PHYTOLOGIST 2023; 237:1405-1417. [PMID: 36349406 PMCID: PMC7614084 DOI: 10.1111/nph.18607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
Ferns, and particularly homosporous ferns, have long been assumed to have experienced recurrent whole-genome duplication (WGD) events because of their substantially large genome sizes, surprisingly high chromosome numbers, and high degrees of polyploidy among many extant members. As the number of sequenced fern genomes is limited, recent studies have employed transcriptome data to find evidence for WGDs in ferns. However, they have reached conflicting results concerning the occurrence of ancient polyploidy, for instance, in the lineage of leptosporangiate ferns. Because identifying WGDs in a phylogenetic context is the foremost step in studying the contribution of ancient polyploidy to evolution, we here revisited earlier identified WGDs in leptosporangiate ferns, mainly the core leptosporangiate ferns, by building KS -age distributions and applying substitution rate corrections and by conducting statistical gene tree-species tree reconciliation analyses. Our integrative analyses not only identified four ancient WGDs in the sampled core leptosporangiate ferns but also identified false positives and false negatives for WGDs that recent studies have reported earlier. In conclusion, we underscore the significance of substitution rate corrections and uncertainties in gene tree-species tree reconciliations in calling WGD events and advance an exemplar workflow to overcome such often-overlooked issues.
Collapse
Affiliation(s)
- Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Yuhan Fang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sanwen Huang
- Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
24
|
McLay TGB, Murphy DJ, Holmes GD, Mathews S, Brown GK, Cantrill DJ, Udovicic F, Allnutt TR, Jackson CJ. A genome resource for Acacia, Australia's largest plant genus. PLoS One 2022; 17:e0274267. [PMID: 36240205 PMCID: PMC9565413 DOI: 10.1371/journal.pone.0274267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/24/2022] [Indexed: 11/05/2022] Open
Abstract
Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country's floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.
Collapse
Affiliation(s)
- Todd G. B. McLay
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Centre for Australian Biodiversity Research, CSIRO, Black Mountain, Australian Capital Territory, Australia
| | - Daniel J. Murphy
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | - Gareth D. Holmes
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | - Sarah Mathews
- Centre for Australian Biodiversity Research, CSIRO, Black Mountain, Australian Capital Territory, Australia
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Gillian K. Brown
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Frank Udovicic
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| | | | - Chris J. Jackson
- Royal Botanic Gardens Victoria, South Yarra, Victoria, Australia
| |
Collapse
|
25
|
Fang Y, Qin X, Liao Q, Du R, Luo X, Zhou Q, Li Z, Chen H, Jin W, Yuan Y, Sun P, Zhang R, Zhang J, Wang L, Cheng S, Yang X, Yan Y, Zhang X, Zhang Z, Bai S, Van de Peer Y, Lucas WJ, Huang S, Yan J. The genome of homosporous maidenhair fern sheds light on the euphyllophyte evolution and defences. NATURE PLANTS 2022; 8:1024-1037. [PMID: 36050462 PMCID: PMC7613604 DOI: 10.1038/s41477-022-01222-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
Euphyllophytes encompass almost all extant plants, including two sister clades, ferns and seed plants. Decoding genomes of ferns is the key to deep insight into the origin of euphyllophytes and the evolution of seed plants. Here we report a chromosome-level genome assembly of Adiantum capillus-veneris L., a model homosporous fern. This fern genome comprises 30 pseudochromosomes with a size of 4.8-gigabase and a contig N50 length of 16.22 Mb. Gene co-expression network analysis uncovered that homospore development in ferns has relatively high genetic similarities with that of the pollen in seed plants. Analysing fern defence response expands understanding of evolution and diversity in endogenous bioactive jasmonates in plants. Moreover, comparing fern genomes with those of other land plants reveals changes in gene families important for the evolutionary novelties within the euphyllophyte clade. These results lay a foundation for studies on fern genome evolution and function, as well as the origin and evolution of euphyllophytes.
