1
|
Koul M, Kaushik S, Singh K, Sharma D. VITALdb: to select the best viroinformatics tools for a desired virus or application. Brief Bioinform 2025; 26:bbaf084. [PMID: 40063348 PMCID: PMC11892104 DOI: 10.1093/bib/bbaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
The recent pandemics of viral diseases, COVID-19/mpox (humans) and lumpy skin disease (cattle), have kept us glued to viral research. These pandemics along with the recent human metapneumovirus outbreak have exposed the urgency for early diagnosis of viral infections, vaccine development, and discovery of novel antiviral drugs and therapeutics. To support this, there is an armamentarium of virus-specific computational tools that are currently available. VITALdb (VIroinformatics Tools and ALgorithms database) is a resource of ~360 viroinformatics tools encompassing all major viruses (SARS-CoV-2, influenza virus, human immunodeficiency virus, papillomavirus, herpes simplex virus, hepatitis virus, dengue virus, Ebola virus, Zika virus, etc.) and several diverse applications [structural and functional annotation, antiviral peptides development, subspecies characterization, recognition of viral recombination, inhibitors identification, phylogenetic analysis, virus-host prediction, viral metagenomics, detection of mutation(s), primer designing, etc.]. Resources, tools, and other utilities mentioned in this article will not only facilitate further developments in the realm of viroinformatics but also provide tremendous fillip to translate fundamental knowledge into applied research. Most importantly, VITALdb is an inevitable tool for selecting the best tool(s) to carry out a desired task and hence will prove to be a vital database (VITALdb) for the scientific community. Database URL: https://compbio.iitr.ac.in/vitaldb.
Collapse
Affiliation(s)
- Mira Koul
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Shalini Kaushik
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kavya Singh
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Deepak Sharma
- Computational Biology and Translational Bioinformatics (CBTB) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
2
|
Huang C, Xiao X, Ai W, Huang H, Xu X, Zhou X, Wang M, Zhang Z, Wang Y, Chunfang G. HPV-16 E6 mutation and viral integration related host DNA methylation implicate the development and progression of cervical cancer. Infect Dis (Lond) 2025; 57:66-80. [PMID: 39154329 DOI: 10.1080/23744235.2024.2391538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND HPV-16 infection and viral-host integration are the most important risk factors for cervical cancer (CC). The aim of this study is to develop a new molecular strategy integrated both the viral and host genome variations identifying and monitoring CC. METHOD A total of 312 methylation and 538 RNA-seq datasets were collected from public databases to identify differentially methylated and expressed genes. HPV associated virus integration sites (VISs) were analysed using the ViMIC database. From September 2020 to August 2021, the 70 HPV-16 positive cases retrospectively collected from multi-centre cohorts were subjected to HPV-16 E6 deep sequencing and PCR-based host gene (ASTN1, DLX1, ITGA4, RXFP3, SOX17, ZNF671) methylation detection. RNAseq and expression validation (NNF671) were performed in C-33A cell line harbouring HPV D32E. Lasso and logistic regression algorithm were used to construct the CC diagnostic model. RESULTS A positive correlation was observed between the average methylation level of CC patients and their pathological features including tumour stage (p = 0.0077) and HPV subtype (p < 0.001). ZNF671 was identified as a CC-specific methylation marker, with an impressive 93% sensitivity. Both HPV-16 D32E mutation and integration of HPV-16 down-regulated the ZNF671 expression. Finally, a CC diagnostic nomogram was developed by integrating ZNF671 methylation level and HPV E6 mutation feature, yielding an exceptional AUC of 0.997 (95% CI: 0.934-1.000). CONCLUSIONS Our study demonstrated HPV viral mutations are closely related to host gene epigenetic alterations in CC. Integration of the viral and host genetic information might be a new promising strategy for CC screening.
Collapse
Affiliation(s)
- Chenjun Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xiao
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenchao Ai
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Honglian Huang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuewen Xu
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gao Chunfang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zong H, Wu R, Cha J, Feng W, Wu E, Li J, Shao A, Tao L, Li Z, Tang B, Shen B. Advancing Chinese biomedical text mining with community challenges. J Biomed Inform 2024; 157:104716. [PMID: 39197732 DOI: 10.1016/j.jbi.2024.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE This study aims to review the recent advances in community challenges for biomedical text mining in China. METHODS We collected information of evaluation tasks released in community challenges of biomedical text mining, including task description, dataset description, data source, task type and related links. A systematic summary and comparative analysis were conducted on various biomedical natural language processing tasks, such as named entity recognition, entity normalization, attribute extraction, relation extraction, event extraction, text classification, text similarity, knowledge graph construction, question answering, text generation, and large language model evaluation. RESULTS We identified 39 evaluation tasks from 6 community challenges that spanned from 2017 to 2023. Our analysis revealed the diverse range of evaluation task types and data sources in biomedical text mining. We explored the potential clinical applications of these community challenge tasks from a translational biomedical informatics perspective. We compared with their English counterparts, and discussed the contributions, limitations, lessons and guidelines of these community challenges, while highlighting future directions in the era of large language models. CONCLUSION Community challenge evaluation competitions have played a crucial role in promoting technology innovation and fostering interdisciplinary collaboration in the field of biomedical text mining. These challenges provide valuable platforms for researchers to develop state-of-the-art solutions.
Collapse
Affiliation(s)
- Hui Zong
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rongrong Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxue Cha
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Bio-Medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Weizhe Feng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Erman Wu
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiakun Li
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Aibin Shao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Tao
- Faculty of Business Information, Shanghai Business School, Shanghai 201400, China
| | | | - Buzhou Tang
- Department of Computer Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Deji Z, Tong Y, Huang H, Zhang Z, Fang M, Crabbe MJC, Zhang X, Wang Y. Influence of Environmental Factors and Genome Diversity on Cumulative COVID-19 Cases in the Highland Region of China: Comparative Correlational Study. Interact J Med Res 2024; 13:e43585. [PMID: 38526532 DOI: 10.2196/43585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 07/20/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The novel coronavirus SARS-CoV-2 caused the global COVID-19 pandemic. Emerging reports support lower mortality and reduced case numbers in highland areas; however, comparative studies on the cumulative impact of environmental factors and viral genetic diversity on COVID-19 infection rates have not been performed to date. OBJECTIVE The aims of this study were to determine the difference in COVID-19 infection rates between high and low altitudes, and to explore whether the difference in the pandemic trend in the high-altitude region of China compared to that of the lowlands is influenced by environmental factors, population density, and biological mechanisms. METHODS We examined the correlation between population density and COVID-19 cases through linear regression. A zero-shot model was applied to identify possible factors correlated to COVID-19 infection. We further analyzed the correlation of meteorological and air quality factors with infection cases using the Spearman correlation coefficient. Mixed-effects multiple linear regression was applied to evaluate the associations between selected factors and COVID-19 cases adjusting for covariates. Lastly, the relationship between environmental factors and mutation frequency was evaluated using the same correlation techniques mentioned above. RESULTS Among the 24,826 confirmed COVID-19 cases reported from 40 cities in China from January 23, 2020, to July 7, 2022, 98.4% (n=24,430) were found in the lowlands. Population density was positively correlated with COVID-19 cases in all regions (ρ=0.641, P=.003). In high-altitude areas, the number of COVID-19 cases was negatively associated with temperature, sunlight hours, and UV index (P=.003, P=.001, and P=.009, respectively) and was positively associated with wind speed (ρ=0.388, P<.001), whereas no correlation was found between meteorological factors and COVID-19 cases in the lowlands. After controlling for covariates, the mixed-effects model also showed positive associations of fine particulate matter (PM2.5) and carbon monoxide (CO) with COVID-19 cases (P=.002 and P<.001, respectively). Sequence variant analysis showed lower genetic diversity among nucleotides for each SARS-CoV-2 genome (P<.001) and three open reading frames (P<.001) in high altitudes compared to 300 sequences analyzed from low altitudes. Moreover, the frequencies of 44 nonsynonymous mutations and 32 synonymous mutations were significantly different between the high- and low-altitude groups (P<.001, mutation frequency>0.1). Key nonsynonymous mutations showed positive correlations with altitude, wind speed, and air pressure and showed negative correlations with temperature, UV index, and sunlight hours. CONCLUSIONS By comparison with the lowlands, the number of confirmed COVID-19 cases was substantially lower in high-altitude regions of China, and the population density, temperature, sunlight hours, UV index, wind speed, PM2.5, and CO influenced the cumulative pandemic trend in the highlands. The identified influence of environmental factors on SARS-CoV-2 sequence variants adds knowledge of the impact of altitude on COVID-19 infection, offering novel suggestions for preventive intervention.