Collapse
Affiliation(s)
- Yuhan Fang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Xing Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xizhi Luo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qian Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Peng Cheng Laboratory, Artificial Intelligence Research Center, Shenzhen, China
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wanting Jin
- State Key Laboratory of Protein and Plant Gene Research, Quantitative Biology Center, College of Life Sciences, Peking University, Beijing, China
| | - Yaning Yuan
- State Key Laboratory of Protein and Plant Gene Research, Quantitative Biology Center, College of Life Sciences, Peking University, Beijing, China
| | - Pengbo Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Rui Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jiao Zhang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xueyong Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuehong Yan
- The Orchid Conservation and Research Centre of Shenzhen, Shenzhen, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Shunong Bai
- State Key Laboratory of Protein and Plant Gene Research, Quantitative Biology Center, College of Life Sciences, Peking University, Beijing, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - William John Lucas
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
26
|
Pelosi JA, Kim EH, Barbazuk WB, Sessa EB. Phylotranscriptomics Illuminates the Placement of Whole Genome Duplications and Gene Retention in Ferns. FRONTIERS IN PLANT SCIENCE 2022; 13:882441. [PMID: 35909764 PMCID: PMC9330400 DOI: 10.3389/fpls.2022.882441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/16/2022] [Indexed: 05/31/2023]
Abstract
Ferns are the second largest clade of vascular plants with over 10,000 species, yet the generation of genomic resources for the group has lagged behind other major clades of plants. Transcriptomic data have proven to be a powerful tool to assess phylogenetic relationships, using thousands of markers that are largely conserved across the genome, and without the need to sequence entire genomes. We assembled the largest nuclear phylogenetic dataset for ferns to date, including 2884 single-copy nuclear loci from 247 transcriptomes (242 ferns, five outgroups), and investigated phylogenetic relationships across the fern tree, the placement of whole genome duplications (WGDs), and gene retention patterns following WGDs. We generated a well-supported phylogeny of ferns and identified several regions of the fern phylogeny that demonstrate high levels of gene tree-species tree conflict, which largely correspond to areas of the phylogeny that have been difficult to resolve. Using a combination of approaches, we identified 27 WGDs across the phylogeny, including 18 large-scale events (involving more than one sampled taxon) and nine small-scale events (involving only one sampled taxon). Most inferred WGDs occur within single lineages (e.g., orders, families) rather than on the backbone of the phylogeny, although two inferred events are shared by leptosporangiate ferns (excluding Osmundales) and Polypodiales (excluding Lindsaeineae and Saccolomatineae), clades which correspond to the majority of fern diversity. We further examined how retained duplicates following WGDs compared across independent events and found that functions of retained genes were largely convergent, with processes involved in binding, responses to stimuli, and certain organelles over-represented in paralogs while processes involved in transport, organelles derived from endosymbiotic events, and signaling were under-represented. To date, our study is the most comprehensive investigation of the nuclear fern phylogeny, though several avenues for future research remain unexplored.
Collapse
Affiliation(s)
- Jessie A. Pelosi
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Emily H. Kim
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - W. Brad Barbazuk
- Department of Biology, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Emily B. Sessa
- Department of Biology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Ramachandran D, Huebner CD, Daly M, Haimovitz J, Swale T, Barrett CF. Chromosome Level Genome Assembly and Annotation of Highly Invasive Japanese Stiltgrass (Microstegium vimineum). Genome Biol Evol 2021; 13:6413638. [PMID: 34718556 PMCID: PMC8598173 DOI: 10.1093/gbe/evab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
The invasive Japanese stiltgrass (Microstegium vimineum) affects a wide range of ecosystems and threatens biodiversity across the eastern USA. However, the mechanisms underlying rapid adaptation, plasticity, and epigenetics in the invasive range are largely unknown. We present a chromosome-level assembly for M. vimineum to investigate genome dynamics, evolution, adaptation, and the genomics of phenotypic plasticity. We generated a 1.12-Gb genome with scaffold N50 length of 53.44 Mb respectively, taking a de novo assembly approach that combined PacBio and Dovetail Genomics Omni-C sequencing. The assembly contains 23 pseudochromosomes, representing 99.96% of the genome. BUSCO assessment indicated that 80.3% of Poales gene groups are present in the assembly. The genome is predicted to contain 39,604 protein-coding genes, of which 26,288 are functionally annotated. Furthermore, 66.68% of the genome is repetitive, of which unclassified (35.63%) and long-terminal repeat (LTR) retrotransposons (26.90%) are predominant. Similar to other grasses, Gypsy (41.07%) and Copia (32%) are the most abundant LTR-retrotransposon families. The majority of LTR-retrotransposons are derived from a significant expansion in the past 1-2 Myr, suggesting the presence of relatively young LTR-retrotransposon lineages. We find corroborating evidence from Ks plots for a stiltgrass-specific duplication event, distinct from the more ancient grass-specific duplication event. The assembly and annotation of M. vimineum will serve as an essential genomic resource facilitating studies of the invasion process, the history and consequences of polyploidy in grasses, and provides a crucial tool for natural resource managers.
Collapse
Affiliation(s)
| | - Cynthia D Huebner
- Department of Biology, West Virginia University, USA.,USDA Forest Service, Northern Research Station, Morgantown, West Virginia, USA
| | - Mark Daly
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, California, USA
| | | |
Collapse
|