Collapse
Affiliation(s)
- Zhuoga Deji
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Information School, The University of Sheffield, Sheffield, United Kingdom
| | - Yuantao Tong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Honglian Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, United Kingdom
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Bedfordshire, United Kingdom
- School of Life Sciences, Shanxi University, Shanxi, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Wang
- Department of Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Li C, Ma L, Zou D, Zhang R, Bai X, Li L, Wu G, Huang T, Zhao W, Jin E, Bao Y, Song S. RCoV19: A One-stop Hub for SARS-CoV-2 Genome Data Integration, Variant Monitoring, and Risk Pre-warning. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:1066-1079. [PMID: 37898309 PMCID: PMC10928372 DOI: 10.1016/j.gpb.2023.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.
Collapse
Affiliation(s)
- Cuiping Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lina Ma
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Zou
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Rongqin Zhang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Lun Li
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Gangao Wu
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Huang
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enhui Jin
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuhui Song
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Serna García G, Al Khalaf R, Invernici F, Ceri S, Bernasconi A. CoVEffect: interactive system for mining the effects of SARS-CoV-2 mutations and variants based on deep learning. Gigascience 2022; 12:giad036. [PMID: 37222749 PMCID: PMC10205000 DOI: 10.1093/gigascience/giad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Literature about SARS-CoV-2 widely discusses the effects of variations that have spread in the past 3 years. Such information is dispersed in the texts of several research articles, hindering the possibility of practically integrating it with related datasets (e.g., millions of SARS-CoV-2 sequences available to the community). We aim to fill this gap, by mining literature abstracts to extract-for each variant/mutation-its related effects (in epidemiological, immunological, clinical, or viral kinetics terms) with labeled higher/lower levels in relation to the nonmutated virus. RESULTS The proposed framework comprises (i) the provisioning of abstracts from a COVID-19-related big data corpus (CORD-19) and (ii) the identification of mutation/variant effects in abstracts using a GPT2-based prediction model. The above techniques enable the prediction of mutations/variants with their effects and levels in 2 distinct scenarios: (i) the batch annotation of the most relevant CORD-19 abstracts and (ii) the on-demand annotation of any user-selected CORD-19 abstract through the CoVEffect web application (http://gmql.eu/coveffect), which assists expert users with semiautomated data labeling. On the interface, users can inspect the predictions and correct them; user inputs can then extend the training dataset used by the prediction model. Our prototype model was trained through a carefully designed process, using a minimal and highly diversified pool of samples. CONCLUSIONS The CoVEffect interface serves for the assisted annotation of abstracts, allowing the download of curated datasets for further use in data integration or analysis pipelines. The overall framework can be adapted to resolve similar unstructured-to-structured text translation tasks, which are typical of biomedical domains.
Collapse
Affiliation(s)
- Giuseppe Serna García
- Dipartimento di Informazione, Elettronica e Bioingegneria, 20133 Milano Country: Italy, Italy
| | - Ruba Al Khalaf
- Dipartimento di Informazione, Elettronica e Bioingegneria, 20133 Milano Country: Italy, Italy
| | - Francesco Invernici
- Dipartimento di Informazione, Elettronica e Bioingegneria, 20133 Milano Country: Italy, Italy
| | - Stefano Ceri
- Dipartimento di Informazione, Elettronica e Bioingegneria, 20133 Milano Country: Italy, Italy
| | - Anna Bernasconi
- Dipartimento di Informazione, Elettronica e Bioingegneria, 20133 Milano Country: Italy, Italy
| |
Collapse
